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Abstract. This paper introduces a denotational model and refinement theory for a pro-
cess algebra with mobile channels. Similarly to CSP, process behaviours are recorded
as trace sets. To account for branching-time semantics, the traces are decorated by
structured locations that are also used to encode the dynamics of channel mobility in
a denotational way. We present an original notion of split-equivalence based on ele-
mentary trace transformations. It is first characterised coinductively using the notion
of split-relation. Building on the principle of trace normalisation, a more denotational
characterisation is also proposed. We then exhibit a preorder underlying this equiva-
lence and motivate its use as a proper refinement operator. At the language level, we
show refinement to be tightly related to a construct of delayed sums, a generalisation
of non-deterministic choices.
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Introduction

Mobile calculi such as the π-calculus [1] provide a suitable abstraction to model and reason
about the dynamics of concurrent systems. In the spirit of CCS, they adopt in general a purely
operational point of view; a syntax is elaborated, and then some operational semantics rules
are figured out. Proof principles, generally based on bisimulation, are proposed above these.
In our opinion there is little room in such an approach for high-level reasoning principles such
as the ones available in the world of CSP: fixed-point characterisations, refinement, etc. On
the other hand, the denotational point of view makes the constructs of the language simple
syntactic sugars for natural operators found at the semantic level. The syntax is a derivative
of the semantics and not the converse. Our objective is thus to elaborate solid foundations for
mobile calculi from a denotational point of view. Unsurprisingly, we adopt the same basic
construction as CSP: a model of trace semantics.

There are various difficulties in designing a trace model that encompasses the features
and expressivity of mobile calculi such as the π-calculus. First, standard trace models do not
take the branching structure of process behaviours into account. Instead of relying on stable
failures, we use an alternative approach - introduced in [2] - of enriching trace sets with
structured locations that record at the same time when and where actions are performed. The
interest of this approach is that beyond the adequate and well-integrated characterisation of
non-determinism, the location model also provides a solution for the mobile features of the
π-calculus, in particular name passing and the important issue of freshness. The idea is to
relate the events concerning names (e.g. the creation of fresh names or the extrusion of their
scope) to the locations where these events are taking place.

The contributions of the paper are as follows. First, the proposed trace model underlies
a family of equivalences, most notably a notion of split-equivalence that is satisfying in that
it is both observational and compositional. Regarding the proof techniques, we introduce



original principles of trace transformation and normalisation that allow to equate process
behaviours in an easily mechanisable way. The second contribution of the paper relates to
refinement [3,4]. At the language level, we show that the refinement ordering is tightly related
to a construct of delayed sums, a strict generalisation of the standard choice operators. As an
illustration, we show that the refinement order underlies a complete lattice structure of least
fixed points used as foundations for the characterisation of recursive behaviours.

The outline of the paper is as follows. In Section 1, we describe the main characteristics
of the proposed denotational model. The construction of the trace semantics of process be-
haviours is discussed in Section 2. In Section 3 we present a language with its syntactic con-
structs built above the trace semantics. Then, in Section 4, we present and discuss the family
of behavioural equivalences we use to distinguish trace sets in complementary ways. We in-
sist on the original notion of split-equivalence that accounts for branching-time behaviours.
The refinement order and its complete lattice structure are discussed in Section 5. This is
followed by a panorama of related work, the conclusion and bibliographical references. In
the paper we omit a few auxiliary definitions and proof details, as well as the complete ax-
iomatisation of split-equivalence. These can be found in a companion technical report [5].

1. The Trace Model

1.1. Observations and Locations

The goal of a denotational model for a process algebra is to characterise precisely the external,
or observational, part of process behaviours, abstracting from the details of their internal
computations. Our characterisation is based on trace models, largely inspired by the CSP
semantics. A trace is a sequence of observations – or observable actions – recorded from a
process behaviour.

Definition 1. An action is either an output c!d of subject (channel) c and object d, an input c?
of subject c or a termination X. The subject of an action α is denoted subj (α) and its object
obj (α).

Note that the input action does not involve any bound variable. The binder is in fact im-
plicitly defined by the location when and where the input is observed. Another important re-
mark is that unlike CSP, the characterisation of mobility requires to consider channels as first-
class citizens1. The data passed along channels are names, which on occasion may identify
other channels. We distinguish the plain names e.g. a, b, . . . (which are known in the global
scope), received names ρl (received at location l) or escaping name νl (escaped at location l).
Note that in order to give proper semantics to name equality and extract adequate laws (cf.
Section 4.3), the occurrences of names within traces are in fact equivalence classes of names.
For convenience, the singleton set {n} with n a name is simply denoted n.

Figure 1 depicts two processes that are only distinguishable by their branching-time be-
haviour. In the left process there is a non-deterministic choice between two possible con-
tinuations starting with an α action. In the right process the action α is first performed and
then an external choice is performed for either the action β on the left or γ on the right. In
standard trace semantics these two behaviours are not distinguished, and it is one of the main
argument to rely on bisimulations to compare process behaviours. Below these two exam-
ples, we give the characterisation of these behaviours in the proposed framework. Ignoring
for now the details of this encoding, the bottom part of the picture provides an operational

1The integration of CSP-like events in the model is not very difficult. The idea is to consider events as
observations and modify the means of synchronisations between events. But events cannot be used for channel
mobility so we omit them in the paper.
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Figure 1. Examples of branching behaviours.

interpretation. We can see that the two behaviours are distinguished in this interpretation. The
important aspect is that the notion of observation is tightly related to the notion of location in
the proposed model.

Definition 2. An observation is the adjunct α::l of an action α and a location l.

The characterisation of the branching structure is not the only problem we have to face.
The semantics of mobile calculi such as the π-calculus and its variants introduce history
dependence [6] — the semantics of a name depends on what happened before its considered
occurrence. A first example is when some data is received from the environment, e.g. in a
prefix c?x where x must be bound to “something” we do not really know about. For example
if this input is followed by a match [x = y] (comparison between names x and y) then we
must “remember” xwas bound and also assume now it is equal to y. Another example is when
a private name n is emitted to the environment, e.g. in a prefix c!n under a restriction ν(n).
Now the name n is not private anymore because it can be received by external processes, but
it is neither public because it can only be known by those external processes which actually
receive the name. Once again this introduces an history-dependence in the behaviour since
we have to remember than n escaped the process, and also when it escaped. Moreover, this
name must be guaranteed fresh, i.e. unique up-to any context in which the behaviour can be
observed. This freshness guarantee is difficult to model except in a symbolic way using scope
extrusion laws [1]. The other issue we have to deal with is the interpretation of match and
mismatch (or any combination of these), which is quite easy in symbolic terms [7] but much
less so when considering a denotational interpretation.

Interestingly, we use the very same idea of location to solve most of these issues at once.
Of course, we need a slightly more structured notion of location than e.g. [2].

Definition 3. Let i, j be integers such that 1 ≤ i ≤ j. A locator is either a strong locator �ji ,
a weak locator �̃ji or the origin locator ε. A (relative) location l is defined by the following
grammar where ε is the origin, s a strong locator, w a weak locator and ϕ a logical guard on
channel names:

l ::= ε | λ̃
λ̃ ::= λ | (ϕ,w).λ̃
λ ::= (ϕ, s)

As a convenience, we denote λ the location (true, λ). Locations share many features
with term positions in term algebras [8]. Since the location of a given observation is relative
to its predecessors, the origin locator is necessary to be able to reconstruct absolute locations.
We denote l the absolute location leading to the relative location l. For each atomic location
(ϕ, λ) the formula ϕ corresponds to the guard “protecting” locator λ and thus the observation
made there (i.e. the observation really occurs only when ϕ is true). Since guards protect



locators, it is necessary to be able to extract the combined guard of a location. This is the role
of the grd function.

Definition 4. Let ϕn range over guards and ln over locators:
grd((φ1, l1) . . . (φn, ln)) = φ1 ∧ . . . ∧ φn
grd(ε) = true

A split location (either strong or weak) expresses a branching, or a non-deterministic
choice, in the behaviour. A branching �ji , or �̃ji (with 1 ≤ i ≤ j) corresponds to the i-th
branch within a choice among j distinct branches. The weak variant is used to describe non-
deterministic choices due to internal actions2. The locator �1

1 (resp. �̃1
1) describes the absence

of a choice, which we call a strong (resp. weak) next locator, denoted . (resp. .̃) for the sake
of readability.

