
Extending CSP with tests for availability 01

Extending CSP

with tests for

availability

Gavin Lowe

Extending CSP with tests for availability 02

Testing for availability

Many languages for message-passing concurrency allow programs to

test whether a channel is ready for communication, without actually

performing that communication.

How can we extend CSP to model such a construct, and so analyse

systems that use it?

Extending CSP with tests for availability 03

Overview

• New syntax;

• Examples;

• Operational semantics;

• Congruent denotational semantics: traces and failures;

• Simulating such availability tests using standard CSP; model

checking.

Extending CSP with tests for availability 04

New syntax

We add a single new construct to the language: the process

if ready a then P else Q

tests whether the event a is ready for communication, and then acts

like either P or Q , appropriately. More precisely, the process tests

whether all other processes that have a in their alphabet (and so who

must synchronise on a) are ready to perform a.

The test for the readiness of a is carried out only once: if the event

becomes available or unavailable after the test is performed, that

does not affect the branch that is selected.

We also define:

ready a & P as shorthand for if ready a then P else STOP ,

notReady a & P as shorthand for if ready a then STOP else P .

Extending CSP with tests for availability 05

Capturing priority

The following construct

a → P

2 notReady a & b → Q

gives priority to a over b: the event b can be performed only if the

environment is not willing to perform a (at the point at which the

test is made).

Extending CSP with tests for availability 06

The readers and writers problem

A collection of readers and writers share a database. In order to

maintain consistency, readers may not use the database at the same

time as writers, and at most one writer may use the database at a

time.

The following guard process supports this, maintaining the invariant

w ≤ 1 ∧ (r > 0 ⇒ w = 0).

Guard(r ,w) =

w = 0 & startRead → Guard(r + 1 ,w)

2 endRead → Guard(r − 1 ,w)

2 r = 0 ∧ w = 0 & startWrite → Guard(r ,w + 1)

2 endWrite → Guard(r ,w − 1).

However, with this design writers may be permanently locked out of

the database if there is always at least one reader using the database

(even if no individual reader uses the database indefinitely).

Extending CSP with tests for availability 07

The readers and writers problem

The following version gives priority to writers, by not allowing a new

reader to start using the database if there is a writer waiting:

Guard(r ,w) =

w = 0 & notReady startWrite & startRead → Guard(r + 1 ,w)

2 endRead → Guard(r − 1 ,w)

2 r = 0 ∧ w = 0 & startWrite → Guard(r ,w + 1)

2 endWrite → Guard(r ,w − 1).

This idea can be extended, to make the system fair to both sides: see

paper.

Extending CSP with tests for availability 08

Urgency

Consider P ‖ Q where

P = a → STOP

Q = if ready a then b → STOP else error → STOP .

Clearly, it is possible for Q to detect that a is ready and so perform b.

Could Q detect that a is not ready, and so perform error?

• If P makes a available immediately then clearly the answer is no.

• If it takes P some time to make a available, then Q could test

for the availability of a before P has made it available.

We believe that any implementation of prefixing will take some time

to make a available. This is the intuition we follow.

Therefore the second of the above cases applies.

Extending CSP with tests for availability 09

Operational semantics: standard events

As normal, we write P
a

−→ P ′, for a ∈ Σ ∪ {τ} to indicate that P

performs the event a to become P ′.

This is defined in the normal way, except we need to capture our

intuition about the unurgency of prefixing: that a → P may not

make the a available immediately.

We model this by a τ transition to a state where the a

is indeed available. Within the operational semantic

definitions, we will write this state as ǎ → P .

a → P
τ

−→ ǎ → P ,

ǎ → P
a

−→ P .

(Note that ǎ → P is not part of the syntax of the

language.)

a → P

τ

��
ǎ → P

a
��

P

Extending CSP with tests for availability 10

Operational semantics: readiness and non-readiness

In addition, we include transitions to indicate successful readiness or

non-readiness tests:

• We write P
ready a
−−→ P ′ to indicate that P detects that the event a

is ready, and evolves into P ′;

• We write P
notReady a
−−→ P ′ to indicate that P detects that the

event a is not ready, and evolves into P ′.

The following rules show how the tests

for readiness operate.

if ready a then P else Q
ready a
−−→ P ,

if ready a then P else Q
notReady a
−−→ Q .

if ready a then P else Q

ready a

����
��

��
�

notReady a

��:
::

::
::

P Q

Extending CSP with tests for availability 11

Operational semantics: rules for parallel

composition

P
ready b
−−→ P ′

Q
b

−→
b ∈ B

P A‖B Q
ready b
−−→ P ′

A‖B Q

P
notReady b
−−→ P ′

Q 6
b

−→
b ∈ B

P A‖B Q
τ

−→ P ′

A‖B Q

P
notReady b
−−→ P ′

Q
b

−→
b ∈ B

P A‖B Q
notReady b
−−→ P ′

A‖B Q

Extending CSP with tests for availability 12

Denotational semantics

We want to build a denotational semantics that at least records the

traces of visible events performed by processes. What else does the

denotational model need to include?

