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Abstract. Toc is an experimental programming language based on occam that com-
bines CSP-based concurrency with integrated specification of timing requirements. In
contrast to occam with strict round-robin scheduling, the Toc scheduler is lazy and
does not run a process unless there is a deadline associated with its execution. Chan-
nels propagate deadlines to dependent tasks. These differences from occam necessitate
a different approach to programming, where a new concern is to avoid dependencies
and conflicts between timing requirements. This paper introduces client-server design
patterns for Toc that allow the programmer precise control of timing. It is shown that
if these patterns are used, the deadline propagation graph can be used to provide suf-
ficient conditions for schedulability. An alternative definition of deadlock in deadline-
driven systems is given, and it is demonstrated how the use of the suggested design
patterns allow the absence of deadlock to be proven in Toc programs. The introduction
of extended rendezvous into Toc is shown to be essential to these patterns.
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Introduction

The success of a real-time system depends not only on its computational results, but also
on the time at which those results are produced. Traditionally, real-time programs have been
written in C, Java or Ada, where parallelism and timeliness relies on the concepts of tasks
and priorities. Each timing requirement from the functional specification of the system is
translated into a periodic task, and the priority of each task is set based on a combination of
the tasks period and importance. Tasks are implemented as separate threads running infinite
loops, with a suitable delay statement at the end to enforce the task period. Shared-memory
based communication is the most common choice for communication between threads. With
this approach, the temporal behaviour of the program is controlled indirectly, through the
choice of priorities and synchronization mechanisms.

The occam programming language [1] has a concurrency model that only supports syn-
chronous communication, and where parallelism is achieved using structured parallels in-
stead of threads. Control of timeliness is only possible with a prioritized parallel construct,
which is insufficient for many real-time applications [2]. The occam-π language [3] improves
on this by allowing control of absolute priorities. The occam process model is closely re-
lated to the CSP process algebra [4, 5], and CSP is well suited for formal analysis of occam
programs.

Toc [6, 7] is an experimental programming language based on occam that allows the
specification of timing requirements directly in the source code. The goal of Toc is to create a
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language where the temporal response is specified explicitly rather than indirectly, and where
the programmer is forced to consider timing as a primary concern, rather than something to
be solved when the computational part of the program is complete. A prototype compiler and
run-time system has been developed.

In Toc, the timing requirements from the specification of the system can be expressed
directly in source code. This is achieved with a dedicated deadline construct and synchronous
channels that also propagate deadlines to dependent tasks. A consequence of deadline prop-
agation is an implicit deadline inheritance scheme.

The Toc scheduler is lazy in that it does not execute statements without an associated
deadline. Server processes or other shared resources do not execute on their own, but must be
driven by deadlines implicitly given by their access channels. The laziness means that tem-
poral requirements cannot be ignored when programming, and tasks that traditionally would
be implemented as deadline-less “background tasks” must now be given explicit deadlines.
occam programs use a strict, round-robin scheduler that closely matches CSP’s principle of
maximum progress. This is one reason why CSP is well suited to model occam programs.
However, laziness is not closely matched by a principle of maximum progress, and that makes
CSP-based analysis of Toc programs harder.

For all parallel systems that use synchronization there is a risk of deadlock. In occam,
the client-server design paradigm can be used to avoid deadlocks by removing the possibility
of a circular wait [8, 9]. Here, each process acts as either a client or a server in each commu-
nication, and each communication is initiated by a request and terminated by a reply. If the
following three criteria are met, then the system is deadlock-free:

1. Between a request to a server and the corresponding reply, a client may not commu-
nicate with any other process.

2. Between accepting a request from a client and the corresponding reply, a server may
not accept requests from other clients, but may act as a client to other servers.

3. The client-server relation graph must be acyclic.

An alternative deadlock-free design pattern described in [8] is I/O-PAR, guaranteed when
all processes proceed in a sequential cycle of computation followed by all I/O in parallel.
The whole system must progress in this fashion, similar to bulk synchronous parallelism
(BSP) [10]. It is also possible to use a model checker such as SPIN [11] or FDR2 [12] to
prove the absence of deadlocks under more general conditions.

