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Abstract. In this work we motivate and describe three unique implementations of
processes for PyCSP: process, thread and greenlet based. The overall purpose is to
demonstrate the feasibility of Communicating Sequential Processes as a framework
for different application types and target platforms. The result is a set of three imple-
mentations of PyCSP with identical interfaces to the point where a PyCSP developer
need only change which implementation is imported to switch to any of the other im-
plementations. The three implementations have different strengths; processes favors
parallel processing, threading portability and greenlets favor many processes with fre-
quent communication. The paper includes examples of applications in all three cate-
gories.
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Introduction

The original PyCSP [1] implemented processes as threads, motivated by an application do-
main with scientific users and the assumption that these applications would spend most
of their time in external C calls. While the original PyCSP was well received, users often
aired two common complaints. First and foremost programmers were disappointed that pure
Python applications would not show actual parallelism on shared memory machines, most
frequently multi-core machines, because of Python’s Global Interpreter Lock. The second
common disappointment was the limited number of threads supported, typically an operat-
ing system limitation in the number of threads per process, and the overhead of switching
between the threads.

In this paper we present a new version of PyCSP that addresses these issues using three
different implementations of its concurrency primitives.

PyCSP

The PyCSP library presented in this paper is based on the version of PyCSP presented in
[2] which we believe reduces the complexity for the programmer significantly. It is a new
implementation of CSP constructs in Python, that replaces the original PyCSP implemen-
tation from [1]. This new PyCSP uses threads like the original PyCSP, but introduces four
major changes and uses a better and simpler approach to handle the internal synchronization
of channel communications. The four major changes are: simplification to one channel type,
input and output guards, automatic poisoning of CSP networks and making the produced
Python code look more like occam where possible.

1Corresponding Author: Rune Møllegaard Friborg, Department of Computer Science, University of
Copenhagen, DK-2100 Copenhagen, Denmark. Tel.: +45 3532 1421; Fax: +45 3521 1401; E-mail:
runef@diku.dk.



When we refer to the threads implementation of PyCSP, we are referring to the new
PyCSP presented in [2] and referenced in this paper as pycsp.threads. This is used as our
base to implement the alternatives to threading presented in this paper.

1. Motivation

We have looked at three underlying mechanisms for managing tasks and concurrency: co-
routines, threads and processes. Each provide different levels of parallelism that come with
increasing overhead. All of them are available in different forms, and in this paper we define
them as follows:

Co-routines provide concurrency similar to user-level threads and are scheduled and
executed by a user-level runtime system. One of the main advantages is very low
overhead.
Threads are kernel-level threads scheduled by the operating system, has a separate
execution stack, but share a global address space.
Processes are operating system processes and data can only be shared through explicit
system calls.

When programming a concurrent application, it is necessary to choose one or several of
the above. If the choice turns out to be wrong, then the application needs to be rewritten. A
rewrite is not a simple task, since the mechanisms are very different by design.

Using Python and PyCSP, we want to simplify moving between the three implementa-
tions. The intended users are scientists that are able to program in Python and who want to
create concurrent applications that can utilize several cores. Python is a popular programming
language among scientists because of a simple and readable syntax and the many scientific
modules available. It is also easy to extend with code written in C or Fortran and does not
require explicit compilation.

1.1. Release of GIL to Utilize Multi-Core Systems

Normally PyCSP is limited to execution on a single core. This is a limitation within the
CPython1 interpreter and is caused by the Global Interpreter Lock (GIL) that ensures ex-
clusive access to Python objects. It is very difficult to achieve any speedup in Python from
running multiple threads unless the actual computation is performed in external modules that
release the GIL. Instead of releasing and acquiring the GIL in external modules it is possi-
ble to use multiple processes that run separate CPython interpreters with separate GILs. In
Python 2.6 we can use the new multiprocessing module [3] to handle processes, enabling us
to compare threads to processes. The comparison in Table 1 shows the result of computing
Monte Carlo pi in parallel using threads and processes.

Table 1. Comparison of threads and multiprocessing on a dual core system with Python 2.6.2.

Workers 1 2 3 4 10
Threads 0.98s 1.52s 1.56s 1.55s 1.57s
Processes 1.01s 0.57s 0.54s 0.54s 0.56s

The GIL is to blame for the poor performance for threads illustrated in Table 1. It is
possible to obtain good performance for threads, but to do this you must compute in an
external module and manually release the GIL. The unladen-swallow project [4] aims to
remove the Global Interpreter Lock entirely from CPython.