1.2. Sequences and Trace Sets

Definition 5. A sequence is an ordered collection of properly decorated observations. The
empty sequence is denoted 〈〉 and a non-empty sequence 〈α1::l1, α2::l2, . . .〉. The absolute lo-
cation of observation αn within sequence 〈α1::l1, α2::l2, . . . , αn::ln, . . .〉 is the concatenation
l1.l2 . . . ln−1.ln. It is equivalently denoted ln.

For instance, in the sequence 〈α::., β::�̃8
3., γ::�2

2〉, the absolute location of β is .�̃8
3.

Notation 1. We use a few standard notations for sequences. The prefixing of a sequence S
by a decorated observation α::l is denoted α::l.S The concatenation of sequences S1 and S2

is denoted S1
aS2. Sequence S1 is a prefix of sequence S2, which is denoted S1 ≤ S2, if and

only if ∃S ′, S2 = S1
aS ′.

A few operators on sequence are introduced to deal with locations.

Definition 6. The pre-sequence (resp. post-sequence) of a sequence S at a location l, de-
noted S ↑ l (resp. S ↓ l) is defined inductively as follows:

(α::l.S) ↑ l.L def
= α::l.(S ↑ L)

α::l.S ↑ l def
= 〈α::l〉

S ↑ L def
= 〈〉 otherwise

resp.


α::l.S ↓ l.L def

= S ↓ L
α::l.S ↓ l def

= S

α::lm.S ↓ l def
= α::m.S

S ↓ L def
= 〈〉 otherwise


Informally, computing the pre-sequence of a sequence S consists in following the path

l and extracting the prefix S ′ of S at this point. Conversely, the post-sequence extracts the
suffix after that point. For instance, let us consider trace set T = {〈α::., β::�2

1〉, 〈α::., γ::�2
2〉}.

Here the pre-sequence of T after absolute location ε., denoted T ↑ ., will be {〈α::.〉} and
the corresponding post-sequence T ↓ . will be {〈β::�2

1〉, 〈γ::�2
2〉}. Note that the pre-trace set

and the post-trace set do not partition a trace set in the general case: they instead isolate a
given branching point in the behaviour.

Definition 7. A substitution of x by y in sequence S, denoted S{y/x}, consists in the se-
quence S where all the occurrences of x are replaced by y. A generic substitution of any x
by any y with respect to ϕ in sequence S, denoted S{y/x | ϕ}, where ϕ is a property on x
and y, corresponds to applying the substitution to any pair of names satisfying ϕ.

2The internal actions are not recorded in traces, but their effect on the branching structure has to be recorded,
hence the introduction of weak split location.



Trace sets are built from sets of sequences with a few constraints. Unless otherwise
stated, all sequence operators naturally extend to trace sets by simply applying to all se-
quences within them. We define below some useful operators on localised trace sets.

Definition 8. The relocation of a trace set T from location l1 to location l2 at location l,
denoted T{l1� l2}l, corresponds to the set {S{l1� l2}l | S ∈ T} with:

• α::kl1m.S{l1� l2}k
def
=

α::kl2m.S{Vl2n/Vl1n | n ∈ L, V ∈ {ρ, ν}}
if ∃ϕ,L, kl2m = L(ϕ, �ni )

X::kl2m otherwise

• α::l.S{l1� l2}l.l′
def
= α::l.(S{l1� l2}l′)

• S{l1� l2}l
def
= S otherwise

Relocation is a very important operator, a little bit technical but conceptually quite sim-
ple. The idea is to update a trace set so that one of its location is renamed. But such a local
change has a non-local impact on the trace. First, the locations are related in a prefix ordering
so all successors must be updated in consequence. Moreover, because trace sets are closed
under prefixing, a potentially infinite number of sequences can be concerned by the reloca-
tion. The ρ and ν elements in the definition are related to the fresh names generated by the
model, which are uniquely characterised by the absolute location where they were created
and thus have also to be updated whenever it is relocated. Their exact role will be clarified
later on.

As an illustration of the relocation process, we take again the previous example T =
{〈α::., β::�2

1〉, 〈α::., γ::�2
2〉}. The relocation T{�2

1 � �3
1}.{�2

2 � �3
2}. yields {〈α::., β::�3

1〉,
〈α::., γ::�3

2〉}
The relocated set of sequences we obtain is not well-formed because there is no third

branch involved in the behaviour. However, this partial trace set can be used by higher-level
operators (e.g. for choice or parallel compositions) to recombine correct trace sets.

Definition 9. T{(ϕ, l1) ↔ (ψ, l2)}l
def
= T{(ϕ, l1) � (ϕ, •)}l{(ψ, l2) � (ψ, l1)}l{(ϕ, •) �

(ϕ, l2)}l

Not all sets of sequence are valid trace sets, it is thus important to characterise precisely
the structure of the set T of all possible trace sets. Technically, this is a setoid characterised
as follows:

Definition 10. A trace set T is a set of sequence of the setoid (T ,=) with the following
properties:

fin ∀S ∈ T, S is finite
pref ∀S ∈ T, ∀S ′ ≤ S, S ′ ∈ T
move T{(ϕ, �ni )↔(ψ, �nj )}l = T

The axioms [fin] and [pref] are identical to their CSP counterpart. The axiom [move]
allows arbitrary commutations of locators: the order among the particular branches of a given
location is not significant3

For the sake of readability, the trace sets presented in the paper are abbreviated as plain,
non-prefixed sets of sequences but we of course assume the trace set axioms unless stated
otherwise.

3The removal of the axiom [move] from the model leads to a notion of prioritised trace semantics that could
be worth studying.



2. Trace Semantics

The key aspect of CSP-like trace semantics is the possibility to construct arbitrarily complex
process behaviours from a reduced set of elementary behaviours and composition operators.

Definition 11. The empty behaviour is represented by the empty trace set {〈〉} which we
sometimes denote ∅ for brevity.

Definition 12. The termination behaviour is the trace set {〈X::ε, 〈〉〉}.

The main operator for sequential behaviour is the prefixing of a trace set T by an action
α, which we denote α::l.T (because the action must be located somewhere). In the case of
an output, every sequences in the trace set is prefixed by the action decorated by (true, .).
The locator ., which is synonymous to �1

1, corresponds to a step forward in time; and since
observing that prefix is unconditional, its condition is true. We remind the reader that the
subject and object of observations are name sets rather than names; however, whenever there
is no possible confusion the brackets may be omitted for the sake of brevity.

Definition 13. c!a.T def
= {{c}!{a}::(true, .).S{ε�ε.} | S ∈ T}

Note that the sequences following the output must be relocated after the initial ..
As hinted previously, a key aspect of our encoding is the absence of any form of sym-

bolism, in particular binders, as that would break the denotational nature of the model. For
instance, there is no variable or binder attached to input prefixes: whatever is present at the
current branching point will be received. If the data is received by an input occurring at ab-
solute location L, it will be known thereafter as ρL. That absolute location will be built with
the trace set by the use of the relocation operator.

Definition 14. c?x.T def
= {{c}?::(true, .).S{ε�ε.}{ρε./x} | S ∈ T}

A silent or internal action τ can obviously not be observed, this is the main idea underly-
ing this notion. However, since it may have an effect on the branching structure, it is recorded
as a weak location .̃ attached to the initial action in the continuation.

Definition 15. τ.T def
= {α::(true, .̃)l.S{ε�ε.̃} | α::l.S ∈ T}

Note that an observation may have any number of weak locations, but it has at most one
strong location that corresponds to the point where the actual observation occurs.

Guarding a trace set by a condition is simply done by guarding the head location of
all the initials of its individual sequences, so that their initials may only be observed it that
condition is true. However, to take into account the match conditions, e.g. [a = b], we allow
equivalence classes of names to be formed, e.g;. to replace both a and b by {a, b} in the
remainder of the trace set conditioned by the match4.

