
Dias 1

Three Unique Implementations of Processes for
PyCSP

Rune M. Friborg, John M. Bjørndalen and Brian Vinter
eScience center, University of Copenhagen

University of Tromsø

PyCSP - before

• CSP library for Python
• Every CSP process is a thread.
• Synchronization is handled by standard mutexes and

conditions.
• Scheduling threads are handled by the operating system.

CPython – Global Interpreter Lock (GIL)

Workers 1 2 3 4 5

Threads 0.98s 1.52s 1.56s 1.55s 1.57s

Processes 1.01s 0.57s 0.54s 0.54s 0.56s

• CPython is the standard Python interpreter and is limited by
the Global Interpreter Lock.

• This is the results of a simple Monte Carlo PI execution.

Why does the GIL issue matter?

• When prototyping we want to run processes in parallel
without having to write an external module in C code.

• Compared to other CSP implementations it can be annoying
that your nice, portable and simple python code, does
not run in parallel when it just as easily could.

Why does the GIL issue matter?

• When prototyping we want to run processes in parallel
without having to write an external module in C code.

• Compared to other CSP implementations it can be annoying
that your nice, portable and simple python code, does
not run in parallel when it just as easily could.

Limitation in number of threads

Exception in thread Thread-381:
Traceback (most recent call last):
 File "threading.py", line 460, in __bootstrap
 self.run()
 File "build/bdist.linux-i686/egg/pycsp/process.py", line 28,
in run
 self.retval = self.fn(*self.args, **self.kwargs)
 File "Sieve.py", line 18, in worker
 Spawn(worker(IN(child_channel), cout))
 File "build/bdist.linux-i686/egg/pycsp/process.py", line 38,
in Spawn
 _parallel(plist, False)
 File "build/bdist.linux-i686/egg/pycsp/process.py", line 50,
in _parallel
 p.start()
 File "threading.py", line 434, in start
 _start_new_thread(self.__bootstrap, ())
error: can't start new thread

Why is this also a problem?

• Many CSP applications with a fine granularity of processes,
does not make sense to implement in PyCSP, because of
the overhead involved in communication and thread
handling.

The Implementations

• All three implementations share a common API.
• Switching between them requires only changing the

imported library.

• Threads
import pycsp.threads as pycsp

• Processes
import pycsp.processes as pycsp

• Greenlets (co-routines)
import pycsp.greenlets as pycsp

• The only changes made to the API from the PyCSP before is
the addition of a @io decorator function.

pycsp.processes

• Use the python multiprocessing module, that provides an
API similar to the threading module.

• For OS processes we need to specifically define shared
values, mutexes and conditions to communicate.

• The fork system call is simulated on the Windows system by
the multiprocessing module.

• Data is copied when communicated. The communicated data
is serialized and unserialized, thus references from
external modules is required to support the 'pickle'
module.

• The total amount of references to shared memory using the
multiprocessing module is limited by the maximum
number of open file descriptors per. process. To reduce
the usage we have used a pool of shared mutexes and
conditions.

pycsp.processes

• Use the python multiprocessing module, that provides an
API similar to the threading module.

• For OS processes we need to specifically define shared
values, mutexes and conditions to communicate.

• The fork system call is simulated on the Windows system by
the multiprocessing module.

• Data is copied when communicated. The communicated data
is serialized and unserialized, thus references from
external modules is required to support the 'pickle'
module.

• The total amount of references to shared memory using the
multiprocessing module is limited by the maximum
number of open file descriptors per. process. To reduce
the usage we have used a pool of shared mutexes and
conditions.

pycsp.processes

• Use the python multiprocessing module, that provides an
API similar to the threading module.

• For OS processes we need to specifically define shared
values, mutexes and conditions to communicate.

• The fork system call is simulated on the Windows system by
the multiprocessing module.

• Data is copied when communicated. The communicated data
is serialized and unserialized, thus references from
external modules is required to support the 'pickle'
module.

• The total amount of references to shared memory using the
multiprocessing module is limited by the maximum
number of open file descriptors per. process. To reduce
the usage we have used a pool of shared mutexes and
conditions.

pycsp.processes

• Use the python multiprocessing module, that provides an
API similar to the threading module.

• For OS processes we need to specifically define shared
values, mutexes and conditions to communicate.

• The fork system call is simulated on the Windows system by
the multiprocessing module.

• Data is copied when communicated. The communicated data
is serialized and unserialized, thus references from
external modules is required to support the 'pickle'
module.

• The total amount of references to shared memory using the
multiprocessing module is limited by the maximum
number of open file descriptors per. process. To reduce
the usage we have used a pool of shared mutexes and
conditions.

pycsp.processes

• Use the python multiprocessing module, that provides an
API similar to the threading module.

