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Abstract.  Localised mobile channel support is now a feature of Communicating 

Process Architecture (CPA) based frameworks, from JCSP and C++CSP to occam-

π.  Distributed mobile channel support has also been attempted in JCSP Networking 

and occam-π via the pony framework, although the capabilities of these two separate 

approaches is limited and has not led to the widespread usage of distributed mobile 

channel primitives.  In this paper, an initial investigation into possible models that 

can support distributed channel mobility are presented and analysed for features 

such as transmission time, robustness and reachability.  The goal of this work is to 

discover a set of models which can be used for channel mobility and also supported 

within the single unified protocol for distributed CPA frameworks.  From the 

analysis presented in this paper, it has been determined that there are models which 

can be implemented to support channel end mobility within a single unified protocol 

which provide suitable capabilities for certain application scenarios. 
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Introduction 

Recent work in Communicating Sequential Processes for Java (JCSP) Networking has 

focused on refining the underlying architecture and protocol, as well as providing support 

for distributed mobility of processes and channels.  Last year [1], a universal protocol to 

support distributed operations across all CPA frameworks was introduced.  The initial 

version of the protocol was designed to reduce resource usage within JCSP Networking, as 

well as promote interoperability between the other CPA frameworks by having a well 

defined set of primitive network messages that can be understood by languages as diverse 

as occam-π and Python.  The next stage in this work is to also provide channel end mobility 

support in the protocol such that channel ends can be passed between, for example, a JCSP 

application and an occam-π application.  The work presented in this article is an initial 

investigation into models to support distributed channel mobility within the CPA network 

protocol.  This will lead to dynamic topology support, which is useful in fields such as 

mobile agents [2], complex systems [3] and pervasive computing [4] 

The rest of this paper is broken down as follows.  In Section 1, a discussion on 

distributed mobility in CPAs is presented, looking at the requirements to support such 

functionality.  Section 2 presents potential models to support distributed channel mobility, 

and Section 3 analyses certain attributes of these models.  Section 4 discusses possible 

protocol integration for these models.  Section 5 presents future work and Section 6 

provides conclusions. 



   

1. Distributed Mobility in CPAs 

Distributed mobility in CPAs refers to the ability to migrate a process or channel end in a 

distributed CPA application from one network node to another in a manner that is 

transparent to the application (this is referred to as logical mobility [2]).  Localised mobility 

support has been possible in JCSP since the initial version due to the pass-by-reference 

semantics of Java.  Mobility support for occam was introduced with occam-π [5], the 

emphasis being on providing correct mobility support.  Distributed mobile processes have 

also been implemented in both JCSP [6] and occam-π [3], the former having further support 

for code mobility.  Distributed channel end mobility has also been implemented in JCSP [6] 

and the pony framework supported distributed channel mobility for occam-π [7].  Trap [3] 

is a successor to pony that currently has no support for channel mobility. There are 

difficulties in implementing distributed channel and process mobility in a manner that still 

emits the behaviour that we would expect from both localized and distributed mobility. 

1.1 Difficulties with Distributed Mobility against Localised Mobility 

Previous work examining the challenges of mobility in CPA frameworks was highlighted in 

[6], and is summarized in Table 1: 

 
Table 1.  Complexity of mobility. 

Mobile Primitive Local Mobility Distributed Mobility 

Input Channel End Simple Difficult 

Output Channel End Simple Simple 

Simple Process Simple Moderate 

Complex Process Simple Very Difficult 

 

On a single machine, mobility of channel ends and processes is relatively simple, 

requiring the passing of a reference from one process to another, occam-π hiding this 

underlying transaction from the developer.  For distributed mobility, the implementation is 

more difficult.  Output Channel End mobility is relatively simple as it normally only 

requires the transmission of an address to send messages to.  Input Channel End mobility is 

difficult as it requires informing any Output Channel End(s) connected to the Input Channel 

End.  Simple Process mobility refers to single processes, and the moderate difficulty refers 

to the inclusion of a code mobility system to support transparent process mobility.  

Complex Process mobility requires the suspension and subsequent resumption of a process 

network which has internal communication between the migrating processes. 

As the table indicates, the difficult problems to solve are Input Channel End mobility 

and Complex Process Mobility.  Output Channel End mobility is solved based on the 

chosen Input Channel End mobility solution, and Simple Process mobility has been solved 

in JCSP via code mobility support [6].  The focus of this article is Input Channel End 

mobility, which helps enable Complex Process mobility as discussed in Section 1.3. 