1CPython is the official Python interpreter.



1.2. Maximum Threads Available

On a standard configured operating system, the maximum number of threads in a single
application is limited to around 1000. In PyCSP, every CSP process is implemented as a
thread. Thus, there can be no more CSP processes than the maximum number of threads. We
want to overcome this and give PyCSP the ability to handle CSP networks consisting of more
than 100000 CSP processes, by using co-routines.

We thus decided to address these issues by providing two additional implementations,
one that provides real parallelism for multi-core machines and one that does not expose the
processes to the operating system. All versions should implement the exact same interface,
and a programmer should need only to change the code that imports PyCSP to change be-
tween the three different versions. Having a common interface for three implementations of
PyCSP has another purpose besides being a fast and effective method for changing the con-
current execution platform. It is also an easy method for students to learn what consequences
it has to run a specific PyCSP application with co-routines, threads or processes. PyCSP is
often chosen by students in the Extreme Multiprogramming Class, which is a popular course
at the University of Copenhagen teaching Communicating Sequential Processes [5].

2. Three Implementations of PyCSP

The three implementations of concurrency in PyCSP – pycsp.threads, pycsp.processes
and pycsp.greenlets – are packaged together in the pycsp module. Although packaged
together these are completely separate implementations sharing a common API. It is pos-
sible to combine the implementations to produce a heterogeneous application with threads,
processes and greenlets, but the support is limited since the choice (Alternation) construct
does not work with channels from separate implementations and when communicating be-
tween implementations only channels from the processes implementation are supported. The
primary purpose of packaging the three implementations in one module is to motivate the
developer to switch between them as needed. A common API is used for all implementations
making it trivial to switch between them, as shown in Listing 1. A summary of advantages
and limitations for each of the implementations are listed at the end of this section.

# Use threads # Use processes
from pycsp.threads import * from pycsp.processes import *

Listing 1. Switching between implementations of the PyCSP API.

When switching to another implementation, the PyCSP application may execute very
differently as processes may be scheduled in another order and less fair. Hidden latencies
may also become more apparent when all other processes are waiting to be scheduled. In
the following sections we present an overview of the implementations in order to understand
how they affect the execution of a PyCSP application.

2.1. pycsp.threads

This implementation uses the standard threading module in Python, which implements
kernel-level threads. All threads access the same memory space, thus when communicating
data only the reference to the data is copied. If the data is a mutable Python type it can be
updated from multiple threads in parallel, though it is not recommended to do so since it
might cause unexpected data corruption and does not fit with the CSP programming model.

Details of pycsp.threads are presented in [2] and is a remake of the original
PyCSP [1].



2.2. pycsp.greenlets

Greenlets are lightweight (user-level) threads, and all execute in the same thread. A simple
scheduler has been created to handle new greenlets, dying greenlets and greenlets that are
rescheduled after blocking on communication. The scheduler has a simple FIFO policy and
will always try to choose the first greenlet among the greenlets ready to run.

The PyCSP API has been extended with an @io decorator that can wrap block-
ing IO operations and run the operations in a separate thread. In pycsp.threads and
pycsp.processes, this decorator has no function while in pycsp.greenlets an Io object
is created. It is necessary to introduce this construct because the greenlets are all running in
one thread, and if one greenlet blocks without yielding control to the scheduler, all greenlets
in this thread are blocked. For threads and processes, this is not a problem because the op-
erating system can yield on IO and use time slices to interrupt execution, thus rescheduling
new threads or processes. Greenlets are never forced to yield to another greenlet. Instead,
they must yield execution control by themselves.

Invoking the __call__ method on the Io object will create a separate thread running
the wrapped function. After the separate thread has been started, the greenlet yields control
to the scheduler in order to schedule a new greenlet. Listing 2 provides an example of how to
use @io. Without @io, the greenlet would not yield, thus blocking all other greenlets ready to
be scheduled. This would serialize the processes, and the total runtime of Listing 2 would be
around 50 seconds instead of the expected 10 seconds.

