

Designing a Mathematically Verified

I
2
C Device Driver Using ASD

Arjen Klomp
a

1
, Herman Roebbers

b
, Ruud Derwig

c
 and Leon Bouwmeester

a

a
 Verum B.V., Laan v Diepenvoorde 32, 5582 LA, Waalre, The Netherlands

b
 TASS B.V., P.O. Box 80060, 5600KA, Eindhoven, The Netherlands

c
 NXP, High Tech Campus 46, 5656 AE, Eindhoven, The Netherlands

Abstract. This paper describes the application of the Analytical Software Design

methodology to the development of a mathematically verified I
2
C device driver for

Linux. A model of an I
2
C controller from NXP is created, against which the driver

component is modelled. From within the ASD tool the composition is checked for

deadlock, livelock and other concurrency issues by generating CSP from the models

and checking these models with the CSP model checker FDR. Subsequently C code

is automatically generated which, when linked with a suitable Linux kernel run-

time, provides a complete defect-free Linux device driver. The performance and

footprint are comparable to handwritten code.

Keywords. ASD, CSP, I
2
C, Device Driver, Formal Methods, Linux kernel

Introduction

In this Analytical Software Design [1] [2] (ASD) project, NXP’s Intellectual Property and

Architecture group successfully used Verum’s ASD:Suite to model the behaviour of an I
2
C

[3] device driver. It had been demonstrated in other case studies [4][5] to save time and cost

for software teams developing and maintaining large and complex systems. But this was the

first time the tool had been applied to driver software.

NXP is a leading semiconductor company founded by Philips and, working with

Verum, undertook a project to evaluate the benefits of using ASD:Suite for upgrading its

device driver software.

1. Background

Analytical Software Design (ASD) combines the practical application of software

engineering mathematics and modelling with specification methods that avoid difficult

mathematical notations and remain understandable to all project stakeholders. In addition,

it uses advanced code generation techniques. From a single set of design specifications, the

necessary mathematical models and program code are generated automatically.

ASD uses the Sequence Based Specification Method [6] to specify functional

requirements and designs as black box functions. These specifications are traceable to the

original (informal) requirements specifications and remain completely accessible to the

critical project stakeholders. In turn, this allows the stakeholders and domain experts to play

a key role and fully participate in verifying ASD specifications; this is an essential

requirement for successfully applying such techniques in practice.

1
 Corresponding Author: Arjen.Klomp@Verum.com

Figure 1. An overview of Analytical Software Design.

At the same time, these specifications provide the degree of rigour and precision

necessary for formal verification. Within ASD, one can apply the Box Structured

Development Method (BSDM) [7], following the principles of stepwise refinement, to

transform the black box design specifications into state box specifications from which

programming is typically derived.

Figure 1 summarizes the main elements of ASD. The functional specification is

analysed using the Sequence Based Specification method extended to enable non-

determinism to be captured. This enables the externally visible behaviour of the system to

be specified with precision and guarantees completeness.

Next, the design is specified using Sequence-Based Specification. This still remains a

creative, inventive design activity requiring skill and experience combined with domain

knowledge.

With ASD, however, the design is typically captured with much more precision than is

usual with conventional development methods, raising many issues like illegal behaviour,

deadlocks, race conditions, etc. early in the life cycle and resolving them before

implementation has started.

The ASD code generator automatically generates mathematical models from the black

box and state box specifications and designs. These models are currently generated in CSP

[8], which is a process algebra for describing concurrent systems and formally reasoning

about their behaviour. This enables the analysis to be done automatically using the ASD

model checker (based on FDR [9]). For example, we can use the model checker to verify

whether a design satisfies its functional requirements and whether the state box

specification (used as a programming specification) is behaviourally equivalent to the

corresponding black box design.

In most cases, a design cannot be verified in isolation; it depends on its execution

environment and the components it uses for its complete behaviour. In ASD, used

component interfaces are captured as under-specified sequence based specifications. The

corresponding CSP models are automatically generated, with under-specified behaviour

BSDM

BB:S* →→→→ R
Design

Functional
Requirements

?