1.2 Code Mobility 

Logical mobility is discussed within the context of code mobility [8]. The code mobility 

paradigm discusses various models of mobile software components (e.g. mobile agents and 

client-server). Code mobility is also categorised into strong and weak mobility, the 

difference lying in the movement of active or passive components. An active component is 

one that has its own thread of control, whereas a passive component does not. Weak code 



  

mobility requires non-stateful movement of a component from one networked node to 

another. Strong code mobility requires capturing the current execution state of an active 

component and transferring this to the new location. Both approaches include passive state 

capture (e.g. attributes of an object) and mobility of code. Execution state can be considered 

as the instruction pointer and call stack of an individual thread that is to be transferred. 

Strong code mobility is related to complex process mobility as discussed in Section 

1.1.  The difficulty in a platform such as Java is that the application developer does not 

have access to the internal instruction pointer or call stack of a thread, and therefore state 

capture of active components is difficult.  Attempts have been made to overcome this 

limitation (for example see [9,10,11]), although they require modified Java Virtual 

Machines (JVMs) or compilers. 

The code mobility viewpoint of logical mobility has limitations when analysed within 

software architecture models, as shall be discussed in the following two sub-sections. 

1.2.1 Software Architecture 

Generally, software architectures are defined by components and the connections between 

the components.  For example, with CPA there are process components and channel 

connectors, and for object-orientation there are objects and the references between them.  A 

system can be defined architecturally by the set of components and the connection 

relationships between them. 

Architectural elements can be further analysed by defining the ports (the inputs and 

outputs of a component) and the connection ends (inputs to a connection and the outputs 

from it).  In CPAs, connection ends correspond to channel ends, although these are 

classified from the process point of view.  Therefore a channel output end is the output 

from a process into a channel, and not the output from a channel.  Ports can be considered 

as the set of events which a process operates on.  This definition is illustrated in Figure 1. 

 

 
Figure 1.  CPA architecture. 

1.2.2 Limitations of the Code Mobility View 

Code mobility has a limitation from a software architecture point of view in that connection 

mobility is not considered.  This leads to the situation where a mobile component in a code 

mobility system can be viewed as an isolated piece of data, an isolated component (which 

may have internal components) or a whole application with all the internal components and 

connectors persisted.  A component does not take its external connections with it when it 

migrates.  Initial work on the π-Calculus [12] considered that process mobility was enabled 

by channel mobility, whereas code mobility has not considered this approach in depth. 

There has been some discussion on coordination mobility support within logical 

mobility.  Roman et al. [13] has argued that coordination and location are the most 

important factors for logical mobility as coordination mobility enables the decoupling of 

components.  Roman also argues that coordination mobility should be considered separate 

to component mobility.  Phillips et al. [14] has argued for better modelling of 

communication between mobile components.  Therefore, the current focus on distributed 

CPA mobility is on connection mobility to support component mobility. 



   

1.3 Component Mobility 

We define a more concise model of component mobility which overcomes the limitations 

of the code mobility model.  A mobile element in a code mobility system can be considered 

to have the following structure: 

 

• Code – the code defining the structure and behaviour of the mobile element.  

This is required in a code mobility system. 

• State – the current state of the mobile element.  This is further categorised into: 

o Passive state – the data attributes of the mobile component.  This is 

required in a code mobility system. 

o Active state – the execution state of the mobile element.  For a strong 

code mobility system this is required. 

Our view of a mobile component has the following structure: 

 

• Type – the type of the component.  This describes its structure and behaviour.  

The type is required for interpretation at the receiving node in a distributed 

application.  Further, the type may also include: 

o Code – the code, which may have to be loaded at the receiving end to 

allow interpretation of the mobile component.  This is not a requirement 

for component mobility, particularly if we want to allow component 

mobility between diverse frameworks. 

• State – the current state of the mobile component.  This has three sub-elements: 

o Connection state – any connections to external components that the 

mobile component may have.  This is a requirement for strong 

component mobility. 

o Data state – the attributes of the mobile component.  This is required 

for any mobile component. 

o Behaviour state – the current execution state of the component.  This is 

a requirement for strong code mobility. 

 

Our model of component mobility allows for full definition of any mobile element that 

a system may have.  For example, as only the type and data state are required for the most 

primitive form of mobile component, we can define mobile data (a simple message) within 

the mobile component structure. 

1.4 Comparing Component Mobility to Code Mobility 

In code mobility, strong and weak mobility is distinguished by the capturing and sending of 

current execution state with the mobile element.  Component mobility requires both 

connection state and behaviour state to determine strong mobility. 