Definition 16. [G]T
def
= {α::(G ∧ ϕ, l0)l.S | α::(ϕ, l0)l.S ∈ T{x ∪ y/x | G =⇒ x = y}}

Restriction corresponds to declaring a name as private, and thus not allowing to com-
municate using it as a subject. However, if it is used as the object of an output, it will es-
cape its scope and become visible to the outside world. This is the core of mobility, and also
what in our opinion is the most involved aspect of the model. The restriction of a name n is
recorded in a trace set as an “escape”. The effects of restriction is to cut short the sequences
from the point where it is not possible to interact using the restricted name anymore (starting

4The idea of implementing match condition by equivalence classes of names is developed in [9].
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Figure 2. Mobile behaviour illustrated.

from any action whose subject is an occurrence of the restricted name n that is not escaped)
and by finding the actions where the restricted name indeed escapes. The formal definitions,
relatively technical, are given below.

Definition 17.

En(T )
def
= {En(S) | S ∈ T}

En(〈〉) def
= 〈〉

En(α::l.S)
def
=


α::l{false/(n = x)}.S if grd(l) =⇒ n = x
α::(false ∧ ϕ, λ)L if subj (α) = n and l = (ϕ, λ)L

Fln(α::l.S){νl/n} if α = c!n and c 6= n
α::l.En(S) otherwise

FLn(〈〉) def
= 〈〉

FLn(α::l.S)
def
=


α::l{false/(n = x)}.S if grd(l) =⇒ n = x and not x = ρm, L ≤ m
or else α::l′.FLn(S) with

l′ =

{
l{true/(n 6= x)} if not x = ρm, L ≤ m
l otherwise

Each escape is effected by replacing all the free occurrences of n by a name νl gener-
ated from this point on. Since absolute locations are unique by construction, this name is
guaranteed fresh.

Figure 2 illustrates how the scope of a restricted channel may evolve in time. At the
beginning of the execution, only T2 and T3 are in the scope of s. However, T2 sends s along
public channel c, which is illustrated in the second step. This allows s to escape its scope,
which now also integrates T1. Since the name was received at absolute location ε., this name
is called ρε. in the continuation of the trace set. The third step is the communication of d
along channel s which is now known by T1 (as ρε.).

The choice between behaviours T1 and T2 is denoted T1 ⊕ T2. It corresponds to a dis-
joint union between both behaviours. All locators are re-numbered in order to create a new,
compound trace set.



Definition 18. T1 ⊕ T2
def
= T1{(ϕ, sni )�(ϕ, sn+m

i )}ε ∪ T2{(ψ, smj )�(ψ, sn+m
j+n )}ε

The interleaving of T1 and T2 is denoted ileave(T1, T2). It corresponds to interleaving
the sequences of both behaviours.

Definition 19.
ileave(T1, T2)

def
=
⊕

S1 ∈ T1

S2 ∈ T2

ileave(S1, S2)

ileave(α1::l1.S1, α2::l2.S2)
def
= α1::l1.ileave(S1, α2::l2.S2)⊕ α2::l2.ileave(α1::l1.S1, S2)

The pure synchronisation between T1 and T2 is denoted sync(T1, T2). It corresponds
to allowing all possible communications between the two behaviours to occur without any
interaction with the environment, much like the CSP parallel operator does.

Definition 20.
sync(T1, T2)

def
=
⊕

S1 ∈ T1

S2 ∈ T2

sync(S1, S2)

sync(a!d::l1.S1, b?::l2.S2) = sync(b?::l2.S2, a!d::l1.S1)
def
=

sync(S1, S2{d/ρl2}){ε�(a = b, .̃)}

Since internal synchronisations can not be observed, the trace set of pure communi-
cations between processes, if it is computable, can only contain sequences where the only
observation is the termination X decorated by a chain of conditioned weak locations.

Both notions of parallelism can be combined into an universal parallel operator : which
allows to account for both interleaving and communication between behaviours. It is defined
using mutually recursive modifications of ileave and sync, which are denoted interleave and
intersync.

Definition 21.
T1 : T2

def
= interleave(T1, T2)⊕ intersync(T1, T2)

interleave(T1, T2)
def
=
⊕

S1 ∈ T1

S2 ∈ T2

interleave(S1, S2)

intersync(T1, T2)
def
=
⊕

S1 ∈ T1

S2 ∈ T2

intersync(S1, S2)

interleave(α1::l1.S1, α2::l2.S2)
def
= α1::l1.(S1 : α2::l2.S2)⊕ α2::l2.(α1::l1.S1 : S2)

intersync(a!d::l1.S1, b?::l2.S2) = intersync(b?::l2.S2, a!d::l1.S1)
def
=

(S1 : S2{d/ρl2}){ε�(a = b, .̃)}

3. The Language

As explained in the introduction, we think that an important characteristic of CSP is that the
syntax of the language follows the denotation and not the converse. The syntactic constructs
that, in our opinion, naturally emerge from the denotation proposed in the previous sections
is summarised in Table 1.

Table 1. Syntax of the language.

P,Q, . . . ::= VOID | END | α.P | P +Q | P 9Q | P ·Q | P ‖ Q | (νn)P | µX.Q | X
α, . . . ::= τ | c!a | c?x | [ϕ]α
ϕ,ψ, . . . ::= a = b | a 6= b | ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ



With first-class channels, a dynamic restriction operator and generalised choice operator,
the language is at the surface closer to the π-calculus than to CSP. But since we share with
CSP the same philosophy (i.e. “denotation speaks”) and also many semantic concepts, we
rather see this language as a hybrid. To reflect this we adopted when possible the syntactic
style of CSP. Note that there is no natural equivalent of the choice operators � and u of CSP
in our denotation, because these relate to stable failures while we use locations instead. The
generalised choice + is in fact neither deterministic nor non-deterministic. It is deterministic
whenever possible, and non-deterministic otherwise. A purely internal choice can be encoded
by weak locations (inserted by explicit τ prefixes in the syntax). Mainly because it has simpler
denotation and axiomatisation, we also prefer explicit guarding of processes than the if-then-
else construct. But it is possible to encode P <| ϕ >| Q as [ϕ]P + [¬ϕ]Q.

We can now connect the syntax to the semantics.

Definition 22. The trace set of a process P is JP K calculated according to Table 2.

The semantic encoding of Table 2 illustrates, in our opinion quite demonstratively, the
fact that the proposed syntactic constructs naturally emerge from the semantics. Each con-
struct has a dedicated operators applying at the semantic level. The encoding of recursive
process is, as a first approximation, encoded as a simple unfolding. A subtlety is that we
introduce a silent action “before” each unfolding. This has the advantages of taking into ac-
count the computational cost of unfolding, and it makes divergences to be observable (as un-
bounded sequences of weak locations). A more denotational characterisation of recursion as
fixed points requires a proper refinement model. This is proposed in Section 5.

Table 2. Semantics of the language.

JVOIDK def= ∅ JENDK def= {〈X::ε〉}

Jα.P K def= α.JP K J[G]P K def= [G]JP K

J(νn)P K def= En(JP K) JP +QK def= JP K ⊕ JQK

JP 9QK def= ileave(JP K, JQK) JP ·QK def= sync(JP K, JQK)

JP ‖ QK def= JP K : JQK JµX.P K def= JP{τ.µX.P/X}K

To illustrate the calculation of trace sets, we provide a few examples in Table 3. The first
example illustrates the sum recorded as a combination of branches built using the operator⊕.
Note that the combined branches are correctly renumbered. The second example illustrates
the treatment of “binders”, i.e. received names recorded together with the absolute location
of their reception. The third one is about parallel composition, which composes the possible
interleavings and communications of the operand processes. Interleavings are computed by
the function interleave, communications using the function intersync, and those behaviours
are joined together by ⊕ like a process sum. The next three examples are about restriction,
and illustrate that restriction behaves as expected, which can be checked easily by following
restriction/escaping function En. Example 4 gives a situation where there is no possible inter-
action. In Example 5, the process very much behaves like [a = z]τ.b!c since the only possible
interaction is an internal communication. Example 6 is an example of the escape of a private
name sent over a public channel. The last example illustrates unfolding recursion on a very
simple case.

4. Split-equivalence

The proposed denotational semantics is not as simple or “beautiful” as we would like it to be.
Locations represent at the same time its strength and weakness from this point of view. On



Table 3. Examples illustrating trace set construction.

