
Basics: Locations Mobility Equivalence & Refinement

A Denotational Study of Mobility

Joël-Alexis Bialkiewicz and Frédéric Peschanski

November 2, 2009

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 1 / 16



Basics: Locations Mobility Equivalence & Refinement

Introduction

Two Main Points of View on Modelling Processes

Operational POV (π-calculus. . . )

Low level, double-edged: easy mobility but difficult to abstract
unsettled theory so many variants
issues with compositionality: bound prefixes and guards
denotations exist but not practical

Denotational POV (CSP)

denotational (tr, fail, div) and compositional by design
supports refinement
but no easy way to account for mobility

Our Approach: Mobility in a Denotational Way

Heavily inspired by CSP but integrated model (decorated traces)
π-like mobility but compositional =⇒ fully denotational model
Support for refinement

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 2 / 16



Basics: Locations Mobility Equivalence & Refinement

Introduction

Two Main Points of View on Modelling Processes

Operational POV (π-calculus. . . )

Low level, double-edged: easy mobility but difficult to abstract
unsettled theory so many variants
issues with compositionality: bound prefixes and guards
denotations exist but not practical

Denotational POV (CSP)

denotational (tr, fail, div) and compositional by design
supports refinement
but no easy way to account for mobility

Our Approach: Mobility in a Denotational Way

Heavily inspired by CSP but integrated model (decorated traces)
π-like mobility but compositional =⇒ fully denotational model
Support for refinement

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 2 / 16



Basics: Locations Mobility Equivalence & Refinement

Outline

1 Basics: Locations

2 Mobility

3 Equivalence & Refinement

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 3 / 16



Basics: Locations Mobility Equivalence & Refinement

Outline

1 Basics: Locations

2 Mobility

3 Equivalence & Refinement

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 4 / 16



Basics: Locations Mobility Equivalence & Refinement

Representing Behaviours

The problem

Full representation of behaviour? branching structure (LTS)

Set of process traces: information lost

Traces + failures,divergences: hard to introduce mobility

What we wanted

Traces but with as much information as the LTS

How: link observations to where and when in LTS
=⇒ locations !

LTS can be rebuilt from decorated traces: no information lost

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 5 / 16



Basics: Locations Mobility Equivalence & Refinement

Basic Example

The basics

Observation (::location): input channel? output channel!value, or X
Location: origin: ε, next: . and choice: �number of branches

branch number , weak variants .̃ and �̃ji

Process (not mobile)

coin?.(button1?.out!tea + coin?.button2?.out!coffee)

What does this process do?

Behaviour

LTS Traces

coin?

button1?

out!tea

coin?

button2?

out!coffee

{
〈coin?::., button1?::�2

1, out!tea::.〉,
〈coin?::., coin?::�2

2, button2?::., out!coffee::.〉
}

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 6 / 16



Basics: Locations Mobility Equivalence & Refinement

Basic Example

The basics

Observation (::location): input channel? output channel!value, or X
Location: origin: ε, next: . and choice: �number of branches

branch number , weak variants .̃ and �̃ji

Process (not mobile)

coin?.(button1?.out!tea + coin?.button2?.out!coffee)

What does this process do?

Behaviour

LTS Traces

coin?

button1?

out!tea

coin?

button2?

out!coffee

{
〈coin?::., button1?::�2

1, out!tea::.〉,
〈coin?::., coin?::�2

2, button2?::., out!coffee::.〉
}

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 6 / 16



Basics: Locations Mobility Equivalence & Refinement

Basic Example

The basics

Observation (::location): input channel? output channel!value, or X
Location: origin: ε, next: . and choice: �number of branches

branch number , weak variants .̃ and �̃ji

Process (not mobile)

coin?.(button1?.out!tea + coin?.button2?.out!coffee)

What does this process do?

Behaviour

LTS Traces

coin?

button1?

out!tea

coin?

button2?

out!coffee

{
〈coin?::., button1?::�2

1, out!tea::.〉,
〈coin?::., coin?::�2

2, button2?::., out!coffee::.〉
}

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 6 / 16



Basics: Locations Mobility Equivalence & Refinement

Basic Example

The basics

Observation (::location): input channel? output channel!value, or X
Location: origin: ε, next: . and choice: �number of branches

branch number , weak variants .̃ and �̃ji

Process (not mobile)

coin?.(button1?.out!tea + coin?.button2?.out!coffee)

What does this process do?