Unlike code mobility, there is no express requirement in component mobility to 

transfer code with the mobile element.  The reason to take this view is twofold.  Firstly, we 

wish to be able to map primitive (well known) data messages within our definition.  For 

example, 32-bit integers and strings are standard data types with no functionality (code) 

associated with them.  Secondly, we want to acknowledge the ability to send a mobile 

component from one framework to another.  It might become feasible to have strong 

component mobility from a JCSP application to an occam-π application.  No cyclic 

references could be within the sent message.  Having a uniform method of connection 

mobility between frameworks is required to support inter-framework component mobility. 



  

The main addition that component mobility brings is the inclusion of connection state.  

This is not the internal connectivity of the mobile component but the external connected 

interface.  Retaining this state allows the migration of the component in a manner that is 

transparent to other components in the system as communication between components 

remains intact.  Adequate connection state migration therefore enables transparent 

component mobility.  With CPAs, channels are treated as first class, thereby decoupling a 

component from its connections.  This is important to enable strong mobility of component 

and connection. 

1.5 Difficulties in First Class Mobility of Object-Oriented Applications 

Object-orientation does not exhibit both first class component and connection mobility.  

When running on a single machine, an object-oriented application passes references to 

objects during method invocation, and thus only connection mobility is evident.  For a 

distributed application, the reverse is evident with an object being serialized and copied 

from one networked node to another.  There is no concept of passing an object reference 

from one application to another.  There is a definite machine boundary in an object-oriented 

application which separates the distributed from the localised. 

Because of the limitation of object-orientation, mobility support in CPA can lead to 

more transparent mobile applications.  The following section describes seven different 

models that can support distributed channel end mobility, and Section 3 analyses some of 

the properties of these models.  A more in depth discussion is provided elsewhere [15]. 

2. Models of Distributed Connection Mobility 

Through examination of other techniques to support connection mobility, seven possible 

models to support channel mobility have been discovered.  These models are described in 

the following sections.  This is not an exhaustive collection of models, although we have 

surveyed available work within reason. 

2.1 One-to-One �etworked Channel 

Networked channels are Any-to-One in that any number of output ends may connect to an 

input end.  As it is unknown how many output ends may be connected to an input end, 

informing output ends of the movement of an input end is not a one-to-one communication.  

The One-to-One model is illustrated in Figure 2. 

 
Figure 2.  One-to-One networked channel. 

 

Muller [16] has presented a mobile channel protocol that supports One-to-One 

communication.  Channel end states are used and vary based on whether the end is locally 

or remotely connected, and each channel end knows the location of its corresponding 
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partner.   When a channel end migrates, it informs its companion of the new location once it 

has arrived.  Mobility is easier in comparison to the standard Any-to-One model as it can be 

guaranteed that the companion channel end has been notified of the new location. 

2.2 �ame Server 

Mobile channel locations contained on a server is the approach taken by pony [7, 17].  Each 

channel is allocated an identifier unique to the application context (the set of networked 

nodes that make up a single pony application).  Identifiers are managed by a server which 

tracks the current location of the channel.  When the channel end is migrated the location is 

updated on the server.  An output end connected to an input end can resolve this location, 

and then connect directly to the input end.  If the input end should later move the output end 

retrieves the new location from the central server.  This model is basically an extension of 

the common broker architecture used in distributed systems, and is illustrated in Figure 3. 

 

 
 

Figure 3.   Name server. 

All the other models may use a name server for channel end resolution, although this is 

not a requirement. A channel can be connected using only the address. This model requires 

a name server, and also adds functionality to the server to support channel end mobility. 

2.3 Message Box 

Message boxes are the approach used within mobile agent frameworks [18], and the model 

previously proposed for JCSP Networking channel mobility [6]. The node declaring the 

input channel end creates a message box process, which allows the output end to send to a 

static address, and the input channel end to request the next message from the message box.  

The message box model is illustrated in Figure 4. 

 

 
 

Figure 4.  Message box. 



  

2.4 Message Box Server 

The message box model can be combined with a server allowing creation of message boxes 

on the server instead of locally on a node [19].  Apart from the requirement of server 

creation, the operation of the server controlled message box is identical to the standard 

message box model.  This model is illustrated in Figure 5. 

 
 

Figure 5.  Message box server. 

2.5 Chain 

The chain model [20] requires each previous location of a channel end to forward any 

message onto the next location until the message reaches the current location of the input 

end.  When an input end arrives at a new location it informs the previous location of the 

new location.  When an output end moves, the previous location is sent with the migration 

message, which is used to send to the previous output end location.  Thus a chain of 

connections is formed, and any message must traverse the entire length of the chain.  The 

model is illustrated in Figure 6. 

 
 

Figure 6.  Chain. 

