
Design Patterns for Communicating Systems with
Deadline Propagation

Martin Korsgaard and Sverre Hendseth

Department of Engineering Cybernetics

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



2

Contents

I Explain Toc: occam with TIME-construct for real-time programming.
II Show how certain types of communication can distort timing.
III Introduce design patterns that helps to avoid this.
IV (Demonstrate schedulability analysis on Toc programs using these

patterns.)

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



3

I Traditional Real-time Programming

Given a specification of tasks with deadlines, how to implement?

Traditional approach:

1. Each task is converted into a thread.
2. Periods are implemented using sleeps or delays.
3. Deadlines are converted into relative priorities.
4. Communication uses monitors/mutexes/etc., which are unaware of

timing and leads to unbounded inversion problems.
5. Priority inheritance or ceiling protocols needed to fix these.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



4

Traditional Real-time Programming (2)
The tradition is not all right:

1. Bad Abstraction: Threads, priorities and delays are low-level
primitives. Correct use is difficult, and the flexibility allowed by these
primitives is not needed.

2. No Reflection: The transformation from tasks and deadlines to
threads and priorities is irreversible: Information is lost and the
implementation does not reflect the timing requirements of the
specification.

3. Complex Synchronization: Priority inheritance or ceilings lead to
complex scheduling rules, making it difficult to predict scheduling
behaviour in unexpected situations such as an overloaded system.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



5

Bad abstraction
The concurrency primitives cannot be used to specify timing requirements
directly.

void thread()

{

set priority(5);

next := clock();

while(1) {

do something();

next := next + 20;

delay until(next - clock());

}

}

Where is the timing requirement?

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



6

Introduction to Toc

The Toc Approach:

1. Timing requirements are specified as deadlines directly in code.
2. Scheduling uses EDF =⇒ no priorities.
3. Synchronous communication using channels with deadline

propagation. Inheritance protocol is implicit =⇒ no need for extra
rules.

4. Toc is lazy and does not execute primitive processes without a
deadline. Considering timing requirements is not optional.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



7

Toc TIME Construct
The construct

TIME x
P()

creates a process which is
1. scheduled with relative deadline x

2. and which is not allowed to terminate before its deadline.

(The scheduler cannot force programs to complete within their deadlines
but it will enforce 2.)

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



8

Tasks in Toc
The following therefore creates a periodic task with a period and relative
deadline of 10 ms:

WHILE TRUE
TIME 10 MS
Task.body()

Periodic task with period 100 ms and relative deadline of 10 ms.

WHILE TRUE
TIME 100 MS
TIME 10 MS
Task.body()

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



9

Lazy Scheduling

Definition (Lazy scheduling)
Lazy scheduling means that no statements are executed without an
associated deadline.

Hypotheses

— Every task in a real-time system can be given a deadline.
— Background tasks with undefined timing requirements are never

needed.
— Programmers should be forced to consider the timing requirements

of all functionality in the system.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



10

Laziness in Toc
Toc is lazy and does not execute primitive processes unless driven by a
deadline.

(In fact, every occam program, when interpreted as a Toc program, is
semantically equal to STOP.)

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



11

Deadline Propagation
Scheduling of dependent processes is handled through deadline
propagation.

Definition (Deadline Propagation)
A process blocked by a channel that is not ready will transfer its deadline
through the channel to the process blocking on the other end.

— In effect, if an early deadline task is blocked, code to unblock it is
executed with the early deadline.

— When an early deadline task is ready, processes are only executed
that help that deadline being reached.

— The result is an implicit priority inheritance protocol over channels.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



12

Order of Execution: Passive Server

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



13

II Distorted timing

Programs may run into several issues that may distort the intended timing.

1. Tasks may stall, waiting for the minimum-execution time property of
another task.

2. Processes may be driven by another task than intended, undermining
the given deadline, making the system harder to schedule.

3. The systems or a subsystem may deadlock.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



14

Direct communication distorts timing
In general, two tasks must not communicate directly.

— The left-hand task will stall and (nearly) always miss its deadline.
— The right-hand task will partly execute with the deadline of the left,

undermining the given deadline specification.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



15

Deadlock in Deadline-driven systems

A deadlock in a lazy, deadline-driven system like Toc is slightly different
from a deadlock in a strict RR system (like occam):

— In Toc, A task that requires communication over a channel is never
blocked; it simply defers its execution to the task that it is waiting for.

This can only fail if a process — through others — passes a deadline
onto itself, so a deadlock equals circular propagation of a deadline.

— A possible circular wait cannot deadlock unless it comes with a
circular deadline propagation: i.e. code may be too lazy to deadlock

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



16

Too lazy to deadlock

The following process never deadlocks, because of laziness.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



17

III Design Patterns

Communication between tasks must be restricted to avoid deadlocks or
distorted timing. Using design patterns can aid in this.

The design patterns presented here are designed to

— Be flexible and useful for programming most real-time applications.
— Allow analysis of programs w.r.t. deadlocks.
— Allow analysis of programs w.r.t. schedulability.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



18

Tasks
The first pattern is the task.

— A task is a process with one TIME construct, or two nested TIME
constructs.

— It may be periodic or sporadic.
— A task is depicted as a double circle.
— A task may not communicate directly with other tasks:

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



19

Passive Server

A passive server has no TIME construct, and executes only when driven
(possibly indirectly) by a task.

— A task may accept requests from one or more clients. The protocol
with the client may a reply.