For some real-time systems, proving the absence of deadlocks is not sufficient, and a
formal verification of schedulability is also required. Toc is scheduled using earliest deadline
first (EDF), and for EDF systems, a set of independent, periodic tasks with deadline equal to
period is schedulable if and only if: ∑

i

Ci

Ti

≤ 1 (1)

where Ci is the worst-case computation time (WCET) of task i, and Ti is the period of that
task [13]. Equation 1 ignores overheads associated with scheduling.

Scheduling analysis is more complicated for task sets that are not independent. One ef-
fect that complicates analysis of dependent tasks is priority inversion [14], where a low pri-
ority task holding a resource will block a high priority task while holding that resource. Pri-
ority inversions are unavoidable in systems where tasks share resources. In contrast, an un-
bounded priority inversion is a serious error, and occurs when the low priority task holding
the resource required by the high priority task is further preempted by intermediate priority
tasks, in which case the high priority task may be delayed indefinitely. Solutions to this prob-
lem include the priority inheritance and the priority ceiling algorithms, both defined in [15].
These algorithms are restricted to priority-based systems. Other systems can be scheduled



and analyzed by using the Stack Resource Policy [16], for example. SRP supports a wide
range of communication and synchronization primitives, but is otherwise similar to the pri-
ority ceiling algorithm. Unfortunately, schedulability analysis of task sets that communicate
synchronously using rendezvouses are not well developed [17].

If deadlines may be shorter than periods, necessary and sufficient schedulability condi-
tions can be found using the Processor Demand Criterion [18], but the computation is only
practical if the relative start-times of all the tasks are known (a “complete task set”). If the
relative start-times are not known (an “incomplete task set”) then the problem of determining
schedulability is NP-hard.

To use these analysis methods one needs to know the WCET C of each task. This is far
from trivial, and may be impossible if the code contains variable-length loops or recursions.
Fortunately, programmers of real-time systems usually write code that can easily be found to
halt, reducing the problem to finding out when. Execution times vary with input data and the
state of the system, meaning that measurements of the execution time are not sufficient. The
use of modern CPU features such as superscalar pipelines and cache further increases this
variation.

Despite of these difficulties, bounds on execution times can still be found in specific
cases using computerized tools such as aiT [19]. The process is computationally expen-
sive [20] and subject to certain extra requirements such as manual annotations of the maxi-
mum iterations in a loop [21]. AiT is also limited to fixed task sets of fixed priority tasks.

This paper discusses how analysis of schedulability and deadlocks can be enabled in
Toc by using a small set of design patterns. The paper begins with a description of the Toc
timing mechanisms in Section 1 and the consequences of these mechanisms. Section 2 de-
scribes deadlocks in deadline propagating systems, and how it differs from deadlocks in sys-
tems based on the principle of maximum progress. Section 3 describes the suggested design
patterns and how they are used to program a system in an intuitive manner that helps avoid
conflicts between timing requirements. Section 4 explains how schedulability analysis can
be done on systems that are designed using these design patterns. The paper ends with a
discussion and some concluding remarks.

1. Temporal Semantics of Toc

The basic timing operator in Toc is TIME, which sets a deadline for a given block of code,
with the additional property that the TIME construct is not allowed to terminate before the
deadline. The deadline is a scheduling guideline, and there is nothing in the language to stop
deadlines from being missed in an overloaded system. In contrast, the minimum execution
time constraint is absolute and is strictly enforced.

The definition of a task in Toc is the process corresponding to a TIME construct. A peri-
odic task with deadline equal to period is simply a TIME construct wrapped in a loop, and a
periodic task with a shorter relative deadline than period is written by using two nested TIME

constructors: the outer restricting the period while the inner sets the deadline. Toc handles
the timing of consecutive task instances in a way that removes drift [6,7]. Sporadic tasks can
be created as a task triggered by a channel by putting the TIME construct in sequence after
the channel communication.

A TIME construct will drive the execution of all statements in its block with the given
deadline whenever this deadline is the earliest in the system. If channel communications are
part of that block, then the task will also drive the execution of the other end of those channels
up to the point where the communications can proceed. A task has stalled if it cannot drive
a channel because the target process is waiting for a minimum execution time to elapse, but
execution of the task will continue when the target becomes ready.