As networked channels are Any-to-One, there will be chains of various lengths in 

operation. The length from the original input location to the current input location is always 

determined by the number of migrations that have been made by the input end.  The length 

of the output end(s) depends on how far the output end has moved from the original 

location. Thus, as different output ends may traverse different distances, there will be 

multiple chain lengths in operation. 

2.6 Reconfiguring Chain 

To overcome the loop and transmission problems of the chain model [21], the chain can 

reconfigure itself by finding shortcuts to a previous link. Any loop is therefore removed and 

transmission time may become reduced whenever the chain is shortened. The reconfiguring 

chain model is illustrated in Figure 7. 
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Figure 7.  Reconfiguring chain. 

 

To achieve reconfiguration, a migrating channel end takes all previous location in the 

chain.  On arrival, the locations are iterated through and reconnection is attempted to the 

oldest possible link in the chain.  Loops are removed as a node can always shortcut to itself.  

Transmission time for messages can be reduced as the most direct route between two nodes 

is used instead of the total distance travelled by the mobile end. 

2.7 Mobile IP 

Mobile IP [22] is used for physical device mobility within IP based networks.  Connections 

are registered with a home agent responsible for forwarding messages onto the current 

location of the input end.  When a connection migrates, it informs the home agent, which 

buffers messages until the new location is resolved. The new location address is generated 

by the foreign agent within the domain of the channel end’s new location. The home agent 

forwards received messages to the foreign agent, which forwards messages to the channel 

end’s new location. Whenever the mobile end moves, the foreign agent informs the home 

agent, and the same migration process occurs.  This model is illustrated in Figure 8. 

 
 

Figure 8.  Mobile IP. 

 

To enable mobility between network sub-domains, tunnelling is used to allow 

messages to be sent to the new foreign agent.  Tunnelling can be reproduced in a mobile 

channel context by utilizing a chain of agents that forward messages to the respective 

channel end location or next agent.  The difference between an agent chain and a normal 

chain is that the agent chain is a fixed architecture which only grows when contact with a 

new domain occurs.  This creates a hybrid model of chaining, server and message box.  The 

agents act as both gateways between domains and routers of messages. 
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2.8 Advantages and Disadvantages 

Each of these models has certain advantages and disadvantage in comparison to the other 

models.  These advantages and disadvantages are summarized in Table 2.  These 

advantages and disadvantages are of interest as they highlight where some of the models 

are more suitable than others in certain application scenarios. 

 
Table 2.  Advantages and disadvantages of mobility models. 

Model Advantages Disadvantages 

One-to-One Direct connection; simple model No support for Any-to-One 

connections. 

Name server Direct connection Requires a name server. 

Message box All transmissions require only one 

hop 

Requires origin node to host the 

message box. 

Message box 

server 

All transmissions require only one 

hop 

Requires a server to host the 

message box; server may 

become overloaded. 

Chain Channel ends can travel freely Requires all previous nodes to 

support the chain; transmission 

time increases with each 

migration; single node failure 

can break multiple chains; loops 

may exist in the chain. 

Reconfiguring 

chain 

Channel ends can travel freely Reconfiguring the chain takes 

time; some of the chain 

disadvantages may still exist. 

Mobile IP Channel ends can travel freely Requires a backbone of agents to 

support mobility; loops may 

exist. 

3. Analysis of Connection Mobility Models 

For analysis of the different models, a restricted addressing layout of standard TCP/IP 

based communication networks is used.  A network domain may consist of several sub-

domains, which in turn consist of sub-domains, etc.  At the root of the domain tree is the 

global domain.  Each node in the tree can be allocated an identifier to represent the domain 

in the hierarchy that it belongs to.  Messages are sent between members of domains.  Figure 

9 presents an example domain tree.  This layout is not a representation of physical network 

layout, but rather the logical domain addressing mechanism in place. 

Each node in the tree has an identifier based on its domain branch.  For example, leaf E 

has identifier G.A.C.E.  A simplistic viewpoint of connectivity is taken in that members of 

a sub-domain may connect to members of the same sub-domain and members of parent 

domains.  Thus, any leaf in the tree can connect to any domain further up its branch until 

the global domain root node is reached.  For example, a member of G.A.C.E. can connect 

to a member of G.A.C., G.A., and G.  This form of connectivity will be called 

addressability, implying that members of the node can address members in a given domain 

unambiguously. 



   

 
 

Figure 9.  Domain tree. 

 

This view of addressability is taken to represent the fact that members of a given sub-

domain may be given addresses which are also used in another sub-domain.  For example, 

domain G.A.C.E. may provide members with IP addresses in the standard local domain 

form 192.168.x.x.  Domain G.A.C.F. may also use the local domain addressing mechanism.  

