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Basics: Locations Mobility Equivalence & Refinement

Introduction

Two Main Points of View on Modelling Processes

Operational POV (π-calculus. . . )

Low level, double-edged: easy mobility but difficult to abstract
unsettled theory so many variants
issues with compositionality: bound prefixes and guards
denotations exist but not practical

Denotational POV (CSP)

denotational (tr, fail, div) and compositional by design
supports refinement
but no easy way to account for mobility

Our Approach: Mobility in a Denotational Way

Heavily inspired by CSP but integrated model (decorated traces)
π-like mobility but compositional =⇒ fully denotational model
Support for refinement
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Basics: Locations Mobility Equivalence & Refinement

Representing Behaviours

The problem

Full representation of behaviour? branching structure (LTS)

Set of process traces: information lost

Traces + failures,divergences: hard to introduce mobility

What we wanted

Traces but with as much information as the LTS

How: link observations to where and when in LTS
=⇒ locations !

LTS can be rebuilt from decorated traces: no information lost
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Basic Example

The basics

Observation (::location): input channel? output channel!value, or X
Location: origin: ε, next: . and choice: �number of branches

branch number , weak variants .̃ and �̃ji

Process (not mobile)

coin?.(button1?.out!tea + coin?.button2?.out!coffee)

What does this process do?

Behaviour

LTS Traces

coin?

button1?

out!tea

coin?

button2?

out!coffee

{
〈coin?::., button1?::�2

1, out!tea::.〉,
〈coin?::., coin?::�2

2, button2?::., out!coffee::.〉
}
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About Mobility

Physical vs Logical Mobility

A process is mobile if it changes neighbours

How Can a Process Change Neighbours?

A
c

B
c

C

νc
νd

d
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The Modeling Problems

Two main problems

Binders
Guards

Binders in mobile languages

Binders: dynamic names (escaped names and inputs)
π-calculus operational, mixes free and bound names
Solution: binders are uniquely identified by when/where created
advantage: fresh by construction, avoid α-conversion issues

Guards

Reminder: [ϕ]P means if ϕ then P
Not observations, but necessary for compos. Where do they go?
Solution: in locations
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Example 2

Process with guards and extrusion

(ν in)request!in.in?out.
([out = stop]SKIP + [out 6= stop]Communicate(in, out))

What does this process do?

Behaviour

LTS Traces

request!ν•

ν•?

[ρ• = stop]X

. . .

[ρ• 6= stop]α1

{
〈request!νε.::., νε.?::.,X::(ρε.. = stop, �2

1)〉,
〈request!νε.::., νε.?::., α1::(ρε.. 6= stop, �2

2), . . .〉,
. . .
}
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Example 2
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Equivalence and Normal Forms

Dealing with redundancy

Problem: model very fine-grained

Solution: rewrite rules to trim redundancy

Theorem

Let T be a trace set. Suppose T1 and T2 such that T →∗ T1 9
and T →∗ T2 9. Then T1 = T2 = T̂ .

Interest

Equivalence checking: normalise then test isomorphism

Much simpler than existing equivalence checking for mobility

Only possible because no binders in semantic
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Example

P = α.(β + β)
traces(P) = {〈α::., β::�2

1〉, 〈α::., β::�2
2〉}

α

β β

Q = α.β + [a = x ∧ a 6= x]γ
traces(Q) = {〈α::�2

1, β::.〉, 〈γ::(a = x ∧ a 6= x , �2
2)〉}

α

β

[a = x ∧ a 6= x]γ
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Delayed Sum

What is the delayed sum?

The way to refinement

Strict generalisation of process sum

Grafting any behaviour anywhere in branching structure

Two parameters: a location and a substitution from symbols to special names

Delayed Sum Example

P
def
= α.β + γ Q

def
= δ.α P +Id

ε�2
1

Q = α.(β + δ.α) + γ

α

β

γ δ

α

α

β γ

α

γ
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Delayed Sum

What is the delayed sum?
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α
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Refinement

Definition

P v Q ⇐⇒ ∃RL =
⋃n

i=1{(Ri , li , σi )} s. t.
P =� Q +σ1

l1
R1 . . .+σn

ln
Rn

Why?

Refinement relation nearly for free

The delayed sum cannot be compositional... is refinement?
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Conclusion

What we did

CSP vs π-calculus: a step towards bridging the gap

Denotational theory for mobility with intuitive refinement

Operational semantics w/o π-calculus pitfalls

Axiomatic semantics

A Hoare-like logic [LAM09]

What next?

Finish writing the thesis...

Proving that refinement is compositional

Equivalence/refinement checking algorithm
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