Generated
Code

CSP

Black Box

CSP

Specification

FD

CSP

Black Box

CSP

Black Box
||

Used
Component

Interfaces Model Checking

Hand - written

Code + +

Inspection

Generated
Test Cases

Inspection

 √

√

BB:S* →→→→ R
Functional Specification

BB:S* →→→→ R
Functional Specification

BB:S* →→→→ R
Functional Specification

Inspection

being modelled by the introduction of non-determinism. These models are then combined

with those of the design and the complete system is verified for compliance with the

specification. Defects detected during the verification phase are corrected in the design

specification, leading to the generation of new CSP models and the verification cycle being

repeated (this is typically a very rapid cycle).

After the design has been verified, the ASD code generator can be used to generate

program source code in C++, C or other similar languages.

Section 2 introduces the case study and section 3 is about the method used. In Section

4, we give a more detailed overview of how ASD techniques were applied in practice for

this particular case and section 5 presents the resulting analysis performed.

2. Case-study: a Mathematically Verified I
2
C Driver

2.1 Introduction

NXP’s IP and Architecture group was developing code for an I
2
C device driver, for next

generation systems. I
2
C drivers had been in the marketplace for a number of years. In

theory, the existing software can be reused for new generations of the hardware, but in

practice there were timing and concurrency issues. Therefore they also wanted to know

whether the ease of maintenance of the driver could be improved.

To learn more about the capabilities of the ASD:Suite and its underlying technology,

the group carried out a joint project with Verum in which ASD was applied to model the

behaviour of the device driver.

The main objectives of the case study were to:

• Verify the benefits of ASD. The most important benefits of interest to NXP were:

o Delivering a higher quality product with the same or reduced amount of

development effort.

o Reducing costs of future maintenance.

o Achieving at least equivalent performance to the existing product.

• Determine if ASD modelling helps in verifying the correctness of device driver

software.

• Assess whether the ASD:Suite is a useful and practical tool for developing device

drivers.

This paper presents an overview of how the ASD method and tool suite were applied to the

development of a Linux version of the IP_3204 I
2
C driver software, hosted on NXP’s

Energizer II chip, and draws conclusions based upon these objectives.

2.2 Current Situation

I
2
C devices are used particularly in larger systems on chips (SoCs). These are typically

employed in products such as digital TVs, set-top boxes, automotive radios and multimedia

equipment, as well as in more general purpose controllers for vending machines etc.

Quality is a major concern, especially for the automotive market, where end user products

are installed in high-end, expensive vehicles.

The I
2
C driver software had been ported and updated many times, both to keep pace

with the evolving hardware platform and to cater for the requirements of new and upgraded

target operating systems. The existing device driver in the past suffered from timing and

concurrency issues that caused problems in development and testing, largely stemming

from an incomplete definition of the hardware and software interfaces.

3. Method

ASD:Suite had been demonstrated in other projects to shorten timescales and to reduce

costs when used in the development and maintenance of large and complex systems. This

was, however, the first time it had been applied to device driver software.

The project covered three key activities:

• Modelling of the device driver software.

• Automatic generation of C code.

• Integration into the Linux Kernel.

NXP provided the domain knowledge for the project. Verum did the actual modelling of the

driver specification and design. TASS provided input for the C code generation process and

assisted in the implementation of the Linux kernel Operating System Abstraction Layer

(OSAL) including interrupt management.

3.1 Modelling the Hardware and Software Interfaces

The dynamic behaviour of the original driver was largely unspecified and unclear in the

original design. The application of ASD clarified the interfaces, which resulted in a better

understanding of the behaviour. For example, the software interface, which NXP calls the

hardware API (HWAPI), was assumed to be stateless. However, ASD modelling revealed

HWAPI state behaviour that had not previously been documented.

