
A Mathematically Verified Device I2C Driver
Using ASD

Herman Roebbers
Nov-2-2009

www.tass.nl 2

How to develop defect-free device drivers with
ASD:Suite

Contents
• Introduction
• Development Process
• General structure of ASD component
• General structure of Linux device driver with ASD
• Connecting interrupts to ASD components
• The Linux kernel OSAL
• Results
• Conclusions

www.tass.nl 3

Introduction

NXP wants to evaluate ASD

Case study:
Linux I2C driver for ARM processor

www.tass.nl 4

Introduction

In fact two case studies were done:
1. ASD with C++ generator and stripped BOOST

library (reported on at previous ASD UGM)
2. ASD with C generator (beta version) and OS

Abstraction Layer implementation for Linux
kernel mode (reported on here)

www.tass.nl 5

Objectives (1)

Verify benefits of ASD

Most important benefits of interest to NXP:
• Delivering higher quality product with same or

reduced amount of effort
• Reducing cost of future maintenance
• Achieving at least equivalent performance to

existing product

www.tass.nl 6

Objectives (2)

Determine if ASD modeling helps in verifying
correctness of device driver software

Assess whether ASD:Suite is a useful and practical
tool for developing device drivers

www.tass.nl 7

Development Process

• Obtain HW doc to create device Interface Model
• Create driver model
• Verify combination works (model check)
• Create device foreign component
• Create interrupt -> ASD event interface
• Create Linux kernel OSAL implementation (once)
• Create Linux kernel driver / loadable module
• Execute test bench (existing driver test bench)
• Fix problems in foreign components

www.tass.nl 8

Who did what?

NXP provided
• Domain knowledge for the project
Verum
• Modeling of the driver specification and design
TASS provided expertise
• Input for the C code generation process
• Linux kernel space OSAL implementation
• Interrupt management

www.tass.nl 9

General Structure Of ASD Component

www.tass.nl 10

General Structure Of Linux Device Driver With
ASD

www.tass.nl 11

Connecting Interrupts to An ASD Component

i2c_isr() {
event = deal_with_IRQ();
kfifo_put(event);
queue_work(

interrupt_wq,
&i2c_event_work)

}

i2c_event_handler(){
while (msg_in_kfifo()){

kfifo_read(…,&intdata,…);
/* put msg in DPC queue

and schedule DPC thread */
schedule_DPC_callback(&int_data);

}
}

interrupt

workqueue
function

www.tass.nl 12

The Linux Kernel OSAL

Mapping ASD thread onto Linux kernel thread

• ASD thread function is:
void *(*asdThread_func)(void*arg)

• Linux kernel thread function is:
int (*kthread_func)(void *arg)

In order to provide thread control some extra
management support has to be added

www.tass.nl 13

The Linux Kernel OSAL

Mapping ASD thread onto Linux kernel thread

typedef struct
{

asdThread_func func; Thread function
void* arg; Thread function arg
struct completion finish; For thread termination
struct task_struct *thread; OS thread reference

} asdThread;

www.tass.nl 14

The Linux Kernel OSAL

void asdThread_init(asdThread* self,
asdThread_func func, void* arg)

{
self->func = func; Thread function to thread
self->arg = arg; Thread func arg to thread
init_completion(&self->finish); Termination
self->thread = kthread_run(thread_wrapper,
(void*) self, "work_kthread"); Start thread
ASD_ASSERT(!IS_ERR(self->thread));

}

www.tass.nl 15

The Linux Kernel OSAL

static int thread_wrapper(void* arg)
{
asdThread* self = (asdThread*)arg;
self->func(self->arg); Call thread_func
complete(&self->finish); End thread
return 0;

}

www.tass.nl 16

The Linux Kernel OSAL

void asdThread_join(asdThread* self)
{
ASD_ASSERT(!wait_for_completion_timeout(
&self->finish, 250));

}

www.tass.nl 17

Results : Code size

21748Total code in mymodule.o
12048ASD generated code
4876Handwritten code

4824Handwritten ASD runtime lib
incl. OSAL

Code sizes for ASD generated C code + driver + ASD OSAL.