— Sharing a passive server between clients implies synchronization
between those clients and may inevitably lead to deadline inversion.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



20

Deadlocks in Passive Server Networks

The client-server paradigm for deadlock-freedom in occam applies to
networks of tasks and passive servers in Toc.

1. No client communicates with other processes between a request to a
server and the corresponding reply.

2. No server accepts new requests between a request and a reply, but
may send requests to other servers acting as a client.

3. The client-server relation graph must be acyclic.

To avoid one client stalling another, it is also required that no servers may
be held across multiple task instances.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



21

Sporadic tasks

Many types of tasks are sporadic rather than periodic, in that they are not
started until triggered by some other event.

Example (Button Polling)

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



22

Sporadic tasks (2)
Sporadic tasks should be allowed to be triggered from passive servers as
well.

Example (Error Handling)

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



23

Sporadic tasks (3)
Sporadic tasks should be able to trigger each others cyclically.

Example (Simple Elevator Model)

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



24

Implementing triggers

A straight-forward channel trigger is insufficient:

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



25

Events

A trigger of a sporadic task should have event-like behaviour.

— An event is a message from one task (the source) that may trigger
another task (the target).

— An event must be able to drive an idle sporadic task to start
(synchronous message)

— The source of an event must never stall when outputting an event.
— The timing of the target sporadic task should not be affected by an

incoming event, and the target can never drive the source to send an
event. (asynchronous message)

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



26

Event process

Because two tasks are not allowed to communicate directly, an
intermediate event process between the source and the target is needed.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



27

Event rules

Two rules lead to desired properties:

1. The target must notify the event process that is ready, after which it
cannot communicate with other processes before triggered by a new
event.

2. A trigger from the source should never drive the target task. This
implies that outputting a trigger will never stall the source.

No deadline from the source can propagate beyond the target =⇒ an
event can never be involved in a deadlock.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



28

Implementing Events
Example (Wake-up event)

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



29

IV Execution Time Analysis

Worst-case execution time analysis is required for some safety-critical
real-time systems.

— Execution time analysis of synchronously communicating systems is
not well developed.

— Analysis usually assume threads/locks.
— Ada Ravenscar (safety-critical profile) prohibits synchronous

communication because of this.
— However, we have developed a method for WCET analysis of Toc

programs, given that the presented design patterns are being used.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



30

Execution Time Analysis (2)

Our current analysis is based on the traditional model for schedulability of
EDF systems. The traditional model requires

1. Fixed set of periodic tasks with D = T .
2. Tasks are independent.
3. System is schedulable iff ∑

i

Ci/Ti ≤ 1

Ci and Di is the computation and deadline/period of task i , respectively.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



31

Execution Time Analysis (3)
Procedure:

1. Enforce D = T . (No nested TIME constructs) (unfortunate)
2. Assume that all sporadic tasks are fully periodic. (pessimistic)
3. Treat event processes as servers to both source and target.
4. Augment Ci to include the worst-case execution time of dependent

processes due to deadline-propagation.
5. System is schedulable iff ∑

i

Ci/Ti ≤ 1

Equations are in the proceedings.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



32

Summary
1. Toc is a real-time programming language building on occam, where

specification of timing requirements is treated as an fundamental part
of the language

2. Careless communication between tasks in Toc can distort timing.
3. This can be avoided by using a small set of design patterns.
4. Schedulability analysis is possible for Toc when using only these

design patterns.

Some Future Work
1. Formal analysis of lazy, deadline-driven systems.
2. Check if schedulability analysis can be extended to other types of

synchronously communicating processes.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



33

Questions

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



34

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



35

Timing in Toc
The start-time of a TIME construct is the time of the event that caused its
evaluation.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



36

Laziness and Extended Rendezvous

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



37

Circular Propagation is Deadlock

— The deadline propagates to the right.
— If any of the parallel processes writes to chx, the left task will be

driven indirectly by its own deadline (circular propagation) and the
system deadlocks.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



38

Preemptions

An earlier task that becomes ready will preempt (take over execution
from) a later deadline task.

For two tasks A and B where DA < DB:
1. A can preempt B at most bDB/DAc times.
2. A single instance of A can preempt B at most once.

Depending on the system state at time of preemption, there may be an
execution time penalty for both being preempted and for preempting
another task.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



39

Timing of Passive Server

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



40

Access Set for a Process

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



41

Critical Processes for a Task Pair

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



42

Timing of Passive Server (expression)

Server s may access other servers, so Cs,reply can therefore be given as

Cs,reply = Ĉs,reply +
∑

s′∈acc s

(
Cs′,request + Cs′,reply

)
where Ĉs,reply is the part of the execution local to s.

This is a recursive formula over the set of servers which will always
terminate if the client-server graph is acyclic.

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation



43

Big ET Equation

CA = ĈA +
∑

s∈acc A

(
Cs,request + Cs,reply

)
+

∑
X∈T ,DX <DA

⌊
DA

DX

⌋
max

s∈crit (A,X)
Cs,request

+
∑

X∈T ,DX >DA

max
s∈crit (A,X)

(
Cs,client + Cs,reply

)

www.ntnu.no Korsgaard M. and Hendseth S., Design Patterns for Communicating Systems with Deadline Propagation


	I Introduction
	II Stalled tasks and Distorted timing
	III Design Patterns
	IV Execution-time analysis
	Summary