@io
def wait(seconds ):

time.sleep(seconds)

@process
def delay_output(msg , seconds ):

wait(seconds)
print msg

Parallel(
[delay_output(’%d second delay ’ % i, i) for i in range(1, 11)]
)

Listing 2. Yielding on blocking IO operations.

Communicating on channels from outside a PyCSP greenlet process is not supported,
since the scheduler needs to work on a greenlet process to coordinate channel communica-
tion. This means that you can not communicate with the main greenlet at the top-level envi-
ronment. Calls to pycsp.greenlets functions from a @io thread will fail for the same rea-
son. Calls to the pycsp.threads or pycsp.processes implementations are recommended
to be wrapped with the @io decorator, otherwise they could block the scheduler and cause a
deadlock.

2.3. pycsp.processes

This implementation uses the multiprocessing module available in Python 2.6+. Processes
started with the multiprocessing module are executed in separate instances of the Python in-
terpreter. On systems supporting the UNIX system call fork, starting separate Python in-
terpreters with a copy of all objects is trivial. On Microsoft Windows, this is much more
challenging for the multiprocessing module, since no equivalent of fork is available. The
multiprocessing module simulates the fork system call by starting a new Python interpreter,
loading all necessary modules, serializing / unserializing objects and initiating the requested



function. This is very slow compared to fork, but it still works in lack of a better alternative
for Windows.

When an application is written in pure Python and PyCSP, it is now possible with
pycsp.processes to utilize multi-core CPUs. For most cases all PyCSP applications will be
able to run without any changes, but if the data communicated does not support serialization,
the application will fail. An example of such data is an object containing pointers initialized
by external modules, fortunately this type of data is not very common in Python applications.

pycsp.processes uses shared memory pointers internally and must allocate everything
before any processes are forked. For this reason, it might in extreme cases be necessary to
tweak a set of constants for pycsp.processes. To do this, a singleton Configuration class is
instantiated as shown in the example (Listing 3). New constants must be set before any other
use of pycsp.processes, since everything is allocated on first use.

from pycsp.processes import *
Configuration ().set(PROCESSES_SHARED_CONDITIONS , 50)
Configuration ().get(PROCESSES_SHARED_CONDITIONS) # returns 50

Listing 3. Example of setting and getting a constant.

Using this configuration class it is possible to change the size of shared memory and
the amount of shared locks and conditions allocated on initialization. The allocated shared
memory is used as buffers for channel communication, which means that the size of data
communicated on channels at any given time can never exceed the size of the buffer. The
default size of the shared memory buffer is set to 100MB, but can easily be increased by
setting the constant PROCESSES ALLOC MSG BUFFER.

2.4. Summary of Advantages and Limitations

The following is a summary of the advantages (+) and limitations (-) of the individual imple-
mentations before moving on to the Implementation and Experiments section.

Threads:

+ Only references to data are passed by channel communication.
+ Other Python modules usually only expect threads.
+ Compatible with all platforms supporting Python 2.6+.
- Limited by the Global Interpreter Lock (GIL), resulting in very poor performance for

code not releasing the GIL.
- Limited in the maximum number of CSP processes.

Greenlets:

+ More optimal switching between CSP processes, since we can limit the context
switches to the point where they are blocking. Performance does not decrease with
more CSP processes competing for execution.

+ Very small footprint per CSP process, making it possible to run a large number of
processes, only limited by the amount of memory available.

+ Fast channel communications (≈ 20µs).
- No utilization of more than one CPU core.
- Unfair execution, since execution control is only yielded when a CSP process blocks

on a channel.
- Requires that the developer wraps blocking IO operations in an @io decorator to yield

execution to another CSP process.



Processes:

+ Can utilize more cores, without requiring the developer to release the GIL.
- Fewer processes possible than pycsp.threads and pycsp.greenlets.
- Windows support is limited, because of lack of the fork system call.
- All data communicated are serialized, which requires the data type be supported by

the pickle module.
+ A positive side-effect of serializing data is that data is copied when communicated,

rendering it impossible to edit the received data from the sending process.

3. Implementation

When processes communicate through external choice at both the reading and writing end
a number of challenges must be addressed to avoid live-lock and dead-lock problems, this
is well researched in [6,7,8]. The PyCSP solution introduces what we believe to be a new
algorithm for this problem. The algorithm is very simple and quite fast in the common case.