3.2 Improving the Design

The design of the original I
2
C driver software was different. More work was done in the

interrupt service routine context, instead of in the kernel threads. Using ASD it was

possible to do the majority of the driver work in a kernel thread and as little as possible in

the interrupt service routine. There is trade-off here; doing more in the kernel thread will

improve overall system response but can reduce the driver performance itself. ASD will

however ensure that the behaviour of the driver is complete and correct.

3.3 ASD Methodology

At all stages of a project, ASD technology is applied to the various parts of the device

driver software, and can also be applied to the hardware. In summary the approach,

visualized in Figure 2 is:

1. Using the ASD:Suite, gather and document requirements, capturing them in the

ASD model.

Figure 2. The triangular relation between ASD Model, CSP and source code.

2. Balance the design for optimal performance (e.g. by introducing asynchronous

operation).

3. Generate a formal model of system behaviour and verify the correctness of the

design (before any code has been generated).

4. Generate the source code, guaranteed to be defect free and functionally equivalent to

the formal model.

3.4 Key Benefits

When a software developer has gained familiarity with the ASD:Suite, it is possible to

improve the efficiency of the development process by reducing dependency on testing,

cutting development timescales by typically 30%. Maintenance becomes easier because the

code generated is operating system independent, and changes are implemented to the

model, not the code, which can then be easily regenerated.

ASD:Suite delivers high performance software with a small code footprint and low

resource requirements which is suited to highly embedded systems. Most importantly, the

quality of the software improves, because code defects are eliminated.

4. Integrating ASD Generated Code with the Linux Kernel

In general the structure of an ASD application can be described as depicted in Figure 3

below. The ASD clients call ASD components, which communicate with their environment

through calls to the ASD Run Time Environment (RTE). This RTE uses an OS Abstraction

Layer (OSAL) to make calls to some underlying OS. This should provide easy porting from

one OS to another. The OSAL comprises a set of calls to implement thread based

scheduling and condition monitors, as well as time related functions used by the RTE. In

case of a normal application program the OSAL is directly mapped onto POSIX threading

primitives, mutexes and condition variables in order to provide the required scheduling and

resource protection. Currently only the C generator uses the OSAL interface.

In the case of the I
2
C driver for Linux there is more to do than just have a standard

POSIX implementation for the ASD Run Time Environment, as this now has to operate in

kernel space and implement a device driver. What this means is that we need to have a

standard driver interface (i.e. open, read, write, ioctl, close) on top of the ASD components

and that the ASD client needs to use the corresponding system calls to communicate with

the ASD components from user space.

Furthermore we need to talk to the hardware directly, which means that we need to

deal with interrupts in a standard way. This is realized by an ASD foreign component. A

foreign component is the ASD term for a component for which the implementation is

handwritten code that is derived from the ASD interface model.

4.1 Execution Semantics of ASD Components

In order to understand the requirements of the RTE one needs to consider the execution

semantics of ASD components.

4.1.1 ASD Terminology

We introduce the concept of durative and non-durative actions. A durative action takes

place when a client synchronously invokes a method at a server. Until this method

invocation returns the client remains blocked and it cannot invoke other methods at the

same or other servers. After the method has returned to the client, the server is going to

process the durative part and eventually the server informs the client asynchronously

through a callback. A non-durative action takes place when a client synchronously invokes

a method at a server and remains blocked until the server has completely processed the

request. Basically an ASD component can offer two different kinds of interfaces:

synchronous ones and asynchronous ones: The synchronous interfaces are client interfaces

and used interfaces and the asynchronous interfaces are the callback interfaces. A

component can offer several client interfaces, use several server interfaces and offer as well

as use several callback interfaces. In order to be able to deal with asynchronous interfaces

there is a separate Deferred Procedure Call (DPC) thread per callback interface. Making a

call to a callback interface is implemented as posting a callback packet in a DPC queue

serviced by a DPC thread, and notifying this DPC thread that there is work to do. The

component code executes in the thread of the caller (it is just a method/subroutine call).

