
Extending CSP with Tests for Availability
Gavin LOWE

Oxford University Computing Laboratory, Wolfson Building, Parks Road,
Oxford, OX1 3QD, UK.

gavin.lowe@comlab.ox.ac.uk

Abstract. We consider the language of CSP extended with a construct that allows
processes to test whether a particular event is available (without actually performing
the event). We present an operational semantics for this language, together with two
congruent denotational semantic models. We also show how this extended language
can be simulated using standard CSP, so as to be able to analyse systems using the
model checker FDR.

Keywords. CSP, tests for availability, semantic models

Introduction

Many languages for message-passing concurrency allow programs to test whether a channel
is ready for communication, without actually performing that communication. For example,
in JCSP [1,2], the input and output ends of channels have a method pending(), to test
whether there is data ready to be read, or whether there is a reader ready to receive data,
respectively. Java InputStreams have a method available() that returns the number of
bytes that are available to be read. Andrews [3] gives a number of examples using such a
construct.

In this paper, we study the effect of adding such tests to the process algebra CSP [4]. In
particular, we add a single new construct to the language: the process

if ready a then P else Q (1)

tests whether the event a is ready for communication, and then acts like either P or Q, ap-
propriately. More precisely, the process tests whether all other processes that have a in their
alphabet (and so who must synchronise on a) are ready to perform a.

We assume that within constructs of the form of (1), the test for the readiness of a is
carried out only once: if the event becomes available or unavailable after the test is performed,
that does not affect the branch that is selected. We allow processes to test for the readiness of
events outside their own alphabet.

In this paper we investigate the effect of adding the construct (1) to semantic models for
CSP. In the next section, we give a brief overview of the syntax and standard semantics of
CSP. In Section 2 we give some examples using the new construct, both to illustrate its po-
tential usefulness, and to highlight some implications for the semantic models. In Section 3
we give an operational semantics to the language; then in Section 4 we give congruent deno-
tational models, analogous to the traces and stable failures models of CSP [4]. In Section 5
we show how this extended language can be simulated using standard CSP, so as to be able
to analyse systems using a model checker such as FDR [5,6]. We sum up in Section 6.

1. A Brief Overview of CSP

In this section we give a brief overview of the syntax of CSP; for simplicity and brevity, we
consider a fragment of the language in this paper. We also give a brief overview of the traces
and stable failures models of CSP. For more details, see [7,4].

CSP is a process algebra for describing programs or processes that interact with their
environment by communication. Processes communicate via atomic events, from some set Σ.
Events are often passed on channels; for example, the event c.3 represents the value 3 being
passed on channel c. The notation {|c |} represents the set of events over channel c.

The simplest process is STOP, which represents a deadlocked process that cannot com-
municate with its environment. The process div represents a divergent process that can only
perform internal events.

The process a → P offers its environment the event a; if the event is performed, it then
acts like P. The process c?x → P is initially willing to input a value x on channel c, i.e. it is
willing to perform any event of the form c.x; it then acts like P (which may use x).

A standard conditional is written as if b then P else Q, where b is a boolean condition
on variables within the process (such as variables that hold values previously input)1. The
process b & P is equivalent to if b then P else STOP: P is enabled only if the boolean guard b
is true. For convenience, we extend this notation to readiness tests and define:

ready a & P as shorthand for if ready a then P else STOP,
notReady a & P as shorthand for if ready a then STOP else P.

The tests now act as guards upon P, so that P can be performed only if a is available or not
available, respectively.

The process P 2 Q can act like either P or Q, the choice being made by the environment:
the environment is offered the choice between the initial events of P and Q. By contrast,
P u Q may act like either P or Q, with the choice being made internally, and not under the
control of the environment. The process P . Q represents a sliding choice or timeout: the
process initially acts like P, but if no event is performed then it can internally change state to
act like Q.

The process P A‖B Q runs P and Q in parallel; P is restricted to performing events
from A; Q is restricted to performing events from B; the two processes synchronise on events
from A∩B. In this paper we will take the alphabets A and B to comprise just standard events,
as opposed to actions corresponding to readiness tests. As noted above, we allow processes
to test for the readiness of events outside their alphabets, e.g.