Every channel has two queues associated with it, one for pending read-operations and
one for pending write-operations. Every active choice (Alternation) is represented with a
request structure, this request has a lock, to ensure mutual exclusion on changes to the request,
an unique id, a status field, and the actual operation, i.e. read or write with associated data.
When an Alternation is run a reference to the request structure is added to the queue it belongs
to, i.e. input-requests (IR) and output-requests (OR), on every channel in the choice. Then all
requests are tested against all potentially matching requests on all involved channels. When
a match is found the state of the request structure is changed to Done to ensure that the
request is matched only once. When the arbitration function comes across an inactive request
structure it is evicted from the queue.

def double_lock(req_1 , req_2):
if req_1.id < req_2.id:

lock(req_1.lock)
lock(req_2.lock)

else:
lock(req_2.lock)
lock(req_1.lock)

Listing 4. The double lock operation in pseudocode.

Live-lock is avoided by using blocking locks only, so if a legal match exists it will always
be found the first time it is available. Deadlock is avoided by using the unique id of a request
to sort the order in which locks are acquired, thus we have an operation, double lock (Listing
4), that acquires two individual locks in order and returns once both locks are obtained. If
two threads attempt to lock the same requests they will always do so in the same order and
thus never deadlock.

for w in write_queue:
for r in read_queue:

double_lock(w, r)
match(w, r)
unlock(w, r)

Listing 5. The arbitration algorithm.

The arbitration algorithm in Listing 5 then performs the protected matching by acquir-
ing locks with the double lock operation. For every Alternation, read or write action there is



exactly one request and this request is always enqueued on the destination channel queues
before the arbitration algorithm is run. It may seem unnecessarily expensive at first glance,
but it is important to remember that if we do not enqueue the request before matching against
potential matches, then there exists a scenario where a read-operation and a matching write-
operation may be arbitrated in step-lock without detecting each other. An example of a cor-
rectly committed Alternation is shown in figure 1.

Channel A

Channel B

Active
IR

Done, Fail
Active

OR

Done, Ok
IR

Done, Ok
OR

Requests

1

2

3

4

cin = A.reader()
id = cin()

cout = A.writer()
cout(id)

cout = B.writer()
cout(new_id)

cout = A.writer()
cin = B.reader()
Alternation([
  { cin:received_id() },
  { (cout, id):send_id(id) }
]).execute()

Figure 1. Snapshot of synchronization with two channels and four communicating processes. Channel B has
found a match between two request structures; one in the input request queue (IR) and one in the output request
queue (OR). Next, channel A will match the two active requests on channel A’s request queues.

The presented algorithm for handling synchronization in PyCSP is relevant for pycsp.threads
and pycsp.processes, while the pycsp.greenlets does not need this to ensure correct-
ness. The algorithm is a main feature of the new PyCSP, if interested in other features of
pycsp.threads then the description of these can be found in [2]. Next we will focus on the
implementation details for pycsp.processes and pycsp.greenlets.

3.1. pycsp.greenlets

For co-routines, the greenlet module [9] was chosen because it is a very small module, easy
to install, provides full control (no internal scheduler) and allows yielding from nested func-
tions. Python’s own generators which make it possible to create a co-routine-like API, do not
allow yielding from nested functions, which would not allow us to yield when blocked on
a channel communication. Another option was to use Stackless Python [10] for our imple-
mentation. Stackless Python was originally based on the greenlet design and has since then
matured. It is slightly faster than the greenlet module and allows a larger number of allocated
co-routines. However, having to install an extra Python interpreter to make the co-routine
implementation run was found unacceptable, leaving the greenlet module as the only valid
choice left.

A limitation with co-routines is that everything runs in a single thread, which means that
a blocking call will block all other co-routines as well. This is especially a problem with IO
operations, since the blocking action might happen in a system call, which we are not able
to detect in the Python environment. The @io decorator attempts to solve this by wrapping a
function into a run method on an Io thread object. This Io thread object is created on-the-fly
and yields execution to the scheduler after starting the thread. When the thread’s run method
finishes, the return value is saved and the calling co-routine is moved onto the scheduler’s



next queue. Wrapping a function in an @io decorator introduces an overhead of starting and
stopping a thread. We carried out a test, to see whether this overhead could be minimized
by using a thread worker pool. The overhead was found to be similar to the time needed to
start and stop a thread, thus the idea of a thread worker pool was abandoned. The idea of
delegating a blocking system call to a separate thread was presented by Barnes [11] for the
Kent Retargetable occam-π Compiler. occam-π implements a set of channels keyboard and
screen that can be used to communicate to processes reserved for these IO operations. This
could also be an option for PyCSP, but it was decided that the @io decorator would provide
more flexibility for the programmer.