Behaviour

LTS Traces

coin?

button1?

out!tea

coin?

button2?

out!coffee

{
〈coin?::., button1?::�2

1, out!tea::.〉,
〈coin?::., coin?::�2

2, button2?::., out!coffee::.〉
}

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 6 / 16



Basics: Locations Mobility Equivalence & Refinement

Basic Example

The basics

Observation (::location): input channel? output channel!value, or X
Location: origin: ε, next: . and choice: �number of branches

branch number , weak variants .̃ and �̃ji

Process (not mobile)

coin?.(button1?.out!tea + coin?.button2?.out!coffee)

What does this process do?

Behaviour

LTS Traces

coin?

button1?

out!tea

coin?

button2?

out!coffee

{
〈coin?::., button1?::�2

1, out!tea::.〉,
〈coin?::., coin?::�2

2, button2?::., out!coffee::.〉
}

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 6 / 16



Basics: Locations Mobility Equivalence & Refinement

Basic Example

The basics

Observation (::location): input channel? output channel!value, or X
Location: origin: ε, next: . and choice: �number of branches

branch number , weak variants .̃ and �̃ji

Process (not mobile)

coin?.(button1?.out!tea + coin?.button2?.out!coffee)

What does this process do?

Behaviour

LTS Traces

coin?

button1?

out!tea

coin?

button2?

out!coffee

{
〈coin?::., button1?::�2

1, out!tea::.〉,
〈coin?::., coin?::�2

2, button2?::., out!coffee::.〉
}

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 6 / 16



Basics: Locations Mobility Equivalence & Refinement

Basic Example

The basics

Observation (::location): input channel? output channel!value, or X
Location: origin: ε, next: . and choice: �number of branches

branch number , weak variants .̃ and �̃ji

Process (not mobile)

coin?.(button1?.out!tea + coin?.button2?.out!coffee)

What does this process do?

Behaviour

LTS Traces

coin?

button1?

out!tea

coin?

button2?

out!coffee

{
〈coin?::., button1?::�2

1, out!tea::.〉,
〈coin?::., coin?::�2

2, button2?::., out!coffee::.〉
}

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 6 / 16



Basics: Locations Mobility Equivalence & Refinement

Basic Example

The basics

Observation (::location): input channel? output channel!value, or X
Location: origin: ε, next: . and choice: �number of branches

branch number , weak variants .̃ and �̃ji

Process (not mobile)

coin?.(button1?.out!tea + coin?.button2?.out!coffee)

Which locations why? What is an absolute location?

Behaviour

LTS Traces
ε

.
coin?

�2
1

button1?

.
out!tea

�2
2

coin?

.
button2?

.
out!coffee

{
〈coin?::., button1?::�2

1, out!tea::.〉,
〈coin?::., coin?::�2

2, button2?::., out!coffee::.〉
}

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 6 / 16



Basics: Locations Mobility Equivalence & Refinement

Outline

1 Basics: Locations

2 Mobility

3 Equivalence & Refinement

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 7 / 16



Basics: Locations Mobility Equivalence & Refinement

About Mobility

Physical vs Logical Mobility

A process is mobile if it changes neighbours

How Can a Process Change Neighbours?

A
c

B
c

C

νc
νd

d

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 8 / 16



Basics: Locations Mobility Equivalence & Refinement

About Mobility

Physical vs Logical Mobility

A process is mobile if it changes neighbours

How Can a Process Change Neighbours?

A
c

B
c

C

νc
νd

d

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 8 / 16



Basics: Locations Mobility Equivalence & Refinement

About Mobility

Physical vs Logical Mobility

A process is mobile if it changes neighbours

How Can a Process Change Neighbours?

A
c

B
c

C

νc
νd

d

d

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 8 / 16



Basics: Locations Mobility Equivalence & Refinement

About Mobility

Physical vs Logical Mobility

A process is mobile if it changes neighbours

How Can a Process Change Neighbours?

A B
c

C

νc
νd

d

d

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 8 / 16



Basics: Locations Mobility Equivalence & Refinement

About Mobility

Physical vs Logical Mobility

A process is mobile if it changes neighbours

How Can a Process Change Neighbours?

A B
c

C

νc
νd

d

d

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 8 / 16



Basics: Locations Mobility Equivalence & Refinement

The Modeling Problems

Two main problems

Binders
Guards

Binders in mobile languages

Binders: dynamic names (escaped names and inputs)
π-calculus operational, mixes free and bound names
Solution: binders are uniquely identified by when/where created
advantage: fresh by construction, avoid α-conversion issues

Guards

Reminder: [ϕ]P means if ϕ then P
Not observations, but necessary for compos. Where do they go?
Solution: in locations

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 9 / 16



Basics: Locations Mobility Equivalence & Refinement

Example 2

Process with guards and extrusion

(ν in)request!in.in?out.
([out = stop]SKIP + [out 6= stop]Communicate(in, out))

What does this process do?