Thus, a member of G.A.C.E. may have an IP address 192.168.1.1, and so might a member 

of G.A.C.F.  The domain tree structure ensures that this is not a problem. 

As a sub-domain may address its parent domain, then it becomes obvious that a 

member of a parent domain may be connected to a member of a sub-domain.  However, 

this connection must be initiated by the member of the sub-domain; connectivity is allowed 

down the domain tree but not addressability.  For the purposes of discussion, messages can 

travel up or down the tree but not both in a single operation.  A message travelling up or 

down must be received by a domain member before being sent in the other direction.  This 

is normally handled by routers within normal network architectures but, as mobile channels 

are logical connections, an equivalent logical router is needed to redirect the message. 

The analysis presented represents input channel end mobility, as this is the most 

complicated to achieve.  For an input channel to be migrated, the architecture of the 

described model usually requires reconfiguration to ensure that messages are still received 

at the new input end location.  For an output end, the majority of models permit the address 

or some other representation of the input end to be sent and a new output end to be created, 

effectively copying the output end at a new location.  This is due to the Any-to-One 

architecture of a networked channel, where multiple output ends can connect to a single 

input end.  Adding a new output end is trivial, and output end mobility involves adding a 

new output end and destroying the old one. 

To aid in analysis, a number of values are defined.  These are standard message types 

used in the underlying protocol to support CPA networking [15]: 

• proto – a protocol message without any data.  Acknowledgement messages are 

also considered protocol messages.  As these messages should be of fixed size, 

communication time is constant. 

• addr – the size of a channel location structure.  These structures are used to 

permit the output end of a channel to connect to an input end.  addr may vary 

based on implementation, thought communication time is considered constant. 

 



  

• msg – a data message sent from one domain member to another.  The size of 

msg is variable, and therefore communication time depends on message size. 

 

To represent mobility, Mn is used, where n is the number of movement operations that 

have occurred since initial channel creation – M0 representing a channel end that has not 

migrated. 

Four properties of these models are investigated. These are transmission time, 

reconfiguration time, reachability and robustness. 

3.1 Transmission Time 

Transmission time is the time taken for a sent data message to arrive at its destination.  This 

is an important Quality of Service (QoS) property in any distributed application, and is 

therefore an important value to analyse.  The time taken to transfer a message of a 

particular type is expressed by the function t and is based on the amount of data sent.  For 

the purposes of discussion a single communication between two domain members (even 

members in different domains in a branch), t is not affected by the actual distance up or 

down the domain tree travelled.  A summary of these values is presented in Table 3. For 

simplicity, we assume that the transmission time for a message is independent of other 

messages being sent. 

In all cases, a data message requires a subsequent acknowledgement, hence the msg 

and proto definitions within these equations. 

 
Table 3.  Transmission time. 

Model Transmission Time Description 

One-to-One Mn = tmsg + tproto Connections are always direct. 

Name  

Server 

Mn = tmsg + tproto  

        [ + tmsg + tproto] 

Connections are normally direct, 

although a connection may move 

thus requiring a resend. 

Message Box M0 = tmsg + tproto 

Mn = 2·tmsg + taddr + tproto 

First transmission is always direct.  

Subsequent messages require 

sending to message box and request 

from message box. 

Message Box 

Server 

Mn = 2·tmsg + taddr + tproto As message box, although all sends 

are through the server. 

Chain M0 = tmsg + tproto 

Mn = n·tmsg + n·tproto 

All messages travel the length of the 

chain. 

Reconfiguring  

Chain 

M0 = tmsg + tproto 

tmsg + tproto ≤ Mn ≤ n·tmsg + n·tproto  

With no reconfiguration messages 

travel the entire length of the chain.  

If reconfigured, there is the 

possibility of direct connections. 

Mobile IP Mn = (up + down)·tmsg + 

         (up + down)·tproto 

Messages travel through the domain 

agents up and down the domain tree. 

3.2 Reconfiguration Time 

Reconfiguration time is the time taken to reconfigure the communication architecture to 

permit the new communication path created by the migration of a channel.  The time to 

reconfigure the architecture is another important QoS consideration and will affect 



   

transmission time. 

Reconfiguration complexity is represented by the parameter r that takes three values: 

easy for an architecture requiring little reconfiguration; mod for an architecture that requires 

some extra functionality and link creation; and hard for an architecture that requires a great 

deal of extra functionality and link creation to permit channel mobility. The time 

represented by r will generally be small in comparison to the time taken to transfer 

messages between nodes to allow reconfiguration.  

Transfer time is taken into consideration for message transfer and acknowledgement.  