1. Jτ.a!b.END + c!d.ENDK = {〈a!b::�̃21.,X::ε〉, 〈c!d::�22,X::ε〉}
2. Ja?x.b?y.[x = y]c!x.ENDK = {〈a?::., b?::., c!{ρ., ρ..}::(ρ. = ρ.., .),X::ε〉}
3. Ja!b.END ‖ c?x.x!d.ENDK = {〈a!b::�41, c?::., ρ�41.!d::.,X::ε〉, 〈c?::�42, a!b::., ρ�42 !d::.,X::ε〉,
〈c?::�43, ρ�43 !d::., a!b::.,X::ε〉, 〈b!d::(a = c, �̃44).,X::ε〉}

4. J(νa)a!b.ENDK = {〈X::ε〉}
5. J(νa)(a!b.END ‖ z?x.x!c.END)K = {〈b!c::(a = z, .̃).,X::ε〉}
6. J(νa)c!a.a?x.x!m.ENDK = {〈c!ν.::., ν.?::., ρ..!m::.,X::ε〉}
7. JµP.(νn)a!n.P K = {〈a!ν.::.〉, 〈a!ν.::., a!ν.e..::.̃.〉, 〈a!ν.::., a!ν.e..::.̃., a!ν.e..e..::.̃.〉, . . .}

the positive side, they offer a well integrated encoding of the branching structure of process
behaviours, and perhaps most importantly when it comes to mobility, an adequate (i.e. com-
positional) characterisation of freshness. But in return, they are also quite fine-grained and,
not unlike de Bruijn indices in the λ-calculus, uneasy to deal with in the formal definitions5.
It is thus very important to develop proof principles and techniques allowing to abstract away
from the technical details. The basic step towards that objective is the development of a proper
notion of semantic equivalence. The trace model presented in the previous sections naturally
underlies an equivalence relation based on the setoid identity of Definition 10. This so-called
localised trace equivalence is denoted P =L Q and holds if and only if JP K = JQK. It is not,
however, a satisfying equivalence in all situations. For instance, it does not preserve such a
basic property as P +P = P (because there is a supplementary split location in the left hand
side of the equality).

A first obvious nevertheless useful way to loosen the comparison is to simply forget
about locations altogether. This results in the notorious trace equivalence, denoted =T , that
does not take into account the branching structure of processes. Trace equivalence is enough
to address safety issues, but is too imprecise as a general equivalence forgetting about non-
deterministic choices, e.g. it equates processes such as α.(P +Q) and α.P + α.Q

The trace-based equivalence developed in this section, split-equivalence, can be seen as
an intermediate between the localised and plain forms of trace equivalences. On the one side
it preserves the observational contents as captured by =T and on the other side it weakens
the constraints imposed by =L on locations.

4.1. Trace Transformations

The general idea is to start from the localised equivalence =L but allow a certain number of
transformations that preserve the branching structure and observational semantics.

Table 4. The transformations on trace sets.

[merge] ∀s, s′ ∈ {�, �̃}, T{(ϕ, sn
a)�(ϕ ∨ ψ, sn

b )}l{(ξi, s′ni )li�ξi, s′
n−1
i−1 )li∀i > a}L

{(ξi, s′ni )li�ξi, s′
n−1
i )li∀i < a}l if T ↓ l(ϕ, sn

a) = T ↓ l(ψ, sn
b )

[perco] T{(ϕ ∧ ψ, l1)�(ψ, l1)}l if grd(l) =⇒ ϕ

[weak false] T{lf �(ψ, s′k,n)le}l where grd(lf ) = false, hd(lf ) = (ϕ, sn
k )

and f(lf ) = (ψ, s′i,j)le
[strong false] ∀i > k, T \ (T ↓ l.lf ){(ϕ, sn

i )�(ϕ, sn−1
i )∀i < k}l{(ϕ, sn

i )�(ϕ, sn−1
i−1 )∀i > k}l,

s ∈ {�, �̃} where lf = (ψ, s′nk )l′f , α::lf .S ∈ T ↓ l,
grd(lf ) = false and f(lf ) = ∅

5Despite the apparent complexity of the proposed formulations on paper, most of the proposed definition are
designed as simple recursive functions easily implementable.



Definition 23.
f(∅) def

= ∅

f((ϕ, l).L)
def
=

{
∅ if ϕ ⇐⇒ false
l.f(L) otherwise

These transformations are described in Table 4. Note that they rely heavily on trace
relocation. Despite their somewhat technical definitions, the transformation are conceptually
simple:

Merge The transformation merges two distinct branches (identified by two different sni and
snj strong or weak split locators) at a given location l whenever they exhibit the same
behaviour (wrt. =L). Put in other terms, one of them will be deleted, and all the other
branches at location l will be renumbered so that split locator numbering remains con-
sistent. In terms of processes, merge transforms P + P into P compositionally.

Perco Guards are logical conditions that control whether an action may occur. Since actions
are treated sequentially, a guard is implicitly in conjunction with all the previous guards
of its prefix sequence. For that reason, any guard which is already implied by the ones
of the absolute location l where it appears will be removed. In terms of processes, perco
transforms [G]α.[G]P into [G]α.P .

Weak false If the full (absolute) guard of an observation’s strong locator is false, then this
observation will never be reached, and it does not belong to the process behaviour.
However, if at least one of the internal actions included in the observation (as weak lo-
cators) is reachable then a deadlock condition exists, which must be recorded properly.
In terms of processes, weak false transforms τ.[false]P +Q into τ.END+Q. Note that
in this case END is used to record the possibility of branching into a deadlock, which
clearly differs from the usual CSP semantics.

Strong false This complements the previous one when every single locator of an observation
is unreachable, in which case the whole observation must be removed. This consists in
removing all the branches starting at the disabled location, up-to the renumbering of
split locators for consistency. In terms of processes, strong false transforms [false]P +
Q into Q.

Definition 24. A split-relation R is a symmetric binary relation on trace sets such that
T1RT2 if and only if T1 = T2 or there exists a couple of transformations U ,V such that

U(T1)RV(T2). The split-equivalence is =�
def
= {R | R is a split-relation}

We extend the notation to process expressions, considering two processes P and Q as
split-equivalent, denoted P =� Q, if and only if JP K =� JQK. The rationale is that two
processes are equivalent if and only if there trace sets are either identical (according to =L,
which means the axioms of Definition 10 hold) or they can be transformed (using the trans-
formations of Table 4) an arbitrary number of times so as to be made identical (still according
to =L). The equivalence itself is defined in coinductive terms, which means it encompass
infinite behaviours (by allowing to apply an infinite times the transformations).

4.2. Normalisation Techniques

The definition of split-equivalence is concise and conceptually simple. Unfortunately, the
coinduction proof technique is relatively cumbersome to deal with in practice. It only works
well for either very general and simple relations (e.g. showing that =L is a split-relation and
thus included in split-equivalence), or on very simple behaviours (in this case exhibiting a
split relation is easy). In general this is not a very practical proof technique. The first rea-
son is that it tells nothing about what transformation to choose for a given context. Also, it



gives an operational feel to the semantics because one has to consider each transformation
individually. Moreover the straightforward approach does not terminate even for some finite
systems, potentially requiring an infinite number of transformations to be applied (e.g. to re-
late µX.(τ.X + P ) and µY.(P + τ.Y )). Indeed, the transformation rules could be added as
axioms for the trace setoid. There is however a reason why we maintain these rules outside
the setoid: trace normalisation. The technique we now discuss is based on the idea of rewrite
systems [8].

Definition 25. A trace rewrite is a triple (T,U ::l, T ′) with T ′ the result of applying the
transformation U (excluding identity) on the subtrace of T at the absolute location l. We also
use the notation T U ::l−−→ T ′. If the considered rewrite is not possible at the given location, we

denote T
U ::l

−6−→. An arbitrary rewrite (at an arbitrary location) is denoted T → T ′. If a trace
T is such that T −6−→ then T is said in normal form, which is denoted T̂

The rewrite rules give a directed and localised interpretation of the transformations of
Table 4. The definition of a normal forms is also important it that it provides an alternative
characterisation of split-equivalence.

Proposition 1. P =� Q iff ĴP K = ĴQK

This follows naturally from the fact that the normalisation itself is a split-relation. Now,
in order to prove that two processes P andQ are split-equivalent, we can compute the normal
forms of their trace sets and equate the later using =L. A useful lemma shows that normal
forms are unique up-to =L.

Lemma 1. Let T be a trace set. Suppose T1 and T2 such that T →∗ T1 9 and T →∗ T2 9.
Then T1 = T2 = T̂ .