Having the DPC threads execute as soon as they are notified may create a problem

when there is shared data between the component thread and the DPC thread. As there

always is shared data (state machine state), this data needs to be protected from concurrent

access using some form of resource protection.

Figure 3. General overview of an ASD system.

For ASD this amounts to run-to-completion semantics. What this means is that it is

guaranteed that the stimulus and all responses have been processed completely in the

specified order and all predicates are updated before the state transition is made.

This then implies that only one client may be granted access to the component at any

time, as well as that DPC access can only occur after completion of a synchronous client

call. In other words: an ASD component has monitor semantics.

Furthermore DPC threads must execute and empty their callback queues before new

client access to the component is granted. This is realized by the Client-DPC

synchronization.

Finally, special precautions must be taken for the following scenario: A client invokes

a non-durative action on the interface of component A, where run-to-completion must be

observed. If this invocation results in the invocation of a durative method and the client can

only return when a callback for the durative action is invoked, we would get into trouble if

the DPC server thread would block on the synchronization between client and server

thread. In order to prevent this scenario there is a conditional wait after the release of the

client-DPC mutex. When the client leaves the component state machine it needs to pass the

conditional wait, to be released by the DPC server thread after this has finished processing

the expected callback.

The following pseudo code enforces the client side sequence of events with the

minimum amount of thread switching and is depicted in Figure 4:

Get ClientMutex

 Get ClientDPCMutex

 CallProcessing

Release ClientDPCMutex

ConditionalWait (DPC callback)

Release ClientMutex

Figure 4. Internal structure of an ASD component.

Component A

Client synchronisation

Client-DPC

synchronisation

State machine

DPC server thread

Used interface

DPC queue

Only if callbacks used

Component B

Client call

The DPC thread, shown inside the dotted area, executes the following pseudo code:

while (true)

{

WaitEvent(wakeup, timeout)

 Get ClientDPCMutex

 CallProcessing

 Release ClientDPCMutex

 Signal DPC callback

}

4.2 Structure of an ASD Linux Device Driver.

When using an ASD component as a Linux device driver some glue code is necessary. The

standard driver interface must be offered to the Linux kernel in order that the driver

functions may be called from elsewhere. Also the implementation of the ASD execution

semantics is not so straightforward, because we now need to consider hardware interrupts

from the device we are controlling. As ASD cannot directly deal with interrupts we need a

way to convert hardware interrupts to events that ASD can cope with. In effect we need an

OS Abstraction Layer implementation for Linux kernel space. This means that instead of

user level threads we now need kernel level threads, and we need to decouple interrupts

from the rest of the processing. To this end we use a kernel FIFO, in which either the

interrupt service routine or an event handler writes requests for the kernel level event

handler. The kernel FIFO takes care that posting messages to and retrieving messages from

the FIFO is interrupt safe. The first level event handler is implemented as a kernel work

queue function scheduled by the interrupt handler, which reads messages from the kernel

FIFO and then puts messages in a message queue serviced by a kernel DPC thread. This

first level event handler is not allowed to block. The kernel DPC thread, signalled by the

first level event handler, is allowed to block. Figure 5 explains this in more detail.

Figure 5. Connecting Interrupts To ASD Callbacks

i2c_isr() {

 event = deal_with_IRQ();

 kfifo_put(event);

 queue_work(

 interrupt_wq,

 &i2c_event_work)
}

i2c_event_handler(){

 while (msg_in_kfifo()){

 kfifo_read(…,&intdata,…);

 /* put msg in DPC queue

 and schedule DPC thread */

 schedule_DPC_callback(&int_data);

 }

}

Interrupt

workqueue
function

Figure 5. Connecting interrupts to ASD callbacks.

Figure 6. Structure of the ASD device driver.

Figure 6 depicts the relation between kernel code, OSAL, ASD generated code and

handwritten code.

Starting from the upper layer downwards we find a standard implementation of a

device structure initialisation in the dev module, offering the open, close, read, write

and ioctl calls.