Figure 1. Order of Execution when task communicates with passive process.

Figure 2. Use of Extended Rendezvous. (a) x will not be passed on due to laziness. (b) x will be forwarded
with the deadline inherited from input.

The definition of laziness in Toc is that primitive processes (assignment, input/output,
SKIP and STOP) not driven by a deadline will not be executed, even if the system is otherwise
idle. However, constructed processes will be evaluated even without a deadline in cases where
a TIME construct can be reached without first executing primitive processes.

Data from the compiler’s parallel usage rules checker is used to determine which pro-
cess to execute to make the other end of a given channel ready. An example of the order of
execution is given in Figure 1. Here, the process P.lazy() will not be executed because it is
never given a deadline.

1.1. Timed Alternation

In Toc, alternations are not resolved arbitrarily, but the choice of alternative is resolved by
analyzing the timing requirements of the system.

Choice resolution is straight forward when there is no deadline driving the ALT itself, so
that the only reason that the process with the ALT is executing at all is that it is driven by one
of its guard channels, which by the definition of EDF must have the earliest deadline of all
ready tasks in the system at that time. By always selecting the driving alternative it is ensured
that the choice resolution always benefits the earliest deadline task in the system. This usage
corresponds to the ALT being a passive server with no timing requirements on its own, that
handles requests from clients using the deadlines of the most urgent client.

Other cases cannot be as easily resolved: If the ALT itself has a deadline, if the ALT is
driven by a channel not part of the ALT itself or if the driving channel is blocked by a Boolean
guard, then the optimal choice resolution with respect to timing cannot easily be found. If the
design patterns presented in this paper are used, then none of these situations will arise, and
therefore these issues are not discussed here.

1.2. Use of Extended Rendezvous

A consequence of laziness is that driving a single channel communication with another pro-
cess cannot force execution of the other process beyond what is required to complete the
communication. One consequence of this is that it is difficult to write multiplexers or simple
data forwarding processes.

This is illustrated in Figure 2a: if something arrives on input then it will not immedi-
ately be passed on to output because there no deadline driving the execution of the second
communication. The output will only happen when driven by the deadline of the next input.



A workaround is to add a deadline to the second communication, but this is awkward, and the
choice of deadline will either be arbitrary or a repeated specification of an existing deadline,
neither of which is desirable. Another solution, though ineffective, is to avoid forwarding
data altogether, but this would put severe restrictions on program organization.

Extended inputs [3] fix the problem. An extended input is a language extension from
occam-π that allows the programmer to force the execution of a process “in the middle” of a
channel communication, after the processes have rendezvoused but before they are released.
Syntactically, this during process is indented below the input, and a double question-mark
is used as the input operator. In Toc, the consequence is that the deadline used to drive the
communication will also drive the during process.

A correct way to forward a signal or data is shown in Figure 2b.

2. Deadlock in Timed Systems

A deadlock in the classical sense is a state where a system cannot have any progress because
all the processes in the system are waiting for one of the other processes. For a system to
deadlock in this way there has to be at least one chain of circular waits.

In Toc, when the earliest-deadline task requires communication over a channel it will
pass its deadline over to the process that will communicate next on the other side of that
channel. If this process in turn requires communication with another process, the deadline
will propagate to this other process as well. Thus a task that requires communication over
a channel is never blocked; it simply defers its execution to the task that it is waiting for.
This can only fail if a process — through others — passes a deadline onto itself. In that
case the process cannot communicate on one channel before it has communicated on another,
resulting in a deadlock. This leads to the following alternative definition of deadlock in Toc:

Definition 1 (Deadlock) A system has deadlocked if and only if there exists a process that
has propagated its deadline onto itself.

One advantage of this definition is that it takes laziness into account. Deadlock avoidance
methods that ignore laziness are theoretically more conservative, because it is possible to
construct programs that would deadlock but does not because the unsafe code is lazy and
does not execute.

In occam one can avoid deadlocks by the client-server paradigm if clients and servers
follow certain rules and the client-server relation graph is acyclic. This ensures that there are
no circular waits. In Toc, one can use the same paradigm to avoid deadlocks by ensuring that
there is no circular propagation of deadlines.