The channel communication overhead is much lower for greenlets than the other two
implementations because we can avoid the conditions and locks when synchronizing.

To optimize for fast switching on channel communications, a central queue of blocked
greenlets is not used when handling synchronizations. Whenever a greenlet blocks on channel
communication, it saves a self-reference together with the channel communication request.
Since channel communication requests are located in queues on channels these can be viewed
as wait queues, from where a request is matched with an offer for communication. It is now
the responsibility of another greenlet that matches this channel communication request to
place the blocking greenlet on the scheduler’s next queue. The scheduler uses a simple FIFO
policy, thus choosing the first element of the next queue for execution. The next queue is
usually short as most greenlets will be blocked on channel communication.

# Reschedule , without putting this process on either
# the next[] or a blocking [] list.
def wait(self):

while self.state == ACTIVE:
self.s.getNext (). greenlet.switch ()

Listing 6. Blocking and scheduling a new greenlet CSP process.

When switching, we switch directly from CSP process to CSP process without spending
any time on having to switch to a scheduler process. The code in Listing 6 is the wait method,
which is executed when a CSP process blocks on channel communication. The method is
responsible for scheduling the next CSP process. The self.s attribute is a reference to the
scheduler, which is implemented as a singleton class. If the next and new queues are empty,
then getNext() will return a reference to the scheduler greenlet which will then be activated.
The scheduler greenlet will then investigate whether there are any current Timeout guards or
@io threads active. In case all queues are empty it will terminate since everything must have
been executed.

3.2. pycsp.processes

Using processes instead of threads requires that we run separate Python interpreters. For fast
communication we can choose among several existing inter-process communication tech-
niques, which includes message passing, synchronization and shared memory. Which tech-
niques are available and how they are implemented differs between platforms. In order to
have cross-platform support we construct the pycsp.processes implementation on top of
the multiprocessing module available in Python 2.6. The multiprocessing module presents a
uniform method of creating processes, shared values and shared locks. When Python objects
are communicated through shared values, they are serialized using the pickle module [12].
Some Python objects cannot be serialized, shared values and locks are two examples of these.
This requires us to initialize everything at startup, so that references can be passed to new
processes as arguments. A singleton ShmManager class maintains all references to shared val-



ues and locks. This instance is automatically located in the memory address space of newly
created processes.

Every channel instance requires a lock to protect critical regions, and every channel com-
munication requires a condition linked to the channel request offered to processes to ensure
that this request is updated in a critical region and can be signaled when updated. This usage
of locks and conditions can be a problem when having many processes and channels. The
total number of available locks and conditions in shared memory is much lower for the mul-
tiprocessing module than for the threading module. The solution was to let the ShmManager
class maintain a small pool of shared conditions and locks. The size of the lock pool needs
to be large enough to prevent a delay when entering a critical region. Likewise the size of the
condition pool should be large enough to avoid waking up to many false processes, causing
an overhead in context switches. 20 locks and 20 conditions seem to be enough for most
situations possible with pycsp.processes, though a small performance increase is possible
for the micro benchmark experiments by using more conditions.

Sending data around in a CSP network requires a method to actually transfer data from
one process to another. Since all references to shared memory have to be initialized and
allocated at startup a message buffer is allocated in shared memory. Unfortunately Python
only supports allocating shared memory through the multiprocessing module, thus we will
have to handle the memory management in PyCSP by calling get and set methods on objects
allocated using the multiprocessing module. A large shared string buffer is allocated and
partitioned into blocks of a static size. To handle the allocation of the required number of
blocks for a channel communication and freeing them again afterwards, a dynamic memory
allocator is implemented. The memory allocator uses a simple strategy that resembles the
next-fit strategy:

init A list of free blocks is initialized with one entry that equals the entire message
buffer.

alloc Any size is allocated by searching the list of free blocks for an entry that has
enough space. The needed blocks are then cut from this entry and an index to the first
block is returned.

free Allocated blocks are freed by appending an entry containing the index and size of
the free blocks list.