The proof for this lemma requires a diamond property, relatively technical, which is
detailed in the technical report [5].

For the moment, we do not gain much by using the normalisation technique to prove
split equivalence. It is possible, however, to take advantage of the finitely branching structure
of behaviours as well as the well-foundedness of the prefix ordering on locations to uncover a
weak termination property of the normalisation process. For this we must introduce a higher-
level notion of parallel rewrite, which consists in applying simultaneously all the independent
rewrites that can be applied on a given trace set. Two rewrites are strongly independent if they
apply at unrelated locations (with respect to the prefix-ordering on locations), and weakly
independent if their location is comparable but they can be applied in an arbitrary order.

Definition 26. A single parallel simplification of a trace set T is a triple (T,Υ, T ′) with Υ

the set of all the independent rewrites applicable on T . The triple is denoted T Υ
==⇒ T ′.

By Lemma 1, we know that the order of application of the individual rewrites U ::l ∈ Υ
is not significant so if we consider such parallel application as atomic, the relation⇒ enjoys
a decisive weak termination lemma.

Lemma 2. The parallel simplification of a trace set T is terminating, i.e the descending chain
T

Υ1==⇒ T ′
Υ2==⇒ T ′′ . . .

Υn==⇒ T̂ is terminated (i.e. n is finite)

This can be demonstrated by an induction on the structure of locations in trace set T .
The important step is the fact that a parallel rewrite Υk+1 can only be performed at locations
that are prefixes of the locations of Υk, and there is no infinite descending chains of location
prefixes.



4.3. Laws

Equipped with adequate proof principles, we can now discuss a certain number of laws about
the language constructors, interpreted in term of trace properties. The technical report [5]
contains more properties of the model, with more thorough proof details. Most notably, it
provides a complete axiomatisation of split-equivalence.

We first discuss the compositional nature of split-equivalence (i.e. it is a congruence for
all language constructors).

Lemma 3. Let α::l a location, T and T ′ a couple of trace sets, then T = T ′ =⇒ α::l.T =
α::l.T ′

Proof. This is simple: α::l.T = {α::l.S | S ∈ T}, α::l.T ′ = {α::l.S ′ | S ′ ∈ T ′} and T = T ′

so that ∀S ∈ T,∃S ′ ∈ T ′ with S = S ′ and ∀S ′ ∈ T ′, ∃S ∈ T with S = S ′, which
trivially gives ∀α::l.S ∈ α::l.T,∃α::l.S ′ ∈ α::l.T ′ with α::l.S = α::l.S ′ and ∀α::l.S ′ ∈
α::l.T ′,∃α::l.S ∈ α::l.T with α::l.S = α::l.S ′

Lemma 4. Let σ an injective substitution of names by other names, T and T ′ trace sets, then
T = T ′ =⇒ Tσ = T ′σ. The same is true for σ an injective substitution of locations by
other locations, provided the cosupport of σ only contains fresh split or weak split locations.

Proof. This is trivial by considering Tσ = {Sσ | S ∈ T} and T ′σ = {S ′σ | S ′ ∈ T ′}, using
a similar proof scheme to that of Lemma 3, we can match all Sσ’s in T to S ′σ’s in T ′ and
vice versa, which is enough to conclude

Lemma 5. For any single-hole context C:

JP K =� JQK =⇒ JC[P ]K = JC[Q]K

Proof. Let C be a single-hole context.We proceed by case analysis on C. The common hy-
pothesis in all cases is that P =� Q, i.e., there exists Υ1 and Υ2 a couple of simplifications
such that Υ1(JP K) = Υ2(JQK). In all cases, we can separate the issue in first exhibiting a
couple of simplifications Υ′1 and Υ′2 to recover a comparison up-to =L, and then secondly
to discuss the observable properties of the modified contexts. In many cases, it is enough to
delay Υ1 and Υ2 to obtain the simplifications we may apply on the contexts.

• Case C def
= τ.[.]: we take Υ′1

def
= Υ1::(true, .̃) and Υ′2

def
= Υ2::(true, .̃). We have

Jτ.P K def
= JP K{ε � (true, .̃)} (see Table 2) and also Jτ.QK def

= JQK{ε � (true, .̃)}.
Moreover, by Definition 25, we obtain Υ1::(true, .̃)(JP K{ε � (true, .̃)}) =
Υ1(JP K{ε � (true, .̃)}) and Υ2::(true, .̃)(JQK{ε � (true, .̃)}) = Υ2(JP K{ε �
(true, .̃)}) and we conclude the case by Lemma 3.

• Case C
def
= α.[.]: we take Υ′1

def
= Υ1::(true, .) and Υ′2

def
= Υ2::(true, .). We

have Jα.P K def
= α::(true, .).JP K (see Table 2) and also Jα.QK def

= α::(true, .).JQK.
Moreover, by Definition 25, we obtain Υ1::(true, .)(α::(true, .).JP K) =
α::(true, .).Υ1(JP K) and Υ2::(true, .)(α::(true, .).JQK) = α::(true, .).Υ2(JP K)
and we conclude the case by Lemma 3.

• Case C def
= [ϕ][.] where ϕ is a guard: we take Υ′1

def
= Υ1 and Υ′2

def
= Υ2. The modifica-

tion of the observational contents is making the head locations of both JP K and JQK
guarded by ϕ, and if α::(ψ, l) = β::(ξ, l) then of course α::(ϕ ∧ ψ, l) = β::(ϕ ∧ ξ, l).

• Case C def
= (νn)[.]: we also take Υ′1

def
= Υ1 and Υ′2

def
= Υ2. The function En will be

applied on each sequence of JP K and JQK. It is obvious that En(S) = En(S) but
here the trace sets are not strictly equal; however, their normalisations are. We now



have to prove that for each possible individual simplification θ, {En(S) | S ∈ T} =
{En(S ′) | S ′ ∈ θ(T )} and the case will be proved by transitivity on simplifications. We
will only consider the sequences possibly modified by each kind of rewrite rule. If θ
is a compression, the conclusion is obvious by Lemma 4 on both locations and names.
If θ is a merge, it may transform two sequences into one whose head guard will be
the disjunction of the two previous guard conditions. If En changed both sequences to
〈X::l〉 because of the head guard conditions, it will do the same to the result sequence.
If it didn’t on either sequence, it can’t become true on the combined sequence. If it
did on one sequence and not on the other, it will obviously not remove the combined
sequence, because (G1 =⇒ X) ∧ ¬(G2 =⇒ X) =⇒ (G1 ∨G2 =⇒ X), so we
may conclude.

• Case C def
= [.] +R where R is a process expression. Here we generalise the context by

considering the case of delayed sums (cf. Def. 28). So the goal becomes first P+lR =�
Q +σ

l R where l is a location and σ a substitution from names (public names and

place-names) to place-names. We have JP +σ
l RK

def
= JP K ⊕ JRK and JQ+σ

l RK
def
=

JQK ⊕ JRK if l = ε and σ is the identity, and in this case the conclusion is a simple
fact: Υ1(JP K) ⊕ JRK = Υ2(JQK) ⊕ JRK. Now if l > ε then we have JP +σ

l RK
def
=

JP K ⊕σl JRK. Complementarily we have JQ+σ
l RK

def
= JQK ⊕σl JRK. We may now

apply the adequate simplification Υ1 (resp. Υ2) for each occurrence of P (resp. Q)
with the adequate delay and obtain Υ1(JP K)⊕σl JRK = Υ2(JQK)⊕σl JRK. Since +σ

l is
not symmetric, we need also to consider the second goal R +σ

l P =� R +σ
l Q, whose

proof is obvious from this one.
• Case C def

= µ(X).CX , which is the solution of the equation Y =� P{Y/X}. It is easy
to show that if JY K = JZK then JP{Y/X}K = JP{Z/X}K (by a simple induction on
the contexts for Y and Z). Thus, Jµ(X).P K is a fixed point of the function f such that
JP{Y/X}K = f(JY K). The proof thus relies on the existence of such a fixed point for
f , which we ensure by the least fixed point lemma (Lemma 11) and the monotonicity
of the language constructors (cf. lemma 1).

• Case C def
= [.] ‖ R where R is a process expression. The case is subsumed by the other

cases if we apply the expansion law.