Channel transfer time for all models is either a protocol message or an address message, 

except for the reconfiguring chain which takes all previous addresses with it.  Table 4 

summarises. 

 
Table 4.  Reconfiguration time. 

Model Reconfiguration Time Description 

One-to-One Mn = reasy + 2·taddr + 2·tproto  

        [+ tmsg] 

The sent mobile channel 

structure consists of an addr and 

acknowledgement, and this 

must also be sent to the 

companion channel end.  A 

waiting message may also be 

sent with the channel. 

Name  

Server 

Mn = reasy + 6·tproto + 2·taddr The input end must send the 

new address to the server 

(ack’ed) and the client requests 

and receives this address 

(ack’ed). 

Message Box Mn = reasy + taddr + tproto Reconfiguration is simply 

sending the address to the new 

location with an acknowledged 

message. 

Message Box  

Server 

Mn = reasy + taddr + tproto As message box. 

Chain Mn = reasy + 2·taddr The channel send contains the 

address and is acknowledged 

with the new address. 

Reconfiguring  

Chain 

reasy + 2·taddr ≤ Mn ≤ rhard + (n – 1)·taddr Worst case the channel end 

contains all previous addresses 

and must contact each to try and 

reconfigure.  Best case is as 

chain. 

Mobile IP Mn = rmod + 2·(up + down)·2·taddr  

         + (up + down)·tproto 

The channel send contains two 

addresses (channel address and 

old address) and requires the 

new location to be sent back 

which contains two addresses.  

The send then must be 

acknowledged. 



  

3.3 Reachability 

Reachability is the set of domains where a channel input end can be hosted and a channel 

output end still successfully communicate to the input end within the defined model.  This 

value is of interest as in theory we wish to send a channel end anywhere within a network 

and still provide connectivity between the input and output end.  The problem lies in the 

domain architecture presented in Figure 9.  For an output end to successfully connect to the 

input end, addressability must be possible.  As addressability is only possible up a branch 

of the domain tree, supporting architecture is normally required to support full connectivity 

across the entire domain tree. To discuss reachability, three sets of domains are defined: 

• SUB_TREE – the domain in which the input end of the channel is located, and 

all the sub-domains of this domain 

• BRA�CH – the set of domains within the same branch as the input end, 

implying both up and down traversal of the domain tree 

• GLOBAL – the set of all domains 

As it is possible for a node within a domain to connect up the tree, any model that 

allows such a connection is deemed to permit an output channel end that has migrated using 

an existing connection to be connected to an input channel end down the tree via the 

existing connection, although not the One-to-One model as shall be highlighted.  Table 5 

summarises reachability for the given models. 

 
Table 5.  Reachability. 

Model Reachability Description 

One-to-One BRANCH (first) 

SUB_TREE ∩ 

BRANCH (subsequent) 

The first interaction is always between 

connected domain members.  Further 

migrations can only occur within the 

domain of the input end. 

Name  

Server 

SUB_TREE ∩ 

BRANCH 

Although the server is SUB_TREE 

reachable, the input end must be reachable 

from the output end also.  If the input end 

migrates to a separate branch, the output 

end cannot reach the input end, so reach is 

restricted to a branch of the domain. 

Message Box SUB_TREE � 

BRANCH 

The host of the message box can be told to 

connect up the tree to the new input 

location, and thus reachability is the union 

of SUB_TREE and BRANCH. 

Message Box  

Server 

SUB_TREE As the server is a dedicated it would 

normally be connected to by the output and 

input end, and due to addressability gives 

reachability of SUB_TREE. 

Chain GLOBAL The chain can stretch anywhere providing 

GLOBAL reachability. 

Reconfiguring  

Chain 

GLOBAL As chain. 

Mobile IP GLOBAL The chain of agents can stretch through all 

domains, providing GLOBAL reachability. 



   

3.4 Robustness 

The robustness of the model defines how strong the individual connections are between the 

input end and the output end of a channel.  Robustness is defined by the reliance on 

external elements.  A server (e.g. the message box model) is a stronger element than a 

normal networked node in the application due to the server being dedicated to supporting 

the network.  Robustness is another key QoS property as if the connections between input 

and output ends are unreliable there is more chance that an application will fail. 

For robustness there are three values to consider: 

• conn – a connection between two nodes 

• node – a normal node in the network 

• server – a server node in the network 

The robustness of the model depends on how many of these individual elements are 

required to support channel mobility.  The fewer elements required by the model, the 

stronger the model.  Table 6 summarises the robustness of the various models. 

 
Table 6.  Robustness. 