12468 bytesbuilt-in.o
Code size of original NXP driver code

www.tass.nl 18

Results : Code size

21748 bytesTotal code in mymodule.o
Code sizes for ASD generated C code + driver + ASD OSAL.

12468 bytesbuilt-in.o
Code size of original NXP driver code

155 Kbytesbuilt-in.o
Code sizes for ASD generated C++ code + driver + BOOST

www.tass.nl 19

Results : Performance

Less time in interrupt means more responsive system

20 s60 sTime in interrupt

386 s380 sSend of 2 bytes

ASD + OSALOld driverExecution time

www.tass.nl 20

Results : Discussion

Functionality:

• Original handwritten code implements I2C
master as well as slave functionality

• ASD code only implements I2C master
functionality

• Multi-client support works (didn’t work for C++
version)

www.tass.nl 21

Results : Discussion

Code size:

• ASD driver is bigger, but includes RTE incl. OSAL,
handwritten HW interface and interrupt connection.
OSAL is small and reusable for other drivers.

• ASD code can be bigger because more situations
are covered than in non-ASD code.

• HW interface can be written more optimally to
require smaller code size.

www.tass.nl 22

Issues

HwI2C component interface was not reviewed with
HW guys to check equivalence with actual
device behavior prior to implementation. This
caused problems and required several updates
to the model to get right.

www.tass.nl 23

Issues

Stress test runs for several hours and then stops ->
EEPROM I2C device write fails. New I2C
EEPROM cures issue. Is the problem in the
model or in the implementation?

What happens when EEPROM write fails and times
out? And generates completion or NACK after
timeout? Current timeout hardcoded, based on
EEPROM timeout spec, should be set higher.

What happens with old driver on EEPROM write
fail?

www.tass.nl 24

Conclusions

• HW I/F model must be validated together with
HW experts before anything else!!!!!!

• Behavioral issues in ASD part cannot be
present because of model checking (assumes
correct HW model!)

• ASD approach is feasible for Linux device driver
development

• Footprint as well as performance are
comparable with handwritten code

• Less time in interrupt = more responsive system

www.tass.nl 25

Conclusions

• Small overhead due to OSAL and RTE
• Current implementation of HW component not

written with performance in mind. First get it
right!

• Several driver/OSAL parameters are
hardcoded, of which some are dependent on
the attached I2C device. So they should be
#defined or parameterized, maybe via
separate ioctl’s. FIFO size should be read
from device.

www.tass.nl 26

Conclusions

• Driver development time: I don’t know original
driver effort and don’t know ASD effort. OSAL
development effort should not be counted as
this can be reused.

• Driver quality: passes stress test for several
hours. Cause of hangup still unknown

www.tass.nl 27

Conclusions

This project has clearly shown
• ASD modeling helps in developing and verifying

deeply embedded software
• Using the C code generator is beneficial and

practical for device drivers.

www.tass.nl 28

Conclusions

Biggest advantage seen
• Rigorous specification process enforced with ASD.

– Software designers are forced to think before they
implement, and ASD helps them ensure a complete and
correct specification.

• Race conditions and deadlocks due to unexpected
interleaving of activities are prevented by the model
checker

• Developers can perform manual timing checks on
guaranteed defect free code.

www.tass.nl 29

Conclusions

Model checker revealed > 700,000 unique
execution scenarios

• Without ASD: > 700,000 test cases required.
• With ASD: No need to test

=>Major reduction in testing effort achieved.

www.tass.nl 30

Future work (@Verum)

• Optimize code generation
• Reduce footprint of foreign components
• Providing of OSAL compliance test code for

validating OSAL implementations
• Providing guidelines for development of OSAL

implementation
• Providing guideline on development of HW

Interface code

Questions???