In Toc there can also be another type of deadlock-like state, the slumber, where a system
or subsystem has no progress because it has no deadlines. Slumber occurs e.g. in systems that
are based on interacting sporadic tasks, where sporadic tasks are triggered by other tasks. If a
trigger is not sent, perhaps because of an incorrectly written conditional, the system may halt
as all processes wait for some other process to trigger them. Even though the result is similar
to a deadlock — a system doing nothing — the cause of a slumber is laziness and incorrect
propagation of deadlines rather than a circular wait.

3. Design Patterns

By essentially restricting the way a language is used, design patterns can be used to make a
program more readable and to avoid common errors [22]. The goals of the design patterns
for Toc presented in this paper are:



Figure 3. Diagram symbols for design patterns. An arrow points in the direction of deadline propagation, not
data flow.

Figure 4. A task driving a task distorts timing.

1. To be able to reason on the absence of deadlocks in a system.
2. To allow for schedulability analysis.
3. To provide a flexible way of implementing the desired real-time behaviour of a sys-

tem.

The design patterns should be designed in such a way that knowledge of a program at the
pattern level should be sufficient to do both deadlock and schedulability analysis, so that
analysis does not need to take further details of the source code into account.

The design patterns will be compatible with the client-server paradigm, so that this can
be used to avoid deadlocks. Schedulability analysis is done by analyzing the timing response
of each pattern separately, and then using the deadline propagation graph of the system at the
pattern level to combine these timing responses into sufficient conditions for schedulability.

3.1. The Task

A task is any process with a TIME construct, and is depicted with a double circle as shown in
Figure 3. All functionality of the system must be within the responsibility of a task.

Tasks are not allowed to communicate directly with one another, because this can lead
to distorted timing. This is illustrated by the two tasks in Figure 4: T1 has a deadline and
period of 10 ms and T2 of 20 ms, which means that T1 wants to communicate over the
channel once in every 10 ms period, while T2 can only communicate half as often. A task’s
minimum period is absolute, so T1, which was intended to be a 10 ms period task, will often
have a period of 20 ms, missing its deadline while stalled waiting for T2. Moreover, T2 will
often execute because it is driven by T1 and not because of its own deadline, in which case
it is given a higher scheduling priority than the specification indicates. The result of direct
communication in this case is that two simple, independently specified timing requirements
become both dependent and distorted.

3.2. The Passive Server

A process is passive if it has no deadline of its own. Thus a passive server is driven exclusively
by deadlines inherited from clients through its access channels. A passive server is depicted
as a single circle, and communications between a task and a server is shown as an arrow



from the driving client to the server. This is usually, but not necessarily, the same as the data
direction.

The protocol for an access to a server may involve one or more communications. The
first communication is called the request, and any later communications are called replies.
To follow the client-server paradigm, if the protocol involves more than one communication,
the client cannot communicate between the request and the last reply, and the server may
not accept requests from other clients in this period. Again, the server is allowed to perform
communications with other servers as a client, propagating the deadline further on.

The possibility of preemption means that the temporal behaviour of tasks using the same
server are not entirely decoupled: If a task that uses a server preempts another task holding
the same server, then the server may not be in a state where it can immediately handle the new
request. In this case, the deadline of the new request must also drive the handling of the old
request, adding to the execution requirements of the earlier deadline task. This is equivalent
to priority inversion in preemptive, priority-based systems. The preempted task executes its
critical section with the earlier task’s deadline, resolving the situation in a manner analogous
to priority inheritance.

3.3. Sporadic Tasks and Events

A passive server is useful for sharing data between tasks, but because a server executes with
the client’s deadline, a different approach is needed to start a periodic tasks that is to execute
with its own deadline. A communication to start a new task will be called a trigger; the
process transmitting the trigger is called the source and the sporadic task being triggered is
called the target.

A simple way to program a sporadic task would be to have a TIME construct follow in
sequence after a channel communication. When another task drives communication on the
channel, the TIME construct will be discovered and the sporadic task will be started. How-
ever, this approach is problematic, for reasons similar to why tasks should not communicate
directly. A target sporadic task that has been started will not accept another trigger before its
deadline has elapsed; i.e. if the target task has a relative deadline D then the source must wait
at least D between each trigger to avoid being stalled. If a new trigger arrives too early, the
source will drive the target and eventually stall.