(ready b & a→ STOP) {a}‖{b} (b→ STOP u STOP).

In examples, we will tend to omit the alphabets when they are clear from the context.
The process P ‖

A
Q runs P and Q in parallel, synchronising on events from A. The process

P ||| Q interleaves P and Q, i.e. runs them in parallel with no synchronisation.
The process P \ A acts like P, except the events from A are hidden, i.e. turned into

internal, invisible events, denoted τ , which do not need to synchronise with the environment.
The process P[[R]] represents P where events are renamed according to the relation R,

i.e., P[[R]] can perform an event b whenever P can perform an event a such that a R b. The
relation R is often presented as a substitution; for example P[[b/a, c/a]] represents P, with the
event a renamed to both b and c, and all other events unchanged.

1We use the same syntax for both standard conditionals and readiness tests, but they are semantically different
constructs.

Recursive processes may be defined equationally, or using the notation µX • P, which
represents a process that acts like P, where each occurrence of X represents a recursive in-
stantiation of µX • P.

Prefixing (→) and guarding (&) bind tighter than each of the binary choice operators,
which in turn bind tighter than the parallel operators.

CSP can be given both an operational and denotational semantics. The denotational
semantics can either be extracted from the operational semantics, or defined directly over
the syntax of the language; see [4]. It is more common to use the denotational semantics
when specifying or describing the behaviours of processes, although most tools act on the
operational semantics.

A trace of a process is a sequence of (visible) events that a process can perform. We
write traces(P) for the traces of P. If tr is a trace, then tr |̀ A represents the restriction of tr to
the events in A, whereas tr \ A represents tr with the events from A removed; concatenation
is written “ ̂ ”; A∗ represents the set of traces with events from A.

A stable failure of a process P is a pair (tr,X), which represents that P can perform the
trace tr to reach a stable state (i.e. where no internal events are possible) where X can be
refused, i.e., where none of the events of X is available. We write failures(P) for the stable
failures of P.

2. Examples

In this section we consider a few examples, firstly to illustrate the usefulness of the new
construct, and then to highlight some aspects of the semantics.

Being able to detect readiness on channels can be useful in a number of circumstances.
For example, the construct:

a→ P
2 notReady a & b→ Q

gives priority to a over b: the event b can be performed only if the environment is not willing
to perform a (at the point at which the test is made). Note, though, that if the environment
withdraws its willingness to communicate a after the notReady a test is performed, then the
above construct will be blocked, even if b is available: the construct makes the assumption
about the environment that a is not withdrawn in this way.

As a slightly larger example, consider the classic readers and writers problem [8]. Here
collections of readers and writers share a database. In order to maintain consistency, read-
ers may not use the database at the same time as writers, and at most one writer may use
the database at a time. The following guard process supports this: readers (resp. writers)
gain entry to the database by performing the event startRead (resp. startWrite) and perform
endRead (resp. endWrite) when they are finished. The parameters r and w record the num-
ber of readers and writers currently using the database, and satisfy the invariant w ≤ 1 ∧
(r > 0⇒ w = 0).

Guard(r,w) =
w = 0 & startRead → Guard(r + 1,w)
2 endRead → Guard(r − 1,w)
2 r = 0 ∧ w = 0 & startWrite→ Guard(r,w + 1)
2 endWrite→ Guard(r,w− 1).

The problem with the above design is that writers may be permanently locked out of the
database if there is always at least one reader using the database (even if no individual reader
uses the database indefinitely). The following version gives priority to writers, by not allow-
ing a new reader to start using the database if there is a writer waiting:

Guard(r,w) =
w = 0 & notReady startWrite & startRead → Guard(r + 1,w)
2 endRead → Guard(r − 1,w)
2 r = 0 ∧ w = 0 & startWrite→ Guard(r,w + 1)
2 endWrite→ Guard(r,w− 1).

