

An Investigation into Distributed Channel

Mobility Support for Communicating

Process Architectures

Kevin CHALMERS and Jon KERRIDGE

School of Computing, Edinburgh �apier University, Edinburgh, EH10 5DT
{k.chalmers, j.kerridge}@napier.ac.uk

Abstract. Localised mobile channel support is now a feature of Communicating

Process Architecture (CPA) based frameworks, from JCSP and C++CSP to occam-

π. Distributed mobile channel support has also been attempted in JCSP Networking

and occam-π via the pony framework, although the capabilities of these two separate

approaches is limited and has not led to the widespread usage of distributed mobile

channel primitives. In this paper, an initial investigation into possible models that

can support distributed channel mobility are presented and analysed for features

such as transmission time, robustness and reachability. The goal of this work is to

discover a set of models which can be used for channel mobility and also supported

within the single unified protocol for distributed CPA frameworks. From the

analysis presented in this paper, it has been determined that there are models which

can be implemented to support channel end mobility within a single unified protocol

which provide suitable capabilities for certain application scenarios.

Keywords. mobile channels, distributed computing, protocol support.

Introduction

Recent work in Communicating Sequential Processes for Java (JCSP) Networking has

focused on refining the underlying architecture and protocol, as well as providing support

for distributed mobility of processes and channels. Last year [1], a universal protocol to

support distributed operations across all CPA frameworks was introduced. The initial

version of the protocol was designed to reduce resource usage within JCSP Networking, as

well as promote interoperability between the other CPA frameworks by having a well

defined set of primitive network messages that can be understood by languages as diverse

as occam-π and Python. The next stage in this work is to also provide channel end mobility

support in the protocol such that channel ends can be passed between, for example, a JCSP

application and an occam-π application. The work presented in this article is an initial

investigation into models to support distributed channel mobility within the CPA network

protocol. This will lead to dynamic topology support, which is useful in fields such as

mobile agents [2], complex systems [3] and pervasive computing [4]

The rest of this paper is broken down as follows. In Section 1, a discussion on

distributed mobility in CPAs is presented, looking at the requirements to support such

functionality. Section 2 presents potential models to support distributed channel mobility,

and Section 3 analyses certain attributes of these models. Section 4 discusses possible

protocol integration for these models. Section 5 presents future work and Section 6

provides conclusions.

1. Distributed Mobility in CPAs

Distributed mobility in CPAs refers to the ability to migrate a process or channel end in a

distributed CPA application from one network node to another in a manner that is

transparent to the application (this is referred to as logical mobility [2]). Localised mobility

support has been possible in JCSP since the initial version due to the pass-by-reference

semantics of Java. Mobility support for occam was introduced with occam-π [5], the

emphasis being on providing correct mobility support. Distributed mobile processes have

also been implemented in both JCSP [6] and occam-π [3], the former having further support

for code mobility. Distributed channel end mobility has also been implemented in JCSP [6]

and the pony framework supported distributed channel mobility for occam-π [7]. Trap [3]

is a successor to pony that currently has no support for channel mobility. There are

difficulties in implementing distributed channel and process mobility in a manner that still

emits the behaviour that we would expect from both localized and distributed mobility.

1.1 Difficulties with Distributed Mobility against Localised Mobility

Previous work examining the challenges of mobility in CPA frameworks was highlighted in

[6], and is summarized in Table 1:

Table 1. Complexity of mobility.

Mobile Primitive Local Mobility Distributed Mobility

Input Channel End Simple Difficult

Output Channel End Simple Simple

Simple Process Simple Moderate

Complex Process Simple Very Difficult

On a single machine, mobility of channel ends and processes is relatively simple,

requiring the passing of a reference from one process to another, occam-π hiding this

underlying transaction from the developer. For distributed mobility, the implementation is

more difficult. Output Channel End mobility is relatively simple as it normally only

requires the transmission of an address to send messages to. Input Channel End mobility is

difficult as it requires informing any Output Channel End(s) connected to the Input Channel

End. Simple Process mobility refers to single processes, and the moderate difficulty refers

to the inclusion of a code mobility system to support transparent process mobility.

Complex Process mobility requires the suspension and subsequent resumption of a process

network which has internal communication between the migrating processes.

As the table indicates, the difficult problems to solve are Input Channel End mobility

and Complex Process Mobility. Output Channel End mobility is solved based on the

chosen Input Channel End mobility solution, and Simple Process mobility has been solved

in JCSP via code mobility support [6]. The focus of this article is Input Channel End

mobility, which helps enable Complex Process mobility as discussed in Section 1.3.

1.2 Code Mobility

Logical mobility is discussed within the context of code mobility [8]. The code mobility

paradigm discusses various models of mobile software components (e.g. mobile agents and

client-server). Code mobility is also categorised into strong and weak mobility, the

difference lying in the movement of active or passive components. An active component is

one that has its own thread of control, whereas a passive component does not. Weak code

mobility requires non-stateful movement of a component from one networked node to

another. Strong code mobility requires capturing the current execution state of an active

component and transferring this to the new location. Both approaches include passive state

capture (e.g. attributes of an object) and mobility of code. Execution state can be considered

as the instruction pointer and call stack of an individual thread that is to be transferred.

Strong code mobility is related to complex process mobility as discussed in Section

1.1. The difficulty in a platform such as Java is that the application developer does not

have access to the internal instruction pointer or call stack of a thread, and therefore state

capture of active components is difficult. Attempts have been made to overcome this

limitation (for example see [9,10,11]), although they require modified Java Virtual

Machines (JVMs) or compilers.

The code mobility viewpoint of logical mobility has limitations when analysed within

software architecture models, as shall be discussed in the following two sub-sections.

1.2.1 Software Architecture

Generally, software architectures are defined by components and the connections between

the components. For example, with CPA there are process components and channel

connectors, and for object-orientation there are objects and the references between them. A

system can be defined architecturally by the set of components and the connection

relationships between them.

Architectural elements can be further analysed by defining the ports (the inputs and

outputs of a component) and the connection ends (inputs to a connection and the outputs

from it). In CPAs, connection ends correspond to channel ends, although these are

classified from the process point of view. Therefore a channel output end is the output

from a process into a channel, and not the output from a channel. Ports can be considered

as the set of events which a process operates on. This definition is illustrated in Figure 1.

Figure 1. CPA architecture.

1.2.2 Limitations of the Code Mobility View

Code mobility has a limitation from a software architecture point of view in that connection

mobility is not considered. This leads to the situation where a mobile component in a code

mobility system can be viewed as an isolated piece of data, an isolated component (which

may have internal components) or a whole application with all the internal components and

connectors persisted. A component does not take its external connections with it when it

migrates. Initial work on the π-Calculus [12] considered that process mobility was enabled

by channel mobility, whereas code mobility has not considered this approach in depth.

There has been some discussion on coordination mobility support within logical

mobility. Roman et al. [13] has argued that coordination and location are the most

important factors for logical mobility as coordination mobility enables the decoupling of

components. Roman also argues that coordination mobility should be considered separate

to component mobility. Phillips et al. [14] has argued for better modelling of

communication between mobile components. Therefore, the current focus on distributed

CPA mobility is on connection mobility to support component mobility.

1.3 Component Mobility

We define a more concise model of component mobility which overcomes the limitations

of the code mobility model. A mobile element in a code mobility system can be considered

to have the following structure:

• Code – the code defining the structure and behaviour of the mobile element.

This is required in a code mobility system.

• State – the current state of the mobile element. This is further categorised into:

o Passive state – the data attributes of the mobile component. This is

required in a code mobility system.

o Active state – the execution state of the mobile element. For a strong

code mobility system this is required.

Our view of a mobile component has the following structure:

• Type – the type of the component. This describes its structure and behaviour.

The type is required for interpretation at the receiving node in a distributed

application. Further, the type may also include:

o Code – the code, which may have to be loaded at the receiving end to

allow interpretation of the mobile component. This is not a requirement

for component mobility, particularly if we want to allow component

mobility between diverse frameworks.

• State – the current state of the mobile component. This has three sub-elements:

o Connection state – any connections to external components that the

mobile component may have. This is a requirement for strong

component mobility.

o Data state – the attributes of the mobile component. This is required

for any mobile component.

o Behaviour state – the current execution state of the component. This is

a requirement for strong code mobility.

Our model of component mobility allows for full definition of any mobile element that

a system may have. For example, as only the type and data state are required for the most

primitive form of mobile component, we can define mobile data (a simple message) within

the mobile component structure.

1.4 Comparing Component Mobility to Code Mobility

In code mobility, strong and weak mobility is distinguished by the capturing and sending of

current execution state with the mobile element. Component mobility requires both

connection state and behaviour state to determine strong mobility.

Unlike code mobility, there is no express requirement in component mobility to

transfer code with the mobile element. The reason to take this view is twofold. Firstly, we

wish to be able to map primitive (well known) data messages within our definition. For

example, 32-bit integers and strings are standard data types with no functionality (code)

associated with them. Secondly, we want to acknowledge the ability to send a mobile

component from one framework to another. It might become feasible to have strong

component mobility from a JCSP application to an occam-π application. No cyclic

references could be within the sent message. Having a uniform method of connection

mobility between frameworks is required to support inter-framework component mobility.

The main addition that component mobility brings is the inclusion of connection state.

This is not the internal connectivity of the mobile component but the external connected

interface. Retaining this state allows the migration of the component in a manner that is

transparent to other components in the system as communication between components

remains intact. Adequate connection state migration therefore enables transparent

component mobility. With CPAs, channels are treated as first class, thereby decoupling a

component from its connections. This is important to enable strong mobility of component

and connection.

1.5 Difficulties in First Class Mobility of Object-Oriented Applications

Object-orientation does not exhibit both first class component and connection mobility.

When running on a single machine, an object-oriented application passes references to

objects during method invocation, and thus only connection mobility is evident. For a

distributed application, the reverse is evident with an object being serialized and copied

from one networked node to another. There is no concept of passing an object reference

from one application to another. There is a definite machine boundary in an object-oriented

application which separates the distributed from the localised.