The I2C core module is also standard, calling the functions i2c_add_adapter,

i2c_algo_control and i2c_algo_transfer implemented in adapter file myc.c. This

file makes the connection between driver entry points and ASD generated I2C component

code. In order that the component can be configured (e.g. set the correct I2C bus speed)

there needs to be a way to hand configuration parameters down to a configuration function

in the ASD file. ParamConverter converts between speed in bits/sec and the register

values necessary to obtain the desired speed. I2cMessageIterator repeats the actions

necessary for reading or writing of a single byte until the requested number of bytes is

reached.

For implementing the ASD execution semantics, the ASD C RunTime Environment is

used. To fulfill its job, this RTE calls upon an OSAL implementation for Linux kernel

space, which this project is the first to use. The OSAL uses the Linux kernel to implement

the required scheduling, synchronisation and timing functionality. The I2CHwComponent

implements the interface to the I2C hardware, supported by a Hardware Abstraction Layer

(vHAL) implementation already available for this component. This hardware component

implementation is based on an interface model derived from the IP hardware software

interface documentation. This interface model of the hardware is used to verify the driver.

The difficult bit is, of course, to make the model behave exactly the same as the hardware.

5. Results

NXP has measured whether two of its key objectives had been met. Following completion

of the project, they carried out:

1. Extensive stress testing, to check the stability and robustness of the product, and that

the functionality was correct.

2. Performance analysis, in terms of speed of operation and footprint.

The results of these investigations are as follows. The original code and data sizes of

the handwritten code can be seen in Table 1.

Table 1. Code and data size of original NXP driver code.

Original code Text Data Bss Total

built-in.o 12468 16 592 13076

This handwritten code is directly linked into the kernel. In order to facilitate testing the

ASD driver was implemented as a loadable kernel module. Using C code generated from

ASD models using the C-code generator (beta version) and combining this with

handwritten code to interface to the I
2
C hardware we get the results shown in Table 2.

Table 2. Code and data sizes for ASD generated C code + driver + ASD OSAL.

Type of Code text data bss total

Handwritten ASD runtime lib incl. OSAL 4824 0 0 4824

Handwritten code 4876 612 864 6352

ASD generated code 12048 40 0 12088

 +

Total code in mymodule.o 21748 652 864 23264

Final kernel module for Linux file manager

mymodule.ko 21840 920 864 23624

We can see from these tables that the difference between the code sizes is about 10

Kbytes. This difference is constant, since the implementation of the OSAL and ASD RTE

is not dependent on the driver. From inspection of the handwritten I2CHwComponent it is

to be expected that there is room for optimization, which could make its code size

significantly smaller. Code size optimization was, however, not the goal of this project. It

will be considered for further work. Initial benchmarking has also shown that the

performance of the code is acceptable, only minimally slower than the handwritten code.

This is depicted in Table 3 below.

Table 3. Comparison of execution times.

Execution time Handwritten old driver ASD Generated code + OSAL

Send of 2 bytes 380 microseconds 386 microseconds

Time in interrupt 60 microseconds 20 microseconds

Several remarks can be made about these results. One: ASD components in general provide

more functionality. They also capture “bad weather” behaviour that is not always captured

or correctly captured in conventional designs. This results in many cases in a small increase

in code size. Two: The way the C code is generated from the model is very straightforward.

Work is underway to optimize the generated code so that it will be smaller. Even now, the

larger code size is acceptable for NXP. Three: The time spent in interrupt context is more in

the existing handwritten case because more is done in interrupt context than in the ASD

case, resulting is a slightly faster performance. The ASD code blocks interrupts for a

shorter time than the existing handwritten device driver code does, resulting in better

overall system response.

Despite these positive findings, there are still some concerns:

• The ASD driver currently implements less functionality than the original driver

(no multi-master, no chaining). Adding this functionality will have more

impact on code size.

• Initially it did not survive a 3 hour stress test.