This idea can be extended further, to achieve fairness to both types of process; the parameter
priRead records whether priority should be given to readers.2

Guard(r,w, priRead) =
w = 0 ∧ priRead & startRead → Guard(r + 1,w, false)
2 w = 0 & notReady startWrite & startRead → Guard(r + 1,w, false)
2 endRead → Guard(r − 1,w, false)
2 r = 0 ∧ w = 0 ∧ ¬priRead & startWrite→ Guard(r,w + 1, true)
2 r = 0 ∧ w = 0 & notReady startRead & startWrite→ Guard(r,w + 1, true)
2 endWrite→ Guard(r,w− 1, true).

We now consider a few examples in order to better understand aspects of the semantics
of processes with readiness tests: it turns out that some standard algebraic laws no longer
hold. Throughout these examples, we omit alphabets from the parallel composition operator
where they are obvious from the context.

Example 1 Consider P ‖ Q where P = a → STOP and Q = if ready a then b → STOP else
error → STOP. Clearly, it is possible for Q to detect that a is ready and so perform b. Could
Q detect that a is not ready, and so perform error? If P makes a available immediately then
clearly the answer is no. However, if it takes P some time to make a available, then Q could
test for the availability of a before P has made it available.

We believe that any implementation of prefixing will take some time to make a available:
for example, in a multi-threaded implementation, scheduling decisions will influence when
the a becomes available; further, the code for making a available will itself take some time to
run. This is the intuition we follow in the rest of the paper. This decision has a considerable
impact on the semantics: it will mean that all processes will take some time to make events
available (essentially since all the CSP operators maintain this property).

Returning to Example 1, in the combination P ‖ Q, Q can detect that a is not available
initially and so perform error.

Example 2 (if ready a then P else Q) \ {a} = P \ {a}: the hiding of a means that the ready a
test succeeds, since there is nothing to prevent a from happening.

Example 3 External choice is not idempotent. Consider P = a → STOP u b → STOP and
Q = ready a & ready b & error → STOP. Then P ‖ Q cannot perform error, but P 2 P ‖ Q
can, if the two nondeterministic choices are resolved differently.

We do not allow external choices to be resolved by ready or notReady tests: we consider
these tests to be analogous to evaluation of standard boolean conditions in if statements, or
boolean guards, which are evaluated internally.

Example 4 The process R = ready a & P 2 notReady a & Q is not the same as if ready a then
P else Q, essentially since the former checks for the readiness of a twice, but the latter checks

2In principle one could merge the first two branches, by using a guard w = 0 ∧ (priRead ∨
notReady startWrite); however, allowing complex guards that mix booleans with readiness testing would com-
plicate the semantic definitions.

only once. When in the presence of the process a→ STOP, R can evolve to the state P 2 Q
(if the ready a test is made after the a becomes available, and the notReady a test is made
before the a becomes available) or to STOP 2 STOP = STOP (if the ready a test is made
before the a becomes available, and the notReady a test is made after the a becomes available);
neither of these is, in general, a state of if ready a then P else Q.

Example 5 ready a & ready b & P is not the same as ready b & ready a & P. Consider P =
error → STOP and Q = a → STOP . b → STOP. Then ready a & ready b & P ‖ Q can
perform error, but ready b & ready a & P ‖ Q cannot. Similar results hold for notReady, and
for a mix of ready and notReady guards.

The above example shows why we do not allow more complex guards, such as ready a ∧
ready b & P: any natural implementation of this process would have to test for the availability
of a and b in some order, but the order in which those are tested can make a difference.

3. Operational Semantics

In this section we give operational semantics to the language of CSP extended with tests for
the readiness or non-readiness of events. For simplicity, we omit interleaving, the ‖

A
form of

parallel composition, and renaming from the language we consider.
As normal, we write P a−→ P′, for a ∈ Σ ∪ {τ} (where Σ is the set of visible events,

and τ represents an internal event), to indicate that P performs the event a to become P′. In
addition, we include transitions to indicate successful readiness or non-readiness tests:

• We write P
ready a−−→ P′ to indicate that P detects that the event a is ready, and evolves

into P′;
• We write P

notReady a−−→ P′ to indicate that P detