
An Application of CoSMoS Design
Methods to Pedestrian Simulation

Sarah Clayton
Dr Neil Urquhart
Prof Jon Kerridge



Introduction
• Pedestrian modelling
• Experiences with using JCSP
• Employing the CoSMoS design method

(... and getting it wrong)
• Simulation



Pedestrian modelling
• ... is difficult
• Is done at many levels of scale
• Can be (but usually isn’t) data driven
• Our approach to the problem is:

– At a relatively small scale
– Data driven



Experiences of using JCSP
• Watching Walkers exhibit at 2006 Edinburgh Science Festival

– 5000 visitors to exhibit
– System performed incredibly robustly
– LOC < 3000

• Data collection
– Six infrared detectors deployed in corridor
– Read concurrently in real-time
– Unattended, automated operation
– More data than we know what to do with

• Simulation
– Robust framework to build on
– Deadlock, livelock, race hazard free
– No thread programming



Experimental Area



Experimental Area





CoSMoS design method
• What they are
• How I got it wrong
• Good results nonetheless
• Matters of scale



CoSMoS design method
• Built around phased synchronisation on barriers
• Combines this with the use of client server architecture
• Both proven to be error free, if used correctly



Example Code - Barriers
public class Agent implements CSProcess {

private Barrier discover;
private Barrier modify;

public Agent {
discover.enroll();
modify.enroll();

}

public void run() {
while(true) {

discover.sync();
discover();
modify.sync();
modify();

}
}

}



Example Code – Client/Server

Client
private ChannelOutput request;
private AltingChannelInput response;

...

request.write(Request.DISCOVER);

Info info = (Info) response.read();

...

Server
private AltingChannelInput request;
private ChannelOutput response;

...

Request r = (Request)request.read();
switch(r) {

case Request.DISCOVER:
response.write(discover());
break;

...
}



How I got it wrong



How I got it wrong
Agent  Site Site Server

Synchronise on discover barrier
  Request global

coordinates
→ Receive requests

 
  Receive global

coordinates
← Send global

coordinates
         
Request update → Receive requests
Receive update  ←  Send global coordinates    
 

Synchronise on modify barrier
Modify state 
 
Send state   → Receive state
Receive ACK    ← Send ACK
 
  Send updates → Receive updates
  Receive ACK    ← Send ACK
 
  Aggregate updates

into global 
coordinates



Processes that express space are functionally and 
conceptually separate from time contingent 

processes
(i.e. Don’t engage in barrier synchronisation)



Good results nonetheless



Matters of scale

CoSMoS
• Millions of processes
• Macroscopic scale
• Built on occam
• Low process overhead

Pedestrian Model
• Tens of processes
• Microscopic scale
• Built on JCSP
• High process overhead



Examples







Conclusion
• Utility of JCSP and CoSMoS

– Significantly reduced development time
– Less error prone
– More functionality for less code



Future Work
• Building a Learning Classifier System to extract behavioural 

parameters from the observed trajectories. 
• Particular focus on collision avoidance.
• Building a model to enable analysis of built environment, based on 

real, observed parameters.



Thank You