This illustrates the need for events that can be used to start a sporadic task, without the
side-effects of stalling the source or driving the target. Events must appear to be synchronous
when the target is ready and asynchronous when the target is not: If the target is waiting for
a trigger it must be triggered synchronously by an incoming event, but if it the target is busy
then incoming events must not require synchronization.

The event pattern is a way of implementing this special form of communication in Toc.
An event pattern consists of an event process between the source and the target, where the
communication between the event process and the target must follow certain rules. An event
process is depicted in diagrams as an arrow through a square box.

An event process forwards a trigger from the source to the target when the target is ready,
and stops it from being forwarded when the target is busy. The event process must therefore
know the state of the target. After a trigger is sent to the target then the target can be assumed
to be busy, but the target must explicitly communicate to the event process when it becomes
ready. The event and target processes must be together follow two rules:

1. After the target notifies the event process that is ready then the target cannot commu-
nicate with other processes before triggered by a new event.

2. A trigger from a source should never drive the target to become ready. This implies
that sending a trigger will never stall the source.



Because of these rules, a deadline from the source will never propagate beyond the target,
so that the event process is never involved in a circular propagation of a deadline. This in
turn means that an event can never be the source of a deadlock in the super-system, even if
communications with the event process makes the super-system cyclic. It is therefore safe to
disregard events when using the client-server paradigm to avoid deadlocks, or equivalently,
to model an event as a passive server to both the source and the target. This sets an event apart
from other processes, which is emphasized by the use of a square diagram symbol instead of
a circle.

There are many possible designs for an event process: it may discard the input when the
target is not ready or it may buffer the input. It may have multiple inputs or outputs, and it
may also hold an internal state to determine which events to output.

4. Schedulability Analysis

Traditionally, threads execute concurrently and lock resources when required, so that other
threads are blocked when trying to access those resources. On the other hand, in Toc, the
earliest deadline task is always driving execution, but the code being executed may belong to
other tasks. A task is never blocked. This means that the schedulability analysis can assume
that tasks are independent, but that the WCET for each task will then have to include the
execution time of all the parts of dependent processes it may also have execute.

All sporadic tasks will here be assumed to execute continuously with their minimum
periods. This is a conservative assumption that enables schedulability analysis on a pure
pattern level, without having to analyze actual source code to find out which sporadic tasks
that may be active at the same time. To find the worst-case execution time, each task will also
be assumed to be preempted by all other tasks as many times as is possible.

The analysis will also be simplified by assuming that D = T for all tasks, which in code
terms means that there are no nested TIME constructs. Because no assumption can be made as
to the relative start-time of tasks in Toc, this restriction is necessary to make the schedulability
analysis problem solvable in polynomial time. In this setting, the schedulability criterion is
simply the standard EDF criterion given in Equation 1. The relative deadlines Di = Ti are
read directly from code, so the main problem of the schedulability analysis is to find Ci: the
worst-case execution time for each task including execution of other tasks due to deadline
propagation. This variable is made up of three components:

1. The base WCET if not preempting and not being preempted.
2. The WCET penalty of being preempted by others.
3. The WCET penalty of preempting other processes.

Dependencies between processes will be analyzed using the deadline-propagation graph of
the system. An example graph in given in Figure 5.

4.1. WCET of a Server or Event

The execution time of a server is complex due to preemption. If a server protocol involves at
least one reply, then a client waits for the server in one of two phases: Waiting for the server
to accept its request, and waiting for the server up to the last reply. In the first phase the server
is ready to accept any client, and may switch clients if preempted, but in the second phase it
will complete the communication with the active client even if preempted (executing with the
deadline of the preempting task). If the server handles the request by an extended rendezvous
then this is equivalent to a second phase even if the server has no reply, as the server cannot
switch clients during an extended rendezvous.



Figure 5. Example deadline propagation graph with tasks and servers.