Because of the limitation of object-orientation, mobility support in CPA can lead to

more transparent mobile applications. The following section describes seven different

models that can support distributed channel end mobility, and Section 3 analyses some of

the properties of these models. A more in depth discussion is provided elsewhere [15].

2. Models of Distributed Connection Mobility

Through examination of other techniques to support connection mobility, seven possible

models to support channel mobility have been discovered. These models are described in

the following sections. This is not an exhaustive collection of models, although we have

surveyed available work within reason.

2.1 One-to-One �etworked Channel

Networked channels are Any-to-One in that any number of output ends may connect to an

input end. As it is unknown how many output ends may be connected to an input end,

informing output ends of the movement of an input end is not a one-to-one communication.

The One-to-One model is illustrated in Figure 2.

Figure 2. One-to-One networked channel.

Muller [16] has presented a mobile channel protocol that supports One-to-One

communication. Channel end states are used and vary based on whether the end is locally

or remotely connected, and each channel end knows the location of its corresponding

Producer

Consumer

Consumer

Migrate

partner. When a channel end migrates, it informs its companion of the new location once it

has arrived. Mobility is easier in comparison to the standard Any-to-One model as it can be

guaranteed that the companion channel end has been notified of the new location.

2.2 �ame Server

Mobile channel locations contained on a server is the approach taken by pony [7, 17]. Each

channel is allocated an identifier unique to the application context (the set of networked

nodes that make up a single pony application). Identifiers are managed by a server which

tracks the current location of the channel. When the channel end is migrated the location is

updated on the server. An output end connected to an input end can resolve this location,

and then connect directly to the input end. If the input end should later move the output end

retrieves the new location from the central server. This model is basically an extension of

the common broker architecture used in distributed systems, and is illustrated in Figure 3.

Figure 3. Name server.

All the other models may use a name server for channel end resolution, although this is

not a requirement. A channel can be connected using only the address. This model requires

a name server, and also adds functionality to the server to support channel end mobility.

2.3 Message Box

Message boxes are the approach used within mobile agent frameworks [18], and the model

previously proposed for JCSP Networking channel mobility [6]. The node declaring the

input channel end creates a message box process, which allows the output end to send to a

static address, and the input channel end to request the next message from the message box.

The message box model is illustrated in Figure 4.

Figure 4. Message box.

2.4 Message Box Server

The message box model can be combined with a server allowing creation of message boxes

on the server instead of locally on a node [19]. Apart from the requirement of server

creation, the operation of the server controlled message box is identical to the standard

message box model. This model is illustrated in Figure 5.

Figure 5. Message box server.

2.5 Chain

The chain model [20] requires each previous location of a channel end to forward any

message onto the next location until the message reaches the current location of the input

end. When an input end arrives at a new location it informs the previous location of the

new location. When an output end moves, the previous location is sent with the migration

message, which is used to send to the previous output end location. Thus a chain of

connections is formed, and any message must traverse the entire length of the chain. The

model is illustrated in Figure 6.

Figure 6. Chain.

As networked channels are Any-to-One, there will be chains of various lengths in

operation. The length from the original input location to the current input location is always

determined by the number of migrations that have been made by the input end. The length

of the output end(s) depends on how far the output end has moved from the original

location. Thus, as different output ends may traverse different distances, there will be

multiple chain lengths in operation.

2.6 Reconfiguring Chain

To overcome the loop and transmission problems of the chain model [21], the chain can

reconfigure itself by finding shortcuts to a previous link. Any loop is therefore removed and

transmission time may become reduced whenever the chain is shortened. The reconfiguring

chain model is illustrated in Figure 7.

Producer Consumer

Send

Request

Response

Figure 7. Reconfiguring chain.

To achieve reconfiguration, a migrating channel end takes all previous location in the

chain. On arrival, the locations are iterated through and reconnection is attempted to the

oldest possible link in the chain. Loops are removed as a node can always shortcut to itself.

Transmission time for messages can be reduced as the most direct route between two nodes

is used instead of the total distance travelled by the mobile end.

2.7 Mobile IP

Mobile IP [22] is used for physical device mobility within IP based networks. Connections

are registered with a home agent responsible for forwarding messages onto the current

location of the input end. When a connection migrates, it informs the home agent, which

buffers messages until the new location is resolved. The new location address is generated

by the foreign agent within the domain of the channel end’s new location. The home agent

forwards received messages to the foreign agent, which forwards messages to the channel

end’s new location. Whenever the mobile end moves, the foreign agent informs the home

agent, and the same migration process occurs. This model is illustrated in Figure 8.

Figure 8. Mobile IP.

To enable mobility between network sub-domains, tunnelling is used to allow

messages to be sent to the new foreign agent. Tunnelling can be reproduced in a mobile

channel context by utilizing a chain of agents that forward messages to the respective

channel end location or next agent. The difference between an agent chain and a normal

chain is that the agent chain is a fixed architecture which only grows when contact with a

new domain occurs. This creates a hybrid model of chaining, server and message box. The

agents act as both gateways between domains and routers of messages.