This concludes the congruence proofs for =�

Lemma 6.
SUM1 JP +QK =� JQ+ P K
SUM2 JP + (Q+R)K =� J(P +Q) +RK
SUM3 JP + ENDK =� JP K
SUM4 J[ϕ]P + [ψ]P K = J[ϕ ∨ ψ]P K

Proof.

SUM1 JP +QK = JP K ⊕ JQKl� =� JQKl� ⊕ JP Kl� by Definition 10.
SUM2 JP + (Q+R)K = JP K ⊕ JQ+RK = JP K ⊕ JQK ⊕ JRK by Definition 10.
SUM3 JP + ENDK = JP K ⊕ JENDK. We know that JENDK = {〈X::l〉} so we may

conclude.
SUM4 If JP K =

⋃
α::(ξ, l1)L.S then J[ϕ]P + [ψ]P K =⋃

α::(ϕ ∧ ξ, l1)L.S ∪
⋃
α::(ϕ ∧ ξ, l1)L.S

merge−−−→⋃
α::((ϕ ∨ ψ) ∧ ξ, l1)L.S = J[ϕ ∨ ψ]P Kl



Lemma 7.
RES1 J(νn)ENDK =� JENDK
RES2 J(νn)[ϕ]P K =� J[ϕ](νn)P K if n /∈ ϕ
RES3 J(νn)(νm)P K =� J(νm)(νn)P K
RES4 J(νn)α.P K =� Jα.(νn)P K if n /∈ α
RES5 J(νn)α.P K =� JENDK when n = subj (α)
RES6 J(νn)(P +Q)K =� J(νn)P + (νn)QK

Proof.

RES1 J(νn)ENDK = {En(S) | S ∈ JENDK} = {En(〈〉),En(〈X::l〉)} = {〈〉, 〈X::l〉} =
JENDK

RES2 J(νn)[ϕ]P K = {En(S) | S ∈ J[ϕ]P K} Let’s examine the cases for En. If
subj (hd(S)) = n or S = 〈〉 we have En(S) = 〈X::s(l)〉 (resp. 〈〉) so in this
case we do have En([ϕ]S) = [ϕ]En(S). If hd(S) = c!n and c 6= n we have
En(S) = F∅n(S){νl/n} but since n /∈ ϕ the substitution {νl/n}, where l is the abso-
lute location of the action that causes the escape of name n, and the semantic function
FLn will behave as the identity for S, so we will have En([ϕ]S) = ([ϕ]S){νl/n} =
[ϕ](S{νl/n}) = [ϕ]En(S). Otherwise, En(S) = hd(S).En(tl(S)) and we will have
En([ϕ]S) = En(S ′) = hd(S ′).En(tl(S ′)) = [ϕ]En(S). This allows to conclude that
∀n /∈ ϕ,En([ϕ]S) = [ϕ]En(S)

RES3 Since all the conditions of the En (resp. Em) function depend on n (resp. m) the order
of applying the two restriction functions can’t have any influence on their effect, so
En ◦ Em = Em ◦ En

RES4 J(νn)α.P K = {En(S) | S ∈ Jα.P K} = {En(S) | S ∈ α::l . .JP K}. Except for 〈〉 and
〈X::l〉, all the sequences in α::l . .JP K begin by α::l.. We know that En is the identity
for 〈X::l〉 and 〈〉 so those two sequences will not be problems. The other sequences
will be of the form S = α::l . .S ′. Since n /∈ α, we will have En(S) = α::l . .En(S ′)

RES5 J(νn)α.P K = {En(S) | S ∈ Jα.P K} = {En(S) | S ∈ α::l . .JP K}. Except for 〈〉 and
〈X::l〉, all the sequences in α::l . .JP K begin by α::l.. Like before, En behaves as the
identity for those. The other sequences will be of the form S = α::l . .S ′, but here,
n = subj (α) so En(S) = 〈X::l〉 by definition.

RES6 J(νn)(P +Q)K = {En(S) | S ∈ JP +QK} = {En(S) | S ∈ JP Kl� ∪ JQKl�} =
{En(S) | S ∈ JP Kl�} ∪ {En(S) | S ∈ JQKl�} = J(νn)P Kl� ∪ J(νn)QKl� =
J(νn)P + (νn)QK

Lemma 8.
GRD1 J[false]P K =� JENDK
GRD2 J[true]P K =� JP K
GRD3 J[ϕ]P K =� J[ψ]P K if ϕ ⇐⇒ ψ
GRD4 J[ϕ](P +Q)K =� J[ϕ]P + [ϕ]QK
GRD5 J(νa)[a 6= b]P K =� J(νa)P K if b 6= a
GRD6 J[ϕ]α.P K =� J[ϕ]α.[ϕ]P K if bn(α) /∈ ϕ
GRD7 J[ϕ]α.P K =� J[ϕ]α{a/b}.P K if ϕ =⇒ a = b
GRD8 J[ϕ][ψ]P K =� J[ϕ ∧ ψ]P K

Proof.

GRD1 J[false]P K = {α::falseL.S | α::lL ∈ JP K} φ−→ {〈X::l〉} where φ is the application
of transformation false from Table 4.

GRD2 If JP K =
⋃
α::(ϕ, l1)L.S then J[true]P K =

⋃
α::(true ∧ ϕ, l1)L.S = JP K



GRD3 Our guards being logical expressions, all laws of first order logic apply so ϕ and ψ
are considered the same object

GRD4 If JP K =
⋃
α::(ξ, l1)L.S and JQK =

⋃
β::(η,m1)M.S ′ then J[ϕ](P +Q)K =⋃

α::(ϕ ∧ ξ, l1)L.S ⊕
⋃
β::(ϕ ∧ η,m1)M.S ′ = J[ϕ]P + [ϕ]QK

GRD5 J(νa)[a 6= b]P K = {Ea(S) | S ∈ J[a 6= b]P K} = {Ea(α::(a 6= b ∧ ϕ, l) . . .).S ′)} =
{α::(ϕ{true/a 6= b}, l) . . ..E(S

′)} = J(νa)P K
GRD6 Application of the perco rewrite rule removes guards that have already enforced ear-

lier in the sequence
GRD7 From Table 2, any occurrence of a or b will be replaced by {a, b} which allows to

conclude
GRD8 From Table 2, when calculating the trace set of a guarded process the guard will

be put in conjunction with that of the head location of the head observation in all
sequences, and the substitutions will be composed. The result is trivial by associativity
of conjunction and of function composition

Lemma 9.
JP ‖ QK = J

∑
αi::li.(Pi ‖ βj::lj.Qj)+

∑
βj::lj.(αi::li.Pi ‖ Qj)+[c = d]τ.(Pi ‖ Qj{d/x})K

Proof. Soundness of the expansion law is quite easily proved by induction on sequences. The
induction hypothesis is that if the property is true for Si:Sj it is for

⋃
i,j αi::li.Si:βj::lj.Sj .

Except if one of the processes can only terminate immediately, in which case the other one is
the result of the parallel composition (which provides a fixpoint for our induction), we have

JP ‖ QK =
⋃
{αi::li.Si}:

⋃
{βj::lj.Sj} where αi::li.Si ∈ JP K, βj::lj.Sj ∈ JQK

=
⋃
{interleave(αi::li.Si, βj::lj.Sj)} ⊕

⋃
{interleave(βj::lj.Sj, αi::li.Si)}

⊕
⋃
{intersync(αi::li.Si, βj::lj.Sj)} ⊕

⋃
{intersync(βj::lj.Sj, αi::li.Si)}

=
⋃
{αi::li.(Si : βj::lj.Sj)} ⊕

⋃
{βj::lj.(Sj : αi::li.Si)}

⊕
⋃
{γz::waw′b(ca = db ∧ ϕa ∧ ψb, .̃)lz.Tz

|
⋃
{αi::li.Si}:

⋃
{βj::lj.Sj}{ea/ρlj} =

⋃p
k=1 γk::lk.Tk} ⊕ . . .

= J
∑
αi::li.(Pi ‖ βj::lj.Qj)K ⊕ J

∑
βj::lj.(αi::li.Pi ‖ Qj)K

⊕J[c = d]τ.(Pi ‖ Qj{d/x})K where αi = c!d and βj = d?x or the converse
= J
∑
αi::li.(Pi ‖ βj::lj.Qj)+

∑
βj::lj.(αi::li.Pi ‖ Qj)+[c = d]τ.(Pi ‖ Qj{d/x})K

For the sake of readability, the above proof elides as . . . the converse case of the com-
munication condition since it behaves exactly the same, except for the fact that the sending
and receiving processes are reversed.