Figure 6. Timing of passive server

The WCETs for the two phases of a protocol with one reply are illustrated in Figure 6.
For a server s, the WCET of the server in the first phase is denoted Cs,request and consists
of lazy post-processing of the previous access or initialization of the server. The WCET of
the server in the second phase is denoted Cs,reply, which is zero if there is no second phase.
Cs,reply consists in part of the WCET of code local to the process of the server, Ĉs,reply, but
also of execution used by other servers accessed by s. If acc s is the set of servers accessed
directly by s, then

Cs,reply = Ĉs,reply +
∑

s′∈acc s

(Cs′,request + Cs′,reply) (2)

This is a recursive formula over the set of servers. As long as the deadline-propagation net-
work is acyclic, then the recursion will always terminate as there will always be a server at the
bottom where acc s = Ø. It is assumed that each server accesses another server directly only
once for each of its own requests, but the calculations can easily be adjusted to accommodate
multiple accesses by simply adding the WCET of those servers multiple times.

For a server s, the maximum WCET of any clients in the client process between the
request and the last reply is important when calculating the effect of preemptions, and is
denoted Cs,client. This variable is also zero if there are no replies.



From a temporal point of view an event process behaves like a server to both the source
and the target. Like with a server, a source that sends a trigger to an event may up to a certain
point be preempted by another source of that event. The same applies to a target when it
notifies the event that it is ready. When doing the schedulability analysis one can therefore
treat an event as a server.

4.2. Schedulability Analysis of the System

A client can be preempted by multiple other clients and by each of these clients multiple
times. As seen in the source code in Figure 6, a server cannot change clients while in phase
two. Therefore, if the client is preempted in the second phase its work will be driven to
complete with the deadline of the preempting task. In contrast, if a client is preempted in the
first phase its work is in effect given away to the preempting task, and it will have to execute
Crequest over again to make the server ready after the preempting process has finished. The
worst case is that the client has executed almost all of Crequest every time it is preempted, in
which case each preemption leads to another Crequest of work for the preempted client.

From the preempting client’s point of view, preempting a task in its first phase in a server
may save up to Cs,request of execution, because of the work already done by the task being
preempted. On the other hand, if preempting in the second phase, it will have to drive the
current client to finish before the server becomes ready. This may also include execution of
code in the process of the preempted client. The worst-case is that the current client has just
begun the second phase, in which case preempting it leads to Cs,client +Cs,reply of extra work
for the preempting client.

For any two tasks A and B, where DA < DB, the deadline propagation graph can be
used to identify the servers in the network where A will have to drive B if A preempts B.
Such a server is called a critical server for the pair of tasks (A,B).

Definition 2 (Critical Server) A critical server for the pair of tasks (A,B) is a server that
can be accessed directly or indirectly by both A and B, but not only through the same server.

If a server s2 is accessible by two tasks only through server s1, then preemption must neces-
sarily happen in s1, because both tasks cannot at the same time hold s1, which is necessary to
access s2. In Figure 5, servers 1, 2 and 3 are critical servers for (A,B), while server 3 is the
only critical server for both (A,C) and (B,C). The set of critical servers for any two tasks
A and B is denoted crit (A,B).

If task A is to preempt task B, then A must start after B, and have an earlier absolute
deadline. For tasks A and B, where DA < DB, this means that A can preempt B at most

⌊
DB

DA

⌋
(3)

times for each instance of B under EDF. In other words, Equation 3 is the number of con-
secutive instances of A that fits completely within a single instance of B. Note that a single
instance of A can preempt B at most once.

ĈX is the execution time required by code local to X; the max function returns the
largest numerical value of a set. T is the set of tasks. With these definitions,CA can be written
as:



CA = ĈA +
∑

s∈acc A

(Cs,request + Cs,reply)

+
∑

X∈T,DX<DA

⌊
DA

DX

⌋
max

s∈crit (A,X)
Cs,request (4)

+
∑

X∈T,DX>DA

max
s∈crit (A,X)

(Cs,client + Cs,reply)

The first line in the equation is the amount of execution required by the task process itself,
plus the execution required by mandatory accesses to other servers. The second line is sum
of the worst-case penalties for being preempted by a given task, multiplied by Equation 3,
which is the maximum number of preemptions by that task. The third line is the sum of the
worst-case costs of preempting each other task that may be preempted. Equation 4 can be
extended to include the scheduling overhead associated with preemptions, as the maximum
number of preemptions can be found using Expression 3.