Every new allocation will fragment the message buffer into smaller sections. If at some
point we cannot find a partitioned area large enough, a step of combining free blocks is exe-
cuted. This solution makes it possible to send both large messages and very small messages.
If necessary, the buffer and block size can be tweaked using the Configuration().set()

functionality.
We do not expect this dynamic memory allocator to affect the performance of parallelism

in general, even though the allocation of a buffer is protected by a shared lock. The amortized
cost of allocating buffers is low, since most allocations will be able to allocate blocks from
the first entry in the list of free blocks and while the more rare and expensive action of
reassembling blocks introduces a delay, it is a delay that will not affect the overall execution
much. In the micro benchmarks (Section 5.1) and in the Mandelbrot experiment (Section 5.3)
we successfully communicate small and larger data sizes.

4. Related Work

Communicating Sequential Processes (CSP) was defined by Hoare [5] in 1978, but it is during
the last decade that we have seen numerous new libraries and compilers for CSP. Several
implementations are optimized for multi-core CPUs that are becoming the de-facto standard
when buying even small desktop computers. occam-π [13] and C++CSP2 [14] are two CSP



implementations which stand out by being able to utilize multiple cores and use user-level
threads for fast context switching. User-level threads are more efficient and provides greater
flexibility than kernel-threads. They exists only to the user and can be made to use very little
memory. It is possible to optimize the scheduling of threads to fit with the internal priority
in the application, because the scheduler is in user code and the operating system is not
involved. occam-π implements processes as user-level threads and uses a very robust and
optimized scheduler that can handle millions of processes. The utilization of multiple cores
is handled automatically by the scheduler and is described in detail in [15]. This is different
from C++CSP2, where it is necessary to specify whether processes should be run as user-level
threads or kernel-level threads.

Several libraries exist for Python that enable the Python programmer to manage tasks or
threads, but they do not enable the programmer to easily change from threads to co-routines.
Some of these libraries are Stackless Python [10], Fibra [16] and the multiprocessing mod-
ule [3] and they provide an abstraction that uses the concept of processes and channels re-
sembling a subset of the constructs available in the CSP algebra. Stackless Python is a branch
of the standard CPython interpreter and provides very small and efficient co-routines (green-
lets), bidirectional channels and a round-robin scheduler. Fibra is based on Python genera-
tors that are similar to co-routines, but it is impossible to hide the fact that a co-routine is a
Python generator since the keyword yield is the only method to switch between generators.
In Fibra, co-routines communicate through tubes by yielding values to a scheduler. The mul-
tiprocessing module in Python 2.6 provides a method of using operating system processes,
shared memory and pipes for buffered communication. Operating system processes are heavy
processes requiring a large amount of memory, but contrary to threads they are not affected
by the Global Interpreter Lock (GIL).

However, no libraries exist for Python that provide the functionality of the choice con-
struct that makes it possible to program with non-deterministic behaviour in the communica-
tion between processes.

5. Experiments

We have run three different experiments, to show the strengths and weaknesses of the PyCSP
implementations. The first experiment consists of two micro benchmarks where one is show-
ing how the implementations handle an increasing amount of processes until reaching the
maximum possible amount. The other micro benchmark is showing how well an implementa-
tion copes with performing an increasing amount of concurrent communications in a network
of static size. After the micro benchmarks, we generate primes using a simple PyCSP appli-
cation as a case for when it is convenient to be able to switch from threads or processes to
co-routines. Finally, a benchmark computing the Mandelbrot set is used to compare speedup
on an 8-core system. The Mandelbrot set is computed twice using two different strategies and
producing two very different speedup plots. One has the Global Interpreter Lock (GIL) re-
leased during computation by computing in an external module and one was computed using
the numpy module [17]. All benchmarks are executed on a computer with 8 cores: two Intel
Xeon E5310 Quad Core processors and 8 GB RAM running Ubuntu 9.04.

5.1. Micro Benchmarks

The results of these micro benchmarks provides a detailed view of how the implementations
behave when they are stressed. The benchmarks are designed with the purpose of measuring
the channel communication time including the necessary time required to context switch.
Extra unnecessary context switches may be added by the operating system and is related to
the PyCSP implementation used.
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Figure 3. Micro benchmark measuring the channel communication time including the overhead of context
switching for an increasing number of CSP processes.