• For OS processes we need to specifically define shared
values, mutexes and conditions to communicate.

• The fork system call is simulated on the Windows system by
the multiprocessing module.

• Data is copied when communicated. The communicated data
is serialized and unserialized, thus references from
external modules is required to support the 'pickle'
module.

• The total amount of references to shared memory using the
multiprocessing module is limited by the maximum
number of open file descriptors per. process. To reduce
the usage we have used a pool of shared mutexes and
conditions.

pycsp.processes

• Finally a memory allocator using the next-fit strategy was
implemented to allow the communication of any data
size. This was necessary, because all references to
shared memory must be known on process start. Thus
no dynamic allocation of shared memory using the
multiprocessing module.

pycsp.greenlets

• Uses the external greenlet module. It allows us to control
execution explicitly by calling the switch method.

• Small memory footprint compared to threads and processes.
• A simple FIFO scheduler controls the synchronization

between greenlets.
• Blocking system calls?

pycsp.greenlets

• Uses the external greenlet module. It allows us to control
execution explicitly by calling the switch method.

• Small memory footprint compared to threads and processes.
• A simple FIFO scheduler controls the synchronization

between greenlets.
• Blocking system calls?

pycsp.greenlets

• Uses the external greenlet module. It allows us to control
execution explicitly by calling the switch method.

• Small memory footprint compared to threads and processes.
• A simple FIFO scheduler controls the synchronization

between greenlets.
• Blocking system calls?

pycsp.greenlets

• Uses the external greenlet module. It allows us to control
execution explicitly by calling the switch method.

• Small memory footprint compared to threads and processes.
• A simple FIFO scheduler controls the synchronization

between greenlets.
• Blocking system calls?

pycsp.greenlets - Yielding on Blocking IO

@io
def wait(seconds):
 time.sleep(seconds)

@process
def delay_output(msg, seconds):
 wait(seconds)
 print msg

Parallel(
 [delay_output(’%d second delay’ % i, i) for i in range(1, 11)]
)

Micro Benchmarks

One token in a ring of variable size

One to 63 concurrent tokens in a ring of 64
processes

Mandelbrot - worker calling an external C
module

Mandelbrot – worker using only numpy

Finally we compare the advantages and limitations

pycsp.threads

• Advantages
• Only references to data are passed by channel communication.
• Other Python modules usually only expect threads.
• Compatible with all platforms supporting CPython 2.4+

• Limitations
• Limited by the Global Interpreter Lock (GIL), resulting in very

poor performance for code not releasing the GIL.
• Limited in the maximum number of CSP processes possible.

pycsp.processes

• Advantages
• Can utilize more than one core, without requiring the developer

to release the GIL.
• All data communicated are serialized. The positive side-effect of

serializing data is that data is copied when communicated,
rendering it impossible to edit the received data from the
sending process.

• Limitations
• Fewer processes possible than pycsp.threads and

pycsp.greenlets.
• Windows support is limited, because of lack of the fork system

call.
• All data communicated are serialized, which requires the data

type be supported by the pickle module.
• Requires the python module 'multiprocessing' available in

CPython 2.6+

pycsp.greenlets

• Advantages
• More optimal switching between CSP processes, since we can

limit the context-switches to the point where they are blocking.
Performance does not decrease with more CSP processes
competing for execution.

• Small footprint per CSP process, making it possible to run a
larger number of processes, only limited by the amount of
memory available.

• Fast channel communications (≈ 20μs).
• Limitations

• No utilization of more than one CPU core.
• Unfair execution, since execution is only yielded when a CSP

process blocks on a channel.
• Requires that the developer wraps blocking IO operations in an

@io decorator to yield execution to another CSP process.
• Requires installing the python module 'greenlet'.

Conclusions

• Want 100.000 processes and prefers Python?
• Use pycsp.greenlets

• Want parallism and prefers Python?
• Use pycsp.processes

• Want it easy and prefers Python?
• Use pycsp.threads

Future Work

• Making pycsp.threads run on the Android system.

Future Work

• Making pycsp.threads run on the Android system.

Future Work

• pycsp.? – A distributed pycsp. Every channel is provided a
name and is registered at a nameserver for lookups. The
actual synchronization will be distributed.

Host 1:
A = Channel('A')
Parallel(producer(A.writer()))

Host 2:
A = Channel('A')
Parallel(consumer(A.reader()))

Questions?

Synchronization

def double_lock(req_1, req_2):

 if req_1.id < req_2.id:
 lock(req_1.lock)

 lock(req_2.lock)

 else:
 lock(req_2.lock)

 lock(req_1.lock)

for w in write_queue:

 for r in read_queue:
 double_lock(w, r)

 match(w, r)
 double_unlock(w, r)

Synchronization

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