5. Refinement

One advantage of manipulating prefix-closed sets of sequences as trace sets is that set inclu-
sion then provides a simple yet powerful means for behavioural refinement.

Definition 27. A process P refines a process Q, which we denote Q v P , iff ∃T ⊆ JQK such
that JP K =� T . The relation is equivalently denoted JP K ⊆/=� JQK.

Before investigating the main properties of the order, we introduce a syntactic construc-
tion that, indeed, characterises properly the notion of refinement in the proposed model. We
remind that for a given trace set T , its pretrace set T ↑ l (resp. its postrace set T ↓ l) corre-
sponds to the subtrace containing all the prefixes (resp. suffixes) of T before (resp. after) l. A



further notation is that of the trace complement T (l) which is defined as T \ (T ↑ laT ↓ l).
These are all the sequences that do not go “through” l. It is maybe easier to remind the in-
variant: T = T (l) ∪ T ↑ laT ↓ l. Note that the complement set may be empty and thus may
not be a valid trace set, i.e. its codomain is T ] {∅}. We may now introduce the notion of
delayed sum, a strict generalisation of the sum operator, as follows:

Definition 28. Let P and Q be arbitrary processes, l a location and σ a substitution from
names (a, b, ρl, . . .) to place names only (ν., ρ.e., . . .). The delayed sum operator at l, denoted
P +σ

l Q, is defined as follows:

JP +σ
l QK

def
= JP K ⊕σl JQK

T1 ⊕σl T2
def
= T1 ↑ la( T1 ↓ l{sni �sn+m

i }ε ∪ T2{smj �sn+m
j+n }ε

{Vlm/Vm | V ∈ {ρ, ν}, Vm /∈ support(σ)}σ )

Notation 2. Let Id be the identity substitution. For the sake of brevity, P +Id
l Q is denoted

P +l Q

Delayed sums are similar to ordinary sums, except that the effect of the operator – the
branching point – is delayed until the path l has been followed in the left operand. For exam-
ple, α.P +∅. Q = α.(P +Q). An explicit substitution must be provided when the right-hand
process refers to names that have been created before (wrt. the prefix order on locations) the
location where it is inserted in the left-hand process behaviour. When the substitution is not
necessary it may be omitted. It is important to note that the operator is not symmetric6. The
delayed sum operator is clearly a generalisation of ordinary sum.

Proposition 2. P +Q =� P +ε Q

Proof. Here we assert that an ordinary sum is the same as a delayed sum with delay
ε. If we apply Definition 28, then we have for any location l, JP +ε QK

def
= JP K(ε) ∪

(JP K ↑ εa(JP K ↓ ε{sni �sn+m
i }ε ∪ JQK{smj �sn+m

j+n }ε)). By Definition 6 we have for any

trace set T , T ↑ ε def
= {〈〉} and T ↓ ε def

= T . The trace set complement T (ε) is thus the
empty set, which gives JP +ε QK

def
= JP K{sni �sn+m

i }ε ∪ JQK{smj �sn+m
j+n }ε = JP K ⊕ JQK =

JP +QK.

There is a tight connection between delayed sums and refinement, as characterised by
the following lemma:

Lemma 10. P v Q⇐⇒ ∃RL =
⋃n
i=1{(Ri, li, σi)} s. t. P =� Q+σ1

l1
R1 . . .+

σn
ln
Rn

Proof. For the if part, let l′ be an arbitrary location and T ⊆ JP K{ε� l′} a trace set such that
T =� JQK{ε� l′}. Such a trace set exists by hypothesis and Definition 27. Now we consider
T ′

def
= JP K{ε� l′} \ T the set of all sequences that are in the behaviour of P but not in Q.

Note that if T ′ is empty then we are finished and P and Q exactly match through reflexivity.
We now take all the maximal locations l ∈ l̃ such that T ′ ↑ l 6= ∅. The set l̃ is maximal with
respect to location prefixing in that if l1, l2 ∈ l̃ then l1 6≤ l2 and l2 6≤ l1. For each of such
location l, we identify a processRl such that JP K{ε� l′} ↓ l = T ′ ↓ l{sni �sn+m

i }∪JRlK{ε�
l′}{smj � sn+m

j+n }{Vlm/Vm | V ∈ {ρ, ν}, Vm /∈ support(σ)}σ. Such a process exists since
T ′ ↓ l is not empty and strictly contained in JP K{ε � l′} by definition. Hence, JP K{ε �

6We think the dual notion of “premature sums” also worth studying but this requires a notion of “reversible
locations” that we have to investigate furthermore.
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〈b!ν.::., d?::.̃�3
3, c!v::�2

1, ρ.e.�33 !ν.::.〉,
〈b!ν.::., d?::.̃�3

3, ρ.e.�33 !ν.::�2
2, c!v::.〉 }

JQK = { 〈b!ν.::., c!v::.̃�2
1, d?::., ρ.e.�21.!ν.::.〉,

〈b!ν.::., d?::.̃�2
2, c!v::., ρ.e.�22 !ν.::.〉 }

P = (νa)b!a.τ.([c = d]v!a.V OID + c!v.d?x.x!a.V OID+

d?x.(c!v.x!a.V OID + x!a.c!v.V OID))

Q = (νa)b!a.τ.(c!v.d?x.x!a.V OID + d?x.c!v.x!a.V OID)

Figure 3. Illustrating delayed sums (1).

l′} =
⋃
l∈el(JP K{ε� l′} ↑ laJP K{ε� l′} ↓ l{sni �sn+m

j }) ∪ T{smj � sn+m
j+n }{Vlm/Vm | V ∈

{ρ, ν}, Vm /∈ support(σ)}σ, which we may finally rephrase as P =� Q+σ1
l1
R1 . . .+

σn
ln
Rn

For the only if part we suppose P =� Q +σ1
l1
R1 . . . +σn

ln
Rn, and for each li ∈ l̃,

JQ+ε RKli
def
= JQKli(ε)∪ (JQKli ↑ ε

a(JQKli ↓ ε{sni �s
n+m
i }ε∪ JRKli{smj �s

n+m
j+n }ε{Vlm/Vm |

V ∈ {ρ, ν}, Vm /∈ support(σ)}σ)) (Definition 28), which implies trivially that JQK{ε �
l′} ⊆

⋃
iJQ+

σi
li
RiK{ε� l′} and, following the hypothesis, JQK{ε� l′} ⊆/=� JP K{ε� l′}.

We thus conclude P v Q

We now illustrate the delayed sum characterisation of refinement. Consider the processes
of Figure 3. Intuitively, it should be the case that P v Q (i.e. Q refines P ) because P
may at least perform all the actions and non-deterministic choices of Q, but can do even
more of course. However, it is not the case that P =� P + Q (see Fig. 4) so the (standard)
sum operator does not characterise refinement in a complete way. As Fig. 5 makes clear
Lemma 10 guarantees the existence of a delay l, σ and a delayed sum of processes R̃ such
that P =� Q+σ

l R̃.
Refinement, as characterised by delayed sums, is a proper ordering relation with

(parametrised) monotone properties on the language constructors.
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Figure 4. Illustrating delayed sums (2).
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R2 = a!b.c!v.V OID

JR2K = {〈a!b::., c!v::.〉 }

Figure 5. Illustrating delayed sums (3).

Theorem 1.
P v P
P v Q ∧Q v R =⇒ P v R
P v Q ∧Q v P =⇒ P =� Q

P v Q =⇒ ∃l̃, Cel[P ] v Cel[Q] for any language context C

All these properties use a similar proof schema that consists in replacing each property
in the context of the split equivalence and delayed sums.



Proof.

• (reflexivity) By definition, P +ε P v P and since P +ε P =� P + P (by lemma 2)
and P + P =� P so we conclude P v P .

• (transitivity) We have P v Q and Q v R so ∃l1 . . . ln, A1 . . . An s. t. Q+l1A1 . . .+ln

An =� P and ∃l′1 . . . l′n, A′1 . . . A′n s. t. R +l′1
A′1 . . . +l′n A

′
n =� Q. Since split-

equivalence is transitive, thus R +l′1
A′1 . . . +l′n A

′
n +l1 A1 . . . +ln An =� P which

allows us to conclude.
• (antisymmetry) We have P v Q so ∃l1 . . . ln, A1 . . . An s. t.Q+l1A1 . . .+lnAn =� P .