Agent

Agent

AgentProducer

Producer

Consumer

Consumer

Producer

Producer

Link Link Link

Consumer

Unnecessary Link

Consumer

Migrate

2.8 Advantages and Disadvantages

Each of these models has certain advantages and disadvantage in comparison to the other

models. These advantages and disadvantages are summarized in Table 2. These

advantages and disadvantages are of interest as they highlight where some of the models

are more suitable than others in certain application scenarios.

Table 2. Advantages and disadvantages of mobility models.

Model Advantages Disadvantages

One-to-One Direct connection; simple model No support for Any-to-One

connections.

Name server Direct connection Requires a name server.

Message box All transmissions require only one

hop

Requires origin node to host the

message box.

Message box

server

All transmissions require only one

hop

Requires a server to host the

message box; server may

become overloaded.

Chain Channel ends can travel freely Requires all previous nodes to

support the chain; transmission

time increases with each

migration; single node failure

can break multiple chains; loops

may exist in the chain.

Reconfiguring

chain

Channel ends can travel freely Reconfiguring the chain takes

time; some of the chain

disadvantages may still exist.

Mobile IP Channel ends can travel freely Requires a backbone of agents to

support mobility; loops may

exist.

3. Analysis of Connection Mobility Models

For analysis of the different models, a restricted addressing layout of standard TCP/IP

based communication networks is used. A network domain may consist of several sub-

domains, which in turn consist of sub-domains, etc. At the root of the domain tree is the

global domain. Each node in the tree can be allocated an identifier to represent the domain

in the hierarchy that it belongs to. Messages are sent between members of domains. Figure

9 presents an example domain tree. This layout is not a representation of physical network

layout, but rather the logical domain addressing mechanism in place.

Each node in the tree has an identifier based on its domain branch. For example, leaf E

has identifier G.A.C.E. A simplistic viewpoint of connectivity is taken in that members of

a sub-domain may connect to members of the same sub-domain and members of parent

domains. Thus, any leaf in the tree can connect to any domain further up its branch until

the global domain root node is reached. For example, a member of G.A.C.E. can connect

to a member of G.A.C., G.A., and G. This form of connectivity will be called

addressability, implying that members of the node can address members in a given domain

unambiguously.

Figure 9. Domain tree.

This view of addressability is taken to represent the fact that members of a given sub-

domain may be given addresses which are also used in another sub-domain. For example,

domain G.A.C.E. may provide members with IP addresses in the standard local domain

form 192.168.x.x. Domain G.A.C.F. may also use the local domain addressing mechanism.

Thus, a member of G.A.C.E. may have an IP address 192.168.1.1, and so might a member

of G.A.C.F. The domain tree structure ensures that this is not a problem.

As a sub-domain may address its parent domain, then it becomes obvious that a

member of a parent domain may be connected to a member of a sub-domain. However,

this connection must be initiated by the member of the sub-domain; connectivity is allowed

down the domain tree but not addressability. For the purposes of discussion, messages can

travel up or down the tree but not both in a single operation. A message travelling up or

down must be received by a domain member before being sent in the other direction. This

is normally handled by routers within normal network architectures but, as mobile channels

are logical connections, an equivalent logical router is needed to redirect the message.

The analysis presented represents input channel end mobility, as this is the most

complicated to achieve. For an input channel to be migrated, the architecture of the

described model usually requires reconfiguration to ensure that messages are still received

at the new input end location. For an output end, the majority of models permit the address

or some other representation of the input end to be sent and a new output end to be created,

effectively copying the output end at a new location. This is due to the Any-to-One

architecture of a networked channel, where multiple output ends can connect to a single

input end. Adding a new output end is trivial, and output end mobility involves adding a

new output end and destroying the old one.

To aid in analysis, a number of values are defined. These are standard message types

used in the underlying protocol to support CPA networking [15]:

• proto – a protocol message without any data. Acknowledgement messages are

also considered protocol messages. As these messages should be of fixed size,

communication time is constant.

• addr – the size of a channel location structure. These structures are used to

permit the output end of a channel to connect to an input end. addr may vary

based on implementation, thought communication time is considered constant.

• msg – a data message sent from one domain member to another. The size of

msg is variable, and therefore communication time depends on message size.

To represent mobility, Mn is used, where n is the number of movement operations that

have occurred since initial channel creation – M0 representing a channel end that has not

migrated.

Four properties of these models are investigated. These are transmission time,

reconfiguration time, reachability and robustness.

3.1 Transmission Time

Transmission time is the time taken for a sent data message to arrive at its destination. This

is an important Quality of Service (QoS) property in any distributed application, and is

therefore an important value to analyse. The time taken to transfer a message of a

particular type is expressed by the function t and is based on the amount of data sent. For

the purposes of discussion a single communication between two domain members (even

members in different domains in a branch), t is not affected by the actual distance up or

down the domain tree travelled. A summary of these values is presented in Table 3. For

simplicity, we assume that the transmission time for a message is independent of other

messages being sent.

In all cases, a data message requires a subsequent acknowledgement, hence the msg

and proto definitions within these equations.

Table 3. Transmission time.

Model Transmission Time Description

One-to-One Mn = tmsg + tproto Connections are always direct.