Behaviour

LTS Traces

request!ν•

ν•?

[ρ• = stop]X

. . .

[ρ• 6= stop]α1

{
〈request!νε.::., νε.?::.,X::(ρε.. = stop, �2

1)〉,
〈request!νε.::., νε.?::., α1::(ρε.. 6= stop, �2

2), . . .〉,
. . .
}

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 10 / 16



Basics: Locations Mobility Equivalence & Refinement

Example 2

Process with guards and extrusion

(ν in)request!in.in?out.
([out = stop]SKIP + [out 6= stop]Communicate(in, out))

Extruded names: νwhere

Behaviour

LTS Traces

request!ν•

ν•?

[ρ• = stop]X

. . .

[ρ• 6= stop]α1

{
〈request!νε.::., νε.?::.,X::(ρε.. = stop, �2

1)〉,
〈request!νε.::., νε.?::., α1::(ρε.. 6= stop, �2

2), . . .〉,
. . .
}

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 10 / 16



Basics: Locations Mobility Equivalence & Refinement

Example 2

Process with guards and extrusion

(ν in)request!in.in?out.
([out = stop]SKIP + [out 6= stop]Communicate(in, out))

Input observations have no object; received names: ρwhere

Behaviour

LTS Traces

request!ν•

ν•?

[ρ• = stop]X

. . .

[ρ• 6= stop]α1

{
〈request!νε.::., νε.?::.,X::(ρε.. = stop, �2

1)〉,
〈request!νε.::., νε.?::., α1::(ρε.. 6= stop, �2

2), . . .〉,
. . .
}

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 10 / 16



Basics: Locations Mobility Equivalence & Refinement

Example 2

Process with guards and extrusion

(ν in)request!in.in?out.
([out = stop]SKIP + [out 6= stop]Communicate(in, out))

In traces the guard of an observation prefixes its location

Behaviour

LTS Traces

request!ν•

ν•?

[ρ• = stop]X

. . .

[ρ• 6= stop]α1

{
〈request!νε.::., νε.?::.,X::(ρε.. = stop, �2

1)〉,
〈request!νε.::., νε.?::., α1::(ρε.. 6= stop, �2

2), . . .〉,
. . .
}

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 10 / 16



Basics: Locations Mobility Equivalence & Refinement

Example 2

Process with guards and extrusion

(ν in)request!in.in?out.
([out = stop]SKIP + [out 6= stop]Communicate(in, out))

In traces the guard of an observation prefixes its location

Behaviour

LTS Traces

request!ν•

ν•?

[ρ• = stop]X

. . .

[ρ• 6= stop]α1

{
〈request!νε.::., νε.?::.,X::(ρε.. = stop, �2

1)〉,
〈request!νε.::., νε.?::., α1::(ρε.. 6= stop, �2

2), . . .〉,
. . .
}

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 10 / 16



Basics: Locations Mobility Equivalence & Refinement

Outline

1 Basics: Locations

2 Mobility

3 Equivalence & Refinement

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 11 / 16



Basics: Locations Mobility Equivalence & Refinement

Equivalence and Normal Forms

Dealing with redundancy

Problem: model very fine-grained

Solution: rewrite rules to trim redundancy

Theorem

Let T be a trace set. Suppose T1 and T2 such that T →∗ T1 9
and T →∗ T2 9. Then T1 = T2 = T̂ .