And also by hypothesisQ v P so ∃l′1 . . . l′m, B1 . . . Bm s. t. P+l′1
B1 . . .+l′mBm =� Q.

In terms of trace sets, it is easy to derive the property that
⋃n
i=1{Ai} =

⋃m
i=1{Bi} and

so P =� Q.
• (monotonicity) The property can be rewritten as follows: ∃l1 . . . ln, R1 . . . Rn s. t.
Q =� P +l1 R1 . . . +ln Rn =⇒ C[Q] =� C[P +l1 R1 . . . +ln Rn] whose proof is a
particular case of the congruence property for delayed sums.

This concludes the proofs for Lemma 1.

Note that unsurprisingly the congruence result is relative to a given set of locations de-
lays, it does not follow from P v Q that P +σ

l R v Q +σ
l R, since P and Q may have

differently ordered branches. Instead, if P v Q and ∃P ′ =� P such that P ′ ↑ l = Q ↑ l, then
P ′ +l R v Q+l R.

The refinement ordering is trivially bounded by process VOID on one side, and by pro-
cess RUN such that JRUNK def

= T on the other side. A simple fact is that for any process P
we have RUN v P v VOID. A much more general result about v is the following one:

Theorem 2. v is a complete lattice

The property is relatively easy to exhibit if we interpret it in terms of trace sets. It says,
in fact, that (T ,⊆/=�) (i.e. the subset relation for the equivalence classes with respect to =�)
itself possesses a complete lattice structure. Simple set theoretic arguments (using

⋂
/=� and⋃

/=� , the generalised intersection and union operators with respect to T/=�) then suffice to
establish the property.

This leads to the most important result of the section:

Lemma 11. Let φ a function from process expressions to process expressions. If φ is mono-
tone with respect to v then it admits a least fixed point with respect to =�, i.e. φ(P ) =� P
for any process P . Moreover, if φ is continuous with respect to v, then the least fixed point isd
{φn(VOID) | n ∈ N}.

Both the properties correspond to transpositions of Tarski’s lemmas in the realm of the
proposed framework, considering the complete lattice structure of the refinement order.

Thanks to lemma 11, we may now introduce a general rule for recursion as follows:

[rec] Jµ(X).P K is the least fixed point solution of JP{Y/X}K =� f(JY K)
with f such that Y =� P{Y/X}

Note that the existence of f and the existence or unicity of its least fixed point are not always
guaranteed. An example is with unguarded recursions (e.g. µ(X).X) for which nothing is
recorded. The explicit recording of divergences would allow for a more thorough treatment
of unguarded recursion, which is left as a future work.



6. Related Work

To our knowledge, there are very few investigations aiming at developing mobile extensions
for CSP. In [10] the authors propose to encode mobile channels as processes. This makes
sense from the point of view of execution environments and close-world semantics, but chan-
nel mobility has an important impact on the theory, and thus something must be proposed
at that level to be able to reason about such mobile extensions. In a recent yet unpublished
paper [11], an interesting proposition is made for an encoding of both a channel-passing ver-
sion of CSP and of the π-calculus within CSP+, the language of CSP enriched by a con-
struction for exceptional behaviours [12]. The channel-passing variant of the parallel con-
struct is more about dynamic alphabets and the explicit manipulation of read-write access
rights on channels, but it is not mobility in the sense of the π-calculus. In particular the scope
of name remains static in this variant. Concerning the encoding of the π-calculus itself, the
proposition remains mostly informal as of today but the general idea is to encode the effect
of binders as non-deterministic choices among the (potentially infinite) possibilities of name
substitutions involved. For the input binder this idea clearly relates to the early semantics for
the pi-calculus, and it is shown that for finite-state problem the choices are also finite (using
open bisimilarity). However, we do not convey the idea of early semantics in our model be-
cause it has a significant cost when conducting proofs or developing verification algorithms.
The idea is that one has to consider all the possible substitutions of names in order to solve
the problem, which can be infinite (early case) or restricted to the finite number of names
actually used in the process being analysed (open case). Moreover this does not solve the
compositionality issue because channel names that are not bound are not considered by the
substitution. In our case we provide a single, uniquely defined name — attached to the abso-
lute location of the considered observation — to serve the same purpose (and more). The ad-
vantage of our denotation, also, is that it is not parametric unlike [11] because of the explicit
manipulation of infinite replacement sets to capture freshness. In our case a single location
must be recorded instead. Unlike our proposition, the model also seems to suffer from the
same compositionality as the “real” π-calculus. A very positive point of the presented model
is the natural switch from the operational to the denotational characterisation and vice-versa.
In our case we had to exhibit a non-trivial axiomatisation of the denotation, which is quite an
involved process (especially the completeness part of the adequacy theorem, cf. our technical
report). The positive point is that the axiomatisation gives us a minimal set of laws for the
proposed language constructs.

In comparison with the standard failure-divergence (FD) model of CSP, an interesting
characteristic of the trace model we propose is that it integrates well the concepts of (stan-
dard) trace sets, the encoding of the branching structure and the mobile features. There is no
need for separate specifications (traces, failures and divergences) and the resulting denotation
conveys the complete lattice structure of the plain trace semantics. This is mostly thanks to
the notion of location. In return, the manipulation of the trace sets must ensure the correct
(re-)location of the observations, which makes the definitions more intricate than those of FD,
even if we remove the mobility part. We show, however, that thanks to trace normalisation
we are able to abstract away from the fine-grained nature of the locations. The proof tech-
niques we propose beyond the denotation itself do not suffer from the fine-grained nature of
locations. In the same line of idea, we provide in [13] the first sketch of a CSP-like predicate
logic built on the present model. The logic allows the practical reasoning on mobile systems
without having to deal directly with e.g. explicit locations, escape functions or split-relations.

The study of the π-calculus semantics from a denotational point of view has also been in-
vestigated in [14,15] with the objective of characterising full abstraction lemmas wrt. testing
preorders. Most interpretations consider set-theoretic trace models built from the operational
semantics. In this paper, we adopt a complementary point of view of building trace models



directly from process expressions, with the goal of providing proof principles and techniques
directly applicable on trace models as in CSP. While [14,15] relate trace-based denotations,
so-called acceptance traces, with tests based on the operational semantics in order to provide
full abstraction lemmas, we address complementary questions at the intersection of denota-
tional and axiomatic semantics. Nevertheless, there are some affinities between the two ap-
proaches, most notably the development of behavioural preorder relations, and set-inclusion
as the general driving principle. The trace model of [15] is also different in that it implements
early commitments – ours are late in comparison. Must testing equivalence is weaker than
split-equivalence, with tau-laws releasing even more constraints than weak late congruence
[16]. This obviously raises compositionality issues.

7. Conclusion and Future Work

In this paper we have shown that it is possible to model mobility in an observational and
compositional way. The resulting model is not as concise and elegant as the standard CSP
model but this is, in our opinion, the price to pay for the characterisation of mobility. There
is, however, a form of minimalism in the model. The single concept of location plays for
example quite a versatile role. They are used to encode the branching structure of the process
within trace sets (which is why they were introduced at first in [2]) but they are also used
to give fresh identities to dynamic names, which are in our opinion the central characteristic
of mobile — dynamic — behaviours. The issue with locations is that, similarly to de Bruijn
indices, we have to ensure their consistency, especially when composing trace sets. From a
mathematical point of view, there may exist cleaner foundations where, for example, permu-
tations of branches and trace transformations would come “for free”. But this is not a cer-
titude because concurrent systems are not “pure” mathematical objects to start with. What
we propose in this paper is the simplest model we were able to develop. Our intuition is that
its complexity is inherent to the phenomena we try to characterise. A lesson we learnt from
experience is that it is much better to go from the denotation to the language, as in CSP, than
the converse, although it is of course necessary to have some intuitions about the language
at first. Initially we tried the other way around (starting from the π-calculus directly) and it
generally led to dead ends.

From a practical point of view, the trace normalisation principles of the model appear as
quite attractive. We are now developing algorithmic principles based on normalisation that
will hopefully lead to the development of an equivalence and refinement checking tool for
the proposed language.
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