When the Cs of all the tasks have been found, then the system can be tested for schedu-
lability with Equation 1.

5. Discussion

Schedulability analysis in systems of communicating processes is not well developed. This
paper presents an algorithm for finding sufficient schedulability conditions for Toc programs.
The analysis presented here is conservative, so dimensioning the processing power of a sys-
tem based on this analysis may lead to low utilization. The analysis has not been tested on
an actual system, and it remains to see just how conservative it is in practice. Nevertheless,
this paper shows that, subject to certain restrictions, schedulability analysis is possible in
principle for systems of deadline-driven communicating processes. Also, in some real-time
applications, proof of schedulability is more important than a high utilization.

Sporadic tasks are common when programming in Toc, but rare in traditional real-time
programming, where they are mostly used to model error-handling. The schedulability anal-
ysis in this paper is developed on top of the traditional model, where sporadic tasks are as-
sumed to execute continuously with their relative deadlines as periods. This is a conservative
assumption that is particularly unfortunate for systems largely based on sporadic tasks.

Many legal constructs in Toc programs lead to conflicts between timing requirements.
This is for example the case when using an ALT within a TIME, using a single channel to com-
municate between tasks, or triggering sporadic tasks without an event-like formalism. It can
be argued the language has far more expressive power than what can be safely used. Some of
this is due to the language being syntactically based on occam, while being semantically very
different. Indeed, the deadline-driven semantics of Toc and the strict round-robin semantics
of occam may be too different to be supported by the same basic statements. However, the
deadline-driven semantics of Toc is based on occam because occam is the existing language
that best supports the concept of parallelism and synchronous communication needed by Toc.
Extended rendezvous is another occam concept that has proven to be immensely useful in
Toc; the use of extended rendezvous to manage deadlines cannot easily accomplished by
other means. The clear separation of primitive and constructed processes that exist in occam
is also the basis for Toc’s definition of laziness, and it less clear how laziness can be defined
in a C-like language, for example.



6. Conclusions and Future Work

This paper has introduced design patterns for communicating between tasks and triggering
sporadic tasks. The patterns allow dependencies and conflicts between timing requirements
to be avoided. However, whether they provide enough expressive power to design general
systems or whether they scale well to larger systems is uncertain, as Toc is still an experimen-
tal language in an early stage. Composition of patterns with respect to timing requirements
has also not been studied, and is a potentially interesting subject for future work.

When programming communicating systems with deadline propagation and laziness, all
functionality of the system must be implemented with an explicit timing requirement. While
the principle of timing requirements on all calculations is intuitively sound, it leads to the
discovery of requirements that traditionally would have been unpronounced. Some of these
requirements occur in the form of new sporadic tasks. Sporadic tasks therefore occur more
frequently when programming in Toc than in traditional real-time programming, but their use
leads to conservative schedulability analysis. Developing a framework for better specification
and handling of sporadic tasks in schedulability analysis represents a potential for significant
improvement.

The schedulability analysis presented here is based on the traditional approach, where
the analysis is NP-hard unless D = T for tasks where the relative start-times are not known.
Because of the ability to trigger tasks in Toc, the relative start-times of tasks are generally not
known. Being able to concisely specify tasks with shorter deadlines than period is a useful
property of Toc, and the scheduling analysis approach would be better if it also supported
this.

Consistent use of the design patterns to achieve decoupling of timing requirements limits
the ways the language can be used. Toc has inherited occam’s process statements almost
unaltered, while having temporal semantics that are entirely different. A re-evaluation of
Toc’s statement model to make these design patterns embodied in the language may reduce
the need for overly restrictive design rules.

The lack of a formal framework for analyzing Toc programs is also unfortunate. CSP
can be used directly to analyze occam code, because CSP’s principle of maximum progress
maps to occam’s strict round-robin scheduler. Although Toc is based on occam, the fact
that scheduling is lazy rather than strict means that there is no direct mapping between Toc
code and CSP. Developing a way to enable formal analysis of deadline-driven systems is an
important objective for future work.
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