Interest

Equivalence checking: normalise then test isomorphism

Much simpler than existing equivalence checking for mobility

Only possible because no binders in semantic

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 12 / 16



Basics: Locations Mobility Equivalence & Refinement

Example

P = α.(β + β)
traces(P) = {〈α::., β::�2

1〉, 〈α::., β::�2
2〉}

α

β β

Q = α.β + [a = x ∧ a 6= x]γ
traces(Q) = {〈α::�2

1, β::.〉, 〈γ::(a = x ∧ a 6= x , �2
2)〉}

α

β

[a = x ∧ a 6= x]γ

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 13 / 16



Basics: Locations Mobility Equivalence & Refinement

Example

P = α.(β + β)
traces(P) = {〈α::., β::�2

1〉, 〈α::., β::�2
2〉}

α

β β

Q = α.β + [a = x ∧ a 6= x]γ
traces(Q) = {〈α::�2

1, β::.〉, 〈γ::(a = x ∧ a 6= x , �2
2)〉}

α

β

[a = x ∧ a 6= x]γ

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 13 / 16



Basics: Locations Mobility Equivalence & Refinement

Example

P = α.(β + β)
traces(P) = {〈α::., β::�2

1〉, 〈α::., β::�2
2〉}

traces(P)
merge−−−→ {〈α::., β::.〉}

α

β

Q = α.β + [a = x ∧ a 6= x]γ
traces(Q) = {〈α::�2

1, β::.〉, 〈γ::(a = x ∧ a 6= x , �2
2)〉}

α

β

[a = x ∧ a 6= x]γ

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 13 / 16



Basics: Locations Mobility Equivalence & Refinement

Example

P = α.(β + β)
traces(P) = {〈α::., β::�2

1〉, 〈α::., β::�2
2〉}

traces(P)
merge−−−→ {〈α::., β::.〉}

α

β

Q = α.β + [a = x ∧ a 6= x]γ
traces(Q) = {〈α::�2

1, β::.〉, 〈γ::(a = x ∧ a 6= x , �2
2)〉}

traces(Q)
false−−−→ {〈α::., β::.〉}

α

β

[a = x ∧ a 6= x]γ

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 13 / 16



Basics: Locations Mobility Equivalence & Refinement

Example

P = α.(β + β)
traces(P) = {〈α::., β::�2

1〉, 〈α::., β::�2
2〉}

traces(P)
merge−−−→ {〈α::., β::.〉}

α

β

Q = α.β + [a = x ∧ a 6= x]γ
traces(Q) = {〈α::�2

1, β::.〉, 〈γ::(a = x ∧ a 6= x , �2
2)〉}

traces(Q)
false−−−→ {〈α::., β::.〉}

α

β

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 13 / 16



Basics: Locations Mobility Equivalence & Refinement

Delayed Sum

What is the delayed sum?

The way to refinement

Strict generalisation of process sum

Grafting any behaviour anywhere in branching structure

Two parameters: a location and a substitution from symbols to special names

Delayed Sum Example

P
def
= α.β + γ Q

def
= δ.α P +Id

ε�2
1

Q = α.(β + δ.α) + γ

α

β

γ δ

α

α

β γ

α

γ

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 14 / 16



Basics: Locations Mobility Equivalence & Refinement

Delayed Sum

What is the delayed sum?

The way to refinement

Strict generalisation of process sum

Grafting any behaviour anywhere in branching structure

Two parameters: a location and a substitution from symbols to special names

Delayed Sum Example

P
def
= α.β + γ Q

def
= δ.α P +Id

ε�2
1

Q = α.(β + δ.α) + γ

ε

�2
1

α

.

β

�2
2

γ
δ

α

α

β γ

α

γ

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 14 / 16



Basics: Locations Mobility Equivalence & Refinement

Delayed Sum

What is the delayed sum?

The way to refinement

Strict generalisation of process sum

Grafting any behaviour anywhere in branching structure

Two parameters: a location and a substitution from symbols to special names

Delayed Sum Example

P
def
= α • β + γ Q

def
= δ.α P +Id

ε�2
1

Q = α.(β + δ.α) + γ

α

β

γ δ

α

α

β γ

α

γ

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 14 / 16



Basics: Locations Mobility Equivalence & Refinement

Delayed Sum

What is the delayed sum?

The way to refinement

Strict generalisation of process sum

Grafting any behaviour anywhere in branching structure

Two parameters: a location and a substitution from symbols to special names

Delayed Sum Example

P
def
= α.β + γ Q

def
= δ.α P +Id

ε�2
1

Q = α.(β + δ.α) + γ

α

β

γ δ

α

α

β γ

α

γ

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 14 / 16



Basics: Locations Mobility Equivalence & Refinement

Refinement

Definition

P v Q ⇐⇒ ∃RL =
⋃n

i=1{(Ri , li , σi )} s. t.
P =� Q +σ1

l1
R1 . . .+σn

ln
Rn

Why?

Refinement relation nearly for free

The delayed sum cannot be compositional... is refinement?

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 15 / 16



Basics: Locations Mobility Equivalence & Refinement

Conclusion

What we did

CSP vs π-calculus: a step towards bridging the gap

Denotational theory for mobility with intuitive refinement

Operational semantics w/o π-calculus pitfalls

Axiomatic semantics

A Hoare-like logic [LAM09]

What next?

Finish writing the thesis...

Proving that refinement is compositional

Equivalence/refinement checking algorithm

J.-A. Bialkiewicz and F. Peschanski A Denotational Study of Mobility 16 / 16


	Basics: Locations
	Mobility
	Equivalence & Refinement