During integration and test of the ASD driver, a number of flaws where discovered.

Some were related to mistakes in the handwritten code and some to modelling errors due to

misinterpretation of the hardware software interface. The remaining stress test stability

issue was determined to be caused by unexpected responses from the I
2
C EEPROM used

during the stress test. The driver did not expect the response from the EEPROM when

writing to a bad block. With a fresh EEPROM there are no problems. Thus, the model

needs to be enhanced to cope with this situation, which should be a comparatively simple

exercise.

6. Conclusions

NXP believes ASD:Suite can also provide major benefits for developing defect free device

drivers. The structured way of capturing complete requirements and design enable its

software developers to model system behaviour correctly, verify the model and

automatically generate defect free code. They are already modelling hardware, and are

looking at opportunities to combine this with ASD software models, since the hardware-

software interface and (lack of) specification of the corresponding protocols remains a

source of errors.

This project has clearly shown that ASD modelling helps in developing and verifying

deeply embedded software and that using the C code generator is beneficial and practical

for device drivers.

The biggest advantage seen is the rigorous specification process that is enforced with

ASD. Software designers are forced to think before they implement, and ASD helps them

ensure a complete and correct specification.

It was not possible in this particular case to make a direct comparison of development

effort with and without ASD, but other studies have shown that using ASD:Suite can

reduce development time and cost by around 30%. Additional benefits include much easier

and less costly maintenance.

NXP’s own investigations have demonstrated the quality of the product and the

performance of the generated C code.

Even where there are requirements with timing constraints that cannot be modelled

using ASD, race conditions and deadlocks due to unexpected interleaving of activities are

prevented by the model checker, and it is a major advantage for developers to be able to

perform manual timing checks on guaranteed defect free code.

Because the code generator produces verifiably correct code, the number of test cases

developed and needed to run to gain confidence in the final product was considerably less

than it would have been using a conventional approach to software development. The

model checker revealed that there were more than 700,000 unique execution scenarios for

the device driver. Without ASD, it would have required over 700,000 test cases to

thoroughly test the software. Thus a major reduction in testing effort was achieved.

7. Future Work

Some thoughts have been expressed as to whether the current OSAL interface models the

ASD principles in the best way. Viewing an ASD component as a separate process, and

using channels to implement interfaces could be a more appropriate model for more modern

OSes (QNX, OSEK, (µ-)velOSity, Integrity®), which offer higher level message passing

primitives. It would also make the system scalable and offer a more efficient

implementation under this kind of OS. For OSes not offering the message passing

primitives mutexes and conditions can then be used to implement the required functionality.

This thinking is, however, still conceptual, and not in the context of this NXP project.

References

[1] Philippa J. Hopcroft, Guy H. Broadfoot, Combining the Box Structure Development Method and CSP,

In ASE ’04: Proceedings of the 19th IEEE international conference on Automated Software

Engineering, pages 340–345, Washington, DC, USA, 2004.

[2] An introduction to ASD, http://www.verum.com/resources/papers.html

[3] NXP, I
2
C-bus specification and user manual Rev 3, www.nxp.com/acrobat_download/

usermanuals/UM10204_3.pdf, NXP, 2007.

[4] Rutger van Beusekom, Nanda Technologies IM1000 Wafer Inspection System, Verum White Paper

Study, Verum, 2008

[5] R. Wiericx and L. Bouwmeester, Nucletron uses ASD to reduce development and testing times for Cone

Beam CT Scan software, Verum White Paper Study, Verum, 2009

[6] S.J. Prowell and J.H. Poore, Foundations of Sequence-Based Software Specification. IEEE Transactions

of Software Engineering, 29(5):417-429, 2003

[7] H.D. Mills and R.C. Linger and A.R. Hevner. Principles of Information Systems Analysis and Design.

Academic Press, 1986

[8] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985

[9] Formal Systems (Europe) Ltd, Failures-Divergence Refinement: FDR2 User Manual, 2003