Model Robustness Description 

One-to-One Mn = conn There is only the connection between 

the input and output end. 

Name  

Server 

Mn = conn The connection between the sender and 

receiver is always direct. A name server 

is required, but does not affect the 

robustness of the individual connection. 

Message Box M0 = conn 

Mn = node + 2·conn 

Initially, the model permits direct 

connection from sender to receiver. 

Then, connections from the individual 

ends to the message box are required. 

Message Box  

Server 

Mn = server + 2·conn As message box, although a server is 

considered more robust than a hosting 

node. There is also no initial direct 

connection. 

Chain M0 = conn 

Mn = n·(node + conn) 

Initially the chain is directly connected.  

All subsequent migrations require the 

previous nodes to stay operational to 

provide connectivity. 

Reconfiguring  

Chain 

M0 = conn 

conn ≤ Mn ≤ n·(node + conn) 

The reconfiguring chain may be as 

weak as the normal chain in many 

regards, although a reconfiguration may 

result in a direct connection. 

Mobile IP M0 = conn 

Mn = (up+down)·(conn+server) 

Although a chain of agents is required 

for connectivity, these are considered 

dedicated entities in the architecture and 

thus provide moderate robustness to the 

connection backbone. Initially, the 

model provides a direct connection. 



  

3.5 Summary 

Table 7 summarises the different mobile channel models by placing them in order from best 

to worst under the respective property headings. 

Taking these attributes together we can come to some firm categorisations of each of 

the models.  These are not specific to certain hardware configurations, but are about the 

attributes that an application scenario might have as key considerations. 

 

• Best (if Any-to-One is not required) – the One-to-One networked channel 

model provides the best transmission and reconfiguration times, as well as the 

strongest connectivity model.  This comes at the cost of having restricted 

channel architectures, and this can especially be problematic for applications 

requiring a server type solution where multiple clients connect to a single 

server.  Reachability is also poor. 

• Cluster – the name server model provides good transmission time, 

reconfiguration time and robustness.  Reachability is poor, but a cluster is in a 

centralised domain.  If no Any-to-One connections are required, then the One-

to-One model provides a better solution. 

• Global connectivity – only three models provide global migration of channels 

but still allow connectivity between input and output channel ends.  Of these, 

the two chain models are not strong and have high transmission times.  

Therefore, if global connectivity is required, the Mobile IP model is best.  This 

comes at a cost of having a backbone of agents to handle routing and 

reconfiguration. 

 

Table 7.  Summary of mobile channel models 

Transmission Time Reconfiguration 

Time 

Reachability Robustness 

One-to-One  One-to-One Chain One-to-One 

Name server Message box  

server 

Reconfiguring 

chain 

Message box 

server 

Message box Message box Mobile IP Name server 

Message box 

server 

Chain Message box Mobile IP 

Reconfiguring chain Name  

server 

Message box 

server 

Message box 

Mobile IP Mobile IP One-to-One Reconfiguring 

chain 

Chain Reconfiguring  

chain 

Name  

server 

Chain 

 

So it can be seen that there is no one model which ideally suits all scenarios.  As part 

of this work is to implement messages within the underlying network protocol to allow 

channel mobility between diverse frameworks, this becomes a problem as different 

frameworks generally have different application scenarios in mind.  Further investigation 

into the protocol messages required is provided in the following section. 

 



   

4. Protocol Integration 

In this section only a brief discussion is presented, and a full discussion into the individual 

states and protocol messages required to support the various models is provided elsewhere 

[15]. 

In general, there are two important operations that must be supported by the protocol.  

The first is the migration of an input channel end (MIGRATE_INPUT), and the second is 

the migration of an output channel end (MIGRATE_OUTPUT).  This provides the two 

most fundamental message types for each model.  Subsequent to these two messages, there 

is a requirement for informing another entity of the arrival at a new location of a channel 

end, usually in the form of the address of the new channel location.  This is based on the 

type of model being used.  Beyond these most primitive message types, each model 

requires its own set of messages to support the reconfiguration of the underlying network 

architecture to support the migration of a channel end.  Table 8 summarises the required 

protocol messages. 

4.1 Summary 

An analysis of the required protocol messages shows a number of commonalities between 

the separate models, which are in fact the three basic messages defined in at the beginning 

of this section.  These three messages (MIGRATE_I�PUT, MIGRATE_OUTPUT and 

MOVED) are common in the majority of models, and are the only messages in four of the 

models.  Although adding these messages to the underlying network protocol may allow the 

usage of the separate models transparently, further work is required to discover if these 

models can all be supported within the protocol.  Some of the messages require extra 

information within them to support the level of functionality, and the different states and 

underlying architectures may cause a problem.  Therefore further examination within these 

areas is required. 