Using the ring design in Figure 2, we run a benchmark that sends a token around a ring
of increasing size. The ring benchmark was inspired from a similar micro benchmark in [15].
N elements are connected in a ring and every element passes a token from the previous ele-
ment to the next. This challenges the PyCSP implementations ability to handle an increasing
amount of processes and channels. The time measurements does not include startup and shut-
down time and each measured run is divided by the size of the ring to compute an average
channel communication time.

The test system has been tweaked to allow a larger number of threads and processes than
the default. The results for our test system (in Figure 3) show that we can reach 512, 16384
and 262144 CSP processes depending on the PyCSP implementation used. It is obvious that
pycsp.processes should only be used for applications with few CSP processes because
of the exponential increase in latency, though it is possible to configure pycsp.processes

using Configuration().set(PROCESSES_SHARED_CONDITIONS, 50) and achieve marginally bet-
ter performance. As expected, pycsp.greenlets is able to handle a large number of CSP
processes with only a small decrease in performance.

Investigating the performance in a different perspective, we use four rings of static size



N and then send 1 to N-1 tokens to circle concurrently. In the previous benchmark there was
only one communication at a time, which is a rare situation for an actual application. With
this benchmark we see pycsp.processes performs much better, since it can now utilize
more cores. Based on the results in Figure 4 we can conclude that pycsp.processes has a
higher throughput of channel communications than pycsp.threads when enough concur-
rent communications can utilize several cores.
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Figure 4. Micro benchmarks measuring the average channel communication time including the overhead of
context switching for an increasing number of concurrent tokens in four rings of size 8, 16, 32 and 64.

Looking at the results for the four rings of size N in Figure 4, an interesting pattern
is observed whenever the number of concurrent tokens comes close to N. For N-1 concur-
rent tokens the performance of pycsp.threads are almost equal to the performance of one
concurrent token. The reason for this behaviour is explained by the blocking nature of CSP,
because when all processes but one has a token, then only this one is able to receive. This
behaviour mimics the behaviour of the test with one token and explains why the results in
Figure 4 are mirrored around the center.

From these micro benchmarks we can see that, pycsp.threads performs consistently in
both benchmarks. pycsp.processes does poorly in Figure 3 where the cost of adding more
processes is high, but perform better in Figure 4 where a number of concurrent tokens are
added. Finally pycsp.greenlets has proved able to do fast switching and many processes,
regardless of the amount of concurrent tokens.

5.2. Primes

This is a simple and inefficient implementation of prime number generation found in [18].
The CSP design of the implementation is shown in Figure 5. It adds one CSP process for
every computed prime, which sets a limit on how many primes can be calculated using this
design. The maximum number of primes equals the maximum amount of CSP processes



or channels possible. The latency involved in spawning new CSP processes and performing
context switches varies when swapping between threads, processes and greenlets.

Natural number 
generator

...If number mod 2 == 0
Then skip
Else pass to next process

If number mod 3 == 0
Then skip
Else pass to next process

If number mod 5 == 0
Then skip
Else pass to next process

Spawn new 
worker process 

and take the 
role of a worker

Producer Workers Printer

Print incoming 
prime numbers

Figure 5. Primes CSP design
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Figure 6. Results of primes experiment.

We run a benchmark computing primes, plotting the runtime results in Figure 6. The
processes implementation failed with the message “maximum recursion depth exceeded”
after creating 90 processes. This is a limitation in the Python multiprocessing module which
is only apparent when spawning new processes from child processes.

This primes benchmark does not compare to a simple implementation in pure Python,
which would be orders of magnitude faster than the implementation using PyCSP. This
benchmark is meant as a method to compare one aspect of the PyCSP implementations and
it proves why greenlets is an important player compared to threads and processes. Running
for an entire day (86400s) would produce ≈ 16000 primes using the threads implementation
and ≈ 60000 primes using the greenlets implementation. Also 16384 threads is close to an
upper limit for threads, while greenlets has no real upper limit on the amount of greenlets.



5.3. Computing the Mandelbrot Set

This experiment is a producer-consumer-worker example that tests PyCSP’s ability to utilize
multiple cores. It produces the image in Figure 7 at a requested resolution. The image requires
up to 5000 iterations for some pixels and is located in the Mandelbrot set at the coordinates:

xmin = -1.6744096758873175
xmax = -1.6744096714940624
ymin = 0.00004716419197284976
ymax = 0.000047167062611931696

The simple CSP design in Figure 7 communicates jobs from the producer-consumer to
the workers using the Alternation in Listing 7. Workers can request and submit jobs in any
order they like.

while len(jobs) > 0 or len(results) < jobcount:
if len(jobs) > 0:

Alternation ([{
workerIn: received_job ,
(workerOut , jobs [ -1]): send_job

}]). execute ()
else:

received_job(workerIn ())

Listing 7. Producer-Consumer: Delegating and receiving jobs.

Producer / 
Consumer

Worker...Worker

Figure 7. The Mandelbrot CSP design and the computed Mandelbrot set.

The experiment is divided into two different runs. They differ by using two different im-
plementations of the worker process. One releases the GIL during computation by using the
ctypes module [19] to call compiled code contained in an operating system specific dynamic
library. Executing external code using ctypes is advanced, but does also provide a perfor-
mance improvement over the other method which is using the numpy module [17] to manipu-
late and compute on matrices. The numpy module is a package used for scientific computing
and provides a N-dimensional array object including tools to manipulate this array object.
The numpy module also releases the GIL on every call, but this is much more fine-grained
than the course-grained release and acquire used in the ctypes module, thus a larger overhead
is expected for the numpy module.

The results in Figure 8 clearly shows that pycsp.processes is superior in this applica-
tion by attaining a good speedup in both runs. It is interesting that pycsp.processes is able
to compete with pycsp.threads when using the ctypes worker, since pycsp.processes

for every communication includes an extra overhead of serializing data to a string format, al-
locating a message buffer, copying the string data to the message buffer, retrieving the string
data from the message buffer, freeing the message buffer and finally unserializing the string
data into a copy of the original data. As expected we have no multi-core speedup at all from
using pycsp.greenlets. We could have wrapped the computation in the @io decorator and
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Figure 8. Speedup plots of computing the Mandelbrot set displayed in Figure 7. The resolution is 1000 ∗ 1000
and the work is divided in 100 jobs. The run time for the case with a single worker is used as the base for
the speedup calculation and was 592.5 seconds for the numpy benchmark and 10.6 seconds for the ctypes
benchmark.

gained a speedup for the ctypes benchmark, but this is not the purpose of the @io decorator
and would encourage wrong usage of the new PyCSP library.

Based on the experiments performed, the three implementations have different strengths;
processes favors parallel processing, threading favors portability and applications that release
the GIL and greenlets favor many processes and frequent communication.

6. Conclusions

With the PyCSP version presented in this paper, any application written in Python and using
PyCSP can change the concurrent execution model from threads to co-routines or processes
just by changing which module is imported. Depending on a user’s domain and application a
user can choose to circumvent the Global Interpreter Lock by using processes, provided that
the application does not create more than the maximum allowed processes for the operating
system. Alternatively, a user may want to speed up the communication time by a factor of
ten by using greenlets. Then again if the application is changed further and the user suddenly
wants to return to using threads, this is a simple task that does not require the user to transfer
code changes to an older revision.

Using pycsp.processes it is now possible to utilize all cores of an 8-core system with-
out requiring the computation to take place in an external module. This is important for pro-
grammers who want to utilize more cores when the performance of pycsp.threads is lim-
ited by the Global Interpreter Lock. Additionally, running more than 262144 processes in a
single PyCSP application is made possible using pycsp.greenlets. This amount is smaller
than what is possible with occam-π [13] or C++CSP2 [14], but it does open up to the possi-
bility of developing more fine-grained CSP-designs using PyCSP.

PyCSP is available at Google-code using the project name pycsp [20].

6.1. Future Work

The obvious next step would be to create pycsp.net, a distributed version of PyCSP that
connects processes by networked channels. pycsp.net would be required to be fully com-
patible with the current API, so that any PyCSP application can be transformed into a dis-
tributed application, just by changing the imported module. Channels could be given names
so that they could be registered on a nameserver and identified from different hosts.

Using pycsp.net and running the Mandelbrot benchmark application from the Experi-
ments section would allow us to utilize multiple machines. The producer-consumer would be



started on one host, and starting additional worker processes on other hosts would be trivial,
since they would request the correct channel reference from the nameserver by a known name
and automatically start requesting jobs.
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