It is useful to consider (informally) a form of testing: we will say that

test T distinguishes processes P and Q if P ‖ T and Q ‖ T have

different traces of visible events. In this case, the denotational model

should also distinguish P and Q .

We want to record within traces the ready and notReady actions that

are performed. For example, the processes P = b → STOP and

Q = ready a & b → STOP are distinguished by the test

T = b → STOP (with alphabet {a, b}). We will distinguish them

denotationally by including the ready a action in the latter’s trace.

Extending CSP with tests for availability 13

Denotational semantics

Further, we want to record the events that were available as

alternatives to those events that were actually performed. For

example, the processes P = a → STOP 2 b → STOP and

Q = a → STOP ⊓ b → STOP can be distinguished by the test

T = ready a & b → STOP . We will distinguish them denotationally

by recording that the former offers a as an alternative to b.

We therefore add actions offer a and notOffer a to represent that a

process is offering or not offering a, respectively. These actions will

synchronise with ready a and notReady a actions.

A trace of a process will, then, be a sequence of standard events and

ready , notReady , offer and notOffer actions.

Extending CSP with tests for availability 14

Extracting traces from the operational semantics

We can formally define the denotational semantics by extracting the

traces from the operational semantics.

It is convenient to define a derived operational

semantics, where we augment the semantics

with extra transitions as follows:

• We add offer a loops on every state P such

that P
a

−→;

• We add notOffer a loops on every state P

such that P 6
a

−→.

•
offer a,

notOffer b
dd

a

��
•

offer b,

notOffer a
dd

b

��
•

notOffer a,

notOffer b
dd

The traces, then, are just the visible actions labelling paths through

the derived operational semantics.

Extending CSP with tests for availability 15

Compositional trace semantics

It is also possible to give compositional rules for calculating the

traces of a process in terms of the traces of its subcomponents.

For example, the semantic equation for hiding of A captures that

notReady A and offer A actions are blocked, A and ready A actions

are internalised, and arbitrary notOffer A actions can occur.

tracesR[[P \ A]] =

{tr | ∃ trP ∈ tracesR[[P]] • trP |̀ (notReady A ∪ offer A) = 〈〉 ∧

trP \ (A ∪ ready A) = tr \ notOffer A}.

See paper for the rest of the rules.

This compositional semantics is congruent to the operational

semantics.

Extending CSP with tests for availability 16

Stable failures

It is possible to extend the model to record stable failures. Each

stable failure is a pair (tr ,X), where

• tr is a trace of standard events and ready , notReady , offer and

notOffer actions;

• X is a set of standard events.

This failure records that the process can perform the trace tr to

reach a stable state (where no τ , ready or notReady actions are

available), where none of the events from X is available.

Extending CSP with tests for availability 17

Model checking

It is possible to simulate the extended version of CSP using standard

CSP, and so use a model checker such as FDR to perform an analysis.

In particular, we simulate the ready , notReady , offer and notOffer

actions by fresh CSP events on channels ready, notReady, offer and

notOffer.

We add an offer.a or notOffer.a loop to each state, depending on

whether an a is or is not offered. For example

P = a → STOP

with alphabet {a, b} is simulated by

PSim = (no tO f f e r . a → PSim 2 no tO f f e r . b → PSim) ⊲ PSim ’

PSim ’ = a → STOPSim 2 o f f e r . a → PSim ’ 2 no tO f f e r . b → PSim ’

STOPSim = no tO f f e r . a → STOPSim 2 no tO f f e r . b → STOPSim

This can be done compositionally.

Extending CSP with tests for availability 18

Simulating guards

ready a and notReady a guards can be simulated using ready.a and

notReady.a events. For example

if ready a then P else Q

is simulated by

Sim = ready . a → PSim 2 notReady . a → QSim

2 no tO f f e r ? x → Sim

where PSim and QSim simulate P and Q .

The ready and notReady events can be renamed to synchronise with

the offer.a or notOffer.a events of the process’s environment.

We intend to automate the translation that produces this simulation.

Extending CSP with tests for availability 19

Summary

We have considered an extension of CSP that allows processes to test

whether an event is available.

• Operational semantics;

• Denotational semantics;

• Simulation using standard CSP.