5. Future Work 

More analysis work in this area is required.  The goal of this work is to provide an initial 

examination of these models in regards to suitability of supporting channel end mobility.  

From these attributes, scenarios can be developed that can be examined further within the 

context of the models presented. 

Initially, simulation of each of the individual models in a suitable simulation 

environment is required.  There are a number of network simulation tools available, and 

implementing each of these models within a simulator can help determine if any further 

messages or channel states are required to support the mobile channel architecture.  The 

usage of a network simulator to generally simulate the underlying network protocol and 

architecture would also be advantageous, although some verification work has already been 

undertaken on JCSP Networking [15]. 

The individual models have yet to be implemented to examine the practical usage of 

each in real situations.  This is one piece of work that must be carried out to determine 

whether or not the models are individually capable and suitable of supporting channel end 

mobility in a manner that is transparent to the user.  The implementations can then have 

actual QoS properties measured and compared against the anticipated values.  Actual 

required states and protocol messages can also be determined.  Furthermore, suitable 

application models can be tested for suitability within each model. 



  

Table 8.  Protocol messages. 

Protocol Message Description Models 

MIGRATE_INPUT Sent from the current hosting node of an 

input channel end to the new host node 

when an input channel end is migrated.  

Essentially a SEND of the input channel 

end. 

All 

MIGRATE_OUTPUT As MIGRATE_INPUT but for an output 

channel end. 

All 

MOVED (a) Sent to the companion channel end to 

inform of a location change. 

One-to-One 

MOVED (b) Sent from the previous location of an 

input end to inform that the output end 

should resolve the new location of the 

input end from the name server. 

Name Server 

MOVED (c) Sent from a node to a previous link to 

inform of the new location of the input 

channel end and that messages should be 

forwarded to this location.  For the 

Mobile IP model this message is sent 

between the routing agents to 

reconfigure the channel path. 

Chain 

Reconfiguring Chain 

Mobile IP 

MOVING Sent by the host of the input end to 

inform the name server that the channel 

end is about to move and that subsequent 

address resolutions should be buffered. 

Name Server 

ARRIVED Sent by the receiver of an input end to 

inform the server that the input end has a 

new address and any pending resolutions 

may complete. 

Name Server 

RESOLVE Sent to the server to request the current 

address of a given channel. 

Name Server 

RESOLVE_REPLY Sent from the server as a response to the 

address resolution message. 

Name Server 

CHECK Sent by the input end to check if any 

messages are waiting in the message 

box.  This is required for guarded 

operations on the input channel. 

Message Box 

Message Box Server 

CHECK_RESPONSE Sent in reply to a CHECK request.  The 

response is immediate, although a later 

response may occur when a message 

appears in the message box.  The 

message is dropped if the guarded 

operation completed prior to this.. 

Message Box 

Message Box Server 

REQUEST Request the next available message in 

the message box. 

Message Box Server 

 

 

 



   

Verification work is also required beyond the general simulation of the mobile channel 

models.  Examining the models to ensure that they emit the behaviour that is expected, as 

well as examining the models for fundamental problems such as deadlock and livelock is 

important.  More verification work on the new network protocol and architecture is also 

required to analyse behaviour. 

Finally, work is still ongoing in regards to implementing the common protocol and a 

supporting architecture within the various CPA based distributed application frameworks.  

Work is ongoing with PyCSP[23] and the protocol is set to be implemented in 

Communicating Haskell Processes[24] and occam-π in the future.  Work on a reduced 

JCSP version for small devices is also underway. 

6. Conclusions 

In this paper, we have presented a number of models that have the possibility of supporting 

distributed channel mobility in CPA based frameworks.  Each of these models show 

promise in supporting the required functionality, but when analysed against some critical 

attributes such as message transmission time and robustness, it has been discovered that not 

all are fit for application scenarios that may require reliability or a certain level of Quality 

of Service.  However, a number of models do show potential for supporting particular 

application scenarios very well, in particular the name server approach for cluster 

computing work.  This does highlight that pony [7] did use the correct model considering 

its application area.  The problem lies in finding a model that supports as many application 

scenarios as possible, which may be difficult. 

To further support channel mobility, it is likely that a set of models is required, 

supported transparently by the underlying protocol.  An analysis of the required protocol 

messages has highlighted three messages that are generally required, and a number of 

models that can be supported by a small number of protocol messages.  Potentially, this 

means that the protocol can have channel mobility built in, and the underlying application 

architecture can support mobility in the manner best fitting the application scenario.  

Further work is required to analyse this potential further. 
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