Name

Server

Mn = tmsg + tproto

 [+ tmsg + tproto]

Connections are normally direct,

although a connection may move

thus requiring a resend.

Message Box M0 = tmsg + tproto

Mn = 2·tmsg + taddr + tproto

First transmission is always direct.

Subsequent messages require

sending to message box and request

from message box.

Message Box

Server

Mn = 2·tmsg + taddr + tproto As message box, although all sends

are through the server.

Chain M0 = tmsg + tproto

Mn = n·tmsg + n·tproto

All messages travel the length of the

chain.

Reconfiguring

Chain

M0 = tmsg + tproto

tmsg + tproto ≤ Mn ≤ n·tmsg + n·tproto

With no reconfiguration messages

travel the entire length of the chain.

If reconfigured, there is the

possibility of direct connections.

Mobile IP Mn = (up + down)·tmsg +

 (up + down)·tproto

Messages travel through the domain

agents up and down the domain tree.

3.2 Reconfiguration Time

Reconfiguration time is the time taken to reconfigure the communication architecture to

permit the new communication path created by the migration of a channel. The time to

reconfigure the architecture is another important QoS consideration and will affect

transmission time.

Reconfiguration complexity is represented by the parameter r that takes three values:

easy for an architecture requiring little reconfiguration; mod for an architecture that requires

some extra functionality and link creation; and hard for an architecture that requires a great

deal of extra functionality and link creation to permit channel mobility. The time

represented by r will generally be small in comparison to the time taken to transfer

messages between nodes to allow reconfiguration.

Transfer time is taken into consideration for message transfer and acknowledgement.

Channel transfer time for all models is either a protocol message or an address message,

except for the reconfiguring chain which takes all previous addresses with it. Table 4

summarises.

Table 4. Reconfiguration time.

Model Reconfiguration Time Description

One-to-One Mn = reasy + 2·taddr + 2·tproto

 [+ tmsg]

The sent mobile channel

structure consists of an addr and

acknowledgement, and this

must also be sent to the

companion channel end. A

waiting message may also be

sent with the channel.

Name

Server

Mn = reasy + 6·tproto + 2·taddr The input end must send the

new address to the server

(ack’ed) and the client requests

and receives this address

(ack’ed).

Message Box Mn = reasy + taddr + tproto Reconfiguration is simply

sending the address to the new

location with an acknowledged

message.

Message Box

Server

Mn = reasy + taddr + tproto As message box.

Chain Mn = reasy + 2·taddr The channel send contains the

address and is acknowledged

with the new address.

Reconfiguring

Chain

reasy + 2·taddr ≤ Mn ≤ rhard + (n – 1)·taddr Worst case the channel end

contains all previous addresses

and must contact each to try and

reconfigure. Best case is as

chain.

Mobile IP Mn = rmod + 2·(up + down)·2·taddr

 + (up + down)·tproto

The channel send contains two

addresses (channel address and

old address) and requires the

new location to be sent back

which contains two addresses.

The send then must be

acknowledged.

3.3 Reachability

Reachability is the set of domains where a channel input end can be hosted and a channel

output end still successfully communicate to the input end within the defined model. This

value is of interest as in theory we wish to send a channel end anywhere within a network

and still provide connectivity between the input and output end. The problem lies in the

domain architecture presented in Figure 9. For an output end to successfully connect to the

input end, addressability must be possible. As addressability is only possible up a branch

of the domain tree, supporting architecture is normally required to support full connectivity

across the entire domain tree. To discuss reachability, three sets of domains are defined:

• SUB_TREE – the domain in which the input end of the channel is located, and

all the sub-domains of this domain

• BRA�CH – the set of domains within the same branch as the input end,

implying both up and down traversal of the domain tree

• GLOBAL – the set of all domains

As it is possible for a node within a domain to connect up the tree, any model that

allows such a connection is deemed to permit an output channel end that has migrated using

an existing connection to be connected to an input channel end down the tree via the

existing connection, although not the One-to-One model as shall be highlighted. Table 5

summarises reachability for the given models.

Table 5. Reachability.

Model Reachability Description

One-to-One BRANCH (first)

SUB_TREE ∩

BRANCH (subsequent)

The first interaction is always between

connected domain members. Further

migrations can only occur within the

domain of the input end.

Name

Server

SUB_TREE ∩

BRANCH

Although the server is SUB_TREE

reachable, the input end must be reachable

from the output end also. If the input end

migrates to a separate branch, the output

end cannot reach the input end, so reach is

restricted to a branch of the domain.

Message Box SUB_TREE �

BRANCH

The host of the message box can be told to

connect up the tree to the new input

location, and thus reachability is the union

of SUB_TREE and BRANCH.

Message Box

Server

SUB_TREE As the server is a dedicated it would

normally be connected to by the output and

input end, and due to addressability gives

reachability of SUB_TREE.

Chain GLOBAL The chain can stretch anywhere providing

GLOBAL reachability.

Reconfiguring

Chain

GLOBAL As chain.

Mobile IP GLOBAL The chain of agents can stretch through all

domains, providing GLOBAL reachability.

3.4 Robustness

The robustness of the model defines how strong the individual connections are between the

input end and the output end of a channel. Robustness is defined by the reliance on

external elements. A server (e.g. the message box model) is a stronger element than a

normal networked node in the application due to the server being dedicated to supporting

the network. Robustness is another key QoS property as if the connections between input

and output ends are unreliable there is more chance that an application will fail.

For robustness there are three values to consider:

• conn – a connection between two nodes

• node – a normal node in the network

• server – a server node in the network

The robustness of the model depends on how many of these individual elements are

required to support channel mobility. The fewer elements required by the model, the

stronger the model. Table 6 summarises the robustness of the various models.

Table 6. Robustness.

Model Robustness Description

One-to-One Mn = conn There is only the connection between

the input and output end.

Name

Server

Mn = conn The connection between the sender and

receiver is always direct. A name server

is required, but does not affect the

robustness of the individual connection.

Message Box M0 = conn

Mn = node + 2·conn

Initially, the model permits direct

connection from sender to receiver.

Then, connections from the individual

ends to the message box are required.

Message Box

Server

Mn = server + 2·conn As message box, although a server is

considered more robust than a hosting

node. There is also no initial direct

connection.

Chain M0 = conn

Mn = n·(node + conn)

Initially the chain is directly connected.

All subsequent migrations require the

previous nodes to stay operational to

provide connectivity.

Reconfiguring

Chain

M0 = conn

conn ≤ Mn ≤ n·(node + conn)

The reconfiguring chain may be as

weak as the normal chain in many

regards, although a reconfiguration may

result in a direct connection.

Mobile IP M0 = conn

Mn = (up+down)·(conn+server)

Although a chain of agents is required

for connectivity, these are considered

dedicated entities in the architecture and

thus provide moderate robustness to the

connection backbone. Initially, the

model provides a direct connection.

3.5 Summary

Table 7 summarises the different mobile channel models by placing them in order from best

to worst under the respective property headings.

Taking these attributes together we can come to some firm categorisations of each of

the models. These are not specific to certain hardware configurations, but are about the

attributes that an application scenario might have as key considerations.

• Best (if Any-to-One is not required) – the One-to-One networked channel

model provides the best transmission and reconfiguration times, as well as the

strongest connectivity model. This comes at the cost of having restricted

channel architectures, and this can especially be problematic for applications

requiring a server type solution where multiple clients connect to a single

server. Reachability is also poor.

• Cluster – the name server model provides good transmission time,

reconfiguration time and robustness. Reachability is poor, but a cluster is in a

centralised domain. If no Any-to-One connections are required, then the One-

to-One model provides a better solution.

• Global connectivity – only three models provide global migration of channels

but still allow connectivity between input and output channel ends. Of these,

the two chain models are not strong and have high transmission times.

Therefore, if global connectivity is required, the Mobile IP model is best. This

comes at a cost of having a backbone of agents to handle routing and

reconfiguration.

Table 7. Summary of mobile channel models

Transmission Time Reconfiguration

Time

Reachability Robustness

One-to-One One-to-One Chain One-to-One

Name server Message box

server

Reconfiguring

chain

Message box

server

Message box Message box Mobile IP Name server

Message box

server

Chain Message box Mobile IP

Reconfiguring chain Name

server

Message box

server

Message box

Mobile IP Mobile IP One-to-One Reconfiguring

chain

Chain Reconfiguring

chain

Name

server

Chain

So it can be seen that there is no one model which ideally suits all scenarios. As part

of this work is to implement messages within the underlying network protocol to allow

channel mobility between diverse frameworks, this becomes a problem as different

frameworks generally have different application scenarios in mind. Further investigation

into the protocol messages required is provided in the following section.

4. Protocol Integration

In this section only a brief discussion is presented, and a full discussion into the individual

states and protocol messages required to support the various models is provided elsewhere

[15].

In general, there are two important operations that must be supported by the protocol.

The first is the migration of an input channel end (MIGRATE_INPUT), and the second is

the migration of an output channel end (MIGRATE_OUTPUT). This provides the two

most fundamental message types for each model. Subsequent to these two messages, there

is a requirement for informing another entity of the arrival at a new location of a channel

end, usually in the form of the address of the new channel location. This is based on the

type of model being used. Beyond these most primitive message types, each model

requires its own set of messages to support the reconfiguration of the underlying network

architecture to support the migration of a channel end. Table 8 summarises the required

protocol messages.

4.1 Summary

An analysis of the required protocol messages shows a number of commonalities between

the separate models, which are in fact the three basic messages defined in at the beginning

of this section. These three messages (MIGRATE_I�PUT, MIGRATE_OUTPUT and

MOVED) are common in the majority of models, and are the only messages in four of the

models. Although adding these messages to the underlying network protocol may allow the

usage of the separate models transparently, further work is required to discover if these

models can all be supported within the protocol. Some of the messages require extra

information within them to support the level of functionality, and the different states and

underlying architectures may cause a problem. Therefore further examination within these

areas is required.

5. Future Work

More analysis work in this area is required. The goal of this work is to provide an initial

examination of these models in regards to suitability of supporting channel end mobility.

From these attributes, scenarios can be developed that can be examined further within the

context of the models presented.

Initially, simulation of each of the individual models in a suitable simulation

environment is required. There are a number of network simulation tools available, and

implementing each of these models within a simulator can help determine if any further

messages or channel states are required to support the mobile channel architecture. The

usage of a network simulator to generally simulate the underlying network protocol and

architecture would also be advantageous, although some verification work has already been

undertaken on JCSP Networking [15].

The individual models have yet to be implemented to examine the practical usage of

each in real situations. This is one piece of work that must be carried out to determine

whether or not the models are individually capable and suitable of supporting channel end

mobility in a manner that is transparent to the user. The implementations can then have

actual QoS properties measured and compared against the anticipated values. Actual

required states and protocol messages can also be determined. Furthermore, suitable

application models can be tested for suitability within each model.

Table 8. Protocol messages.

Protocol Message Description Models

MIGRATE_INPUT Sent from the current hosting node of an

input channel end to the new host node

when an input channel end is migrated.

Essentially a SEND of the input channel

end.

All

MIGRATE_OUTPUT As MIGRATE_INPUT but for an output

channel end.

All

MOVED (a) Sent to the companion channel end to

inform of a location change.

One-to-One

MOVED (b) Sent from the previous location of an

input end to inform that the output end

should resolve the new location of the

input end from the name server.

Name Server

MOVED (c) Sent from a node to a previous link to

inform of the new location of the input

channel end and that messages should be

forwarded to this location. For the

Mobile IP model this message is sent

between the routing agents to

reconfigure the channel path.

Chain

Reconfiguring Chain

Mobile IP

MOVING Sent by the host of the input end to

inform the name server that the channel

end is about to move and that subsequent

address resolutions should be buffered.

Name Server

ARRIVED Sent by the receiver of an input end to

inform the server that the input end has a

new address and any pending resolutions

may complete.

Name Server

RESOLVE Sent to the server to request the current

address of a given channel.

Name Server

RESOLVE_REPLY Sent from the server as a response to the

address resolution message.

Name Server

CHECK Sent by the input end to check if any

messages are waiting in the message

box. This is required for guarded

operations on the input channel.

Message Box

Message Box Server

CHECK_RESPONSE Sent in reply to a CHECK request. The

response is immediate, although a later

response may occur when a message

appears in the message box. The

message is dropped if the guarded

operation completed prior to this..

Message Box

Message Box Server

REQUEST Request the next available message in

the message box.

Message Box Server

Verification work is also required beyond the general simulation of the mobile channel

models. Examining the models to ensure that they emit the behaviour that is expected, as

well as examining the models for fundamental problems such as deadlock and livelock is

important. More verification work on the new network protocol and architecture is also

required to analyse behaviour.

Finally, work is still ongoing in regards to implementing the common protocol and a

supporting architecture within the various CPA based distributed application frameworks.

Work is ongoing with PyCSP[23] and the protocol is set to be implemented in

Communicating Haskell Processes[24] and occam-π in the future. Work on a reduced

JCSP version for small devices is also underway.

6. Conclusions

In this paper, we have presented a number of models that have the possibility of supporting

distributed channel mobility in CPA based frameworks. Each of these models show

promise in supporting the required functionality, but when analysed against some critical

attributes such as message transmission time and robustness, it has been discovered that not

all are fit for application scenarios that may require reliability or a certain level of Quality

of Service. However, a number of models do show potential for supporting particular

application scenarios very well, in particular the name server approach for cluster

computing work. This does highlight that pony [7] did use the correct model considering

its application area. The problem lies in finding a model that supports as many application

scenarios as possible, which may be difficult.

To further support channel mobility, it is likely that a set of models is required,

supported transparently by the underlying protocol. An analysis of the required protocol

messages has highlighted three messages that are generally required, and a number of

models that can be supported by a small number of protocol messages. Potentially, this

means that the protocol can have channel mobility built in, and the underlying application

architecture can support mobility in the manner best fitting the application scenario.

Further work is required to analyse this potential further.

References

[1] K. Chalmers, J. Kerridge, and I. Romdhani, "A Critique of JCSP Networking," in Communicating

Process Architectures 2008, P. H. Welch et al., Eds. Amsterdam, The Netherlands: IOS Press, 2008, pp.

271-291.

[2] G. P. Picco, "Mobile Agents: An Introduction," Microprocessors and Microsystems, 25(2), pp. 65-74,

2001.

[3] F. A. C. Polack, P. S. Andrews, and A. T. Sampson, "The Engineering of Concurrent Simulations of

Complex Systems," in 2009 IEEE Congress on Evolutionary Computation.: IEEE Press, 2009, pp. 217-

224.

[4] M. Satyanarayanan, "Pervasive Computing: Vision and Challenges," IEEE Personal Communications,

8(4), pp. 10-17, 2001.

[5] P. H. Welch and F. R. M. Barnes, "Communicating Mobile Processes - Introducing occam-pi," in

Communicating Sequential Processes: The First 25 Years - Symposium on the Occasion of 25 Years of

CSP, A. E. Abdallah, C. B. Jones, and Sanders J. W., Eds. Berlin / Heidelberg, Germany: Springer, 2005,

pp. 175-210.

[6] K. Chalmers, J. Kerridge, and I. Romdhani, "Mobility in JCSP: New Mobile Channel and Mobile

Process Models," in Communicating Process Architectures 2007, A. A. McEwan et al., Eds. Amsterdam,

The Netherlands: IOS Press, 2007, pp. 163-182.

[7] M. Schweigler and A. T. Sampson, "pony - The occam-pi Network Environment," in Communicating

Process Architectures 2006, P. H. Welch, J. Kerridge, and F. R. M. Barnes, Eds. Amsterdam, The

Netherlands: IOS Press, 2006, pp. 77-108.

[8] A. Fuggetta, G. P. Picco, and G. Vigna, "Understanding Code Mobility," IEEE Transactions on Software

Engineering, 24(5), pp. 342-361, 1998.

[9] J. Howell, "Straightforward Java Persistence Through Checkpointing," in Proceedings of the 3rd

International Workshop on Persistence and Java (PJW3): Advances in Persistent Object Systems, D.

Kotz and F. Mattern, Eds.: Morgan Kaufmann Publishers, Inc., 1999, pp. 322-334.

[10] D. Weyns, E. Truyen, and P. Verbaeten, "Serialization of Distributed Execution-state in Java," in

Objects, Components, Architectures, Services, and Applications for a �etworked World: International

Conference �etObjectDays, �ODe 2002, M. Aksit, M. Mezini, and R. Unland, Eds. Berlin / Heidelberg,

Germany: Springer, 2003, pp. 41-61.

[11] W. Zhu, C.-L. Wang, W. Fang, and F. C. M. Lau, "A New Transparent Java Thread Migration System

Using Just-In-Time Recompilation," in The 16th IASTED International Conference on Parallel and

Distributed Systems: PDCS 2004, T. Gonzalez, Ed.: ACTA Press, 2004, pp. 766-771.

[12] R. Milner, J. Parrow, and D. Walker, "A Calculus of Mobile Processes, I," Information and

Computation, 100(1), pp. 1-40, 1992.

[13] G.-C. Roman, G. P. Picco, and A. L. Murphy, "Software Engineering for Mobility: A Roadmap," in

Proceedings of the Conference on the Future of Software Engineering.: ACM Press, 2000, pp. 241-258.

[14] A. Phillips, N. Yoshida, and S. Eidenbach, "A Distributed Abstract Machine for Boxed Ambient

Calculi," in Programming Languages and Systems: 13th European Symposium on Programming, ESOP,

D. Schmidt, Ed. Berlin / Heidelberg, Germany: Springer, 2004, pp. 155-170.

[15] K. Chalmers, "Investigating Communicating Sequential Processes for Java to Support Ubiquitous

Computing," Edinburgh Napier University, Edinburgh, PhD Thesis 2009.

[16] H. Muller and D. May, "A Simple Protocol to Communicate Channels over Channels," in Proceedings

4th International Euro-Par Conference: Euro-Par'98 Parallel Processing, D. Pritchard and J. Reeve,

Eds. Berlin / Heidelberg, Germany: Springer, 1998, pp. 591-600.

[17] M. Schweigler, "A Unified Model for Inter- and Intra-Process Concurrency," The University of Kent,

Canterbury, PhD Thesis 2006.

[18] X. Zhong and C.-Z. Xu, "A Reliable Connection Migration Mechanism for Synchronous Transient

Communication in Mobile Codes," in International Conference on Parallel Processing 2004.: IEEE

Computer Society, 2004, pp. 431-438.

[19] A. R. Silva, D. D. Ramao, and M. M. da Silva, "Towards a Reference Model for Surveying Mobile

Agent Systems," Autonomous Agents and Multi-Agent Systems, 4(3), pp. 187-231, 2001.

[20] J. M. Molina, J. M. Corchado, and J. Bajo, "Ubiquitous Computing for Mobile Agents," in Issues in

Multi-Agent Systems, A. Moreno and J. Pavon, Eds.: Birkhauser Basel, 2007, pp. 33-57.

[21] F. Baude, D. Caromel, F. Huet, and J. Vayssiere, "Communicating Active Mobile Objects in Java," in

High Performance Computing and �etworking: 8th International Conference, HPC� Europe 2000, M.

Bubak et al., Eds. Berlin / Heidelberg, The Netherlands: IOS Press, 2000, pp. 633-643.

[22] C. E. Perkins, "Mobile IP," IEEE Communications Magzine, 40(5), pp. 66-82, 2002.

[23] J. M. Bjorndalen, B. Vinter, and O. Anshus, "PyCSP - Communicating Sequential Processes for Python,"

in Communicating Process Architectures 2007, A. A. McEwan et al., Eds. Amsterdam, The Netherlands:

IOS Press, 2007, pp. 229-248.

[24] N. C. C. Brown, "Communicating Haskell Processes: Composable Explicit Concurrency using Monads,"

in Communicating Process Architectures 2008, P. H. Welch et al., Eds. Amsterdam, The Netherlands:

IOS Press, 2008, pp. 67-83.

[25] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice, 2nd ed.: Addison Wesley,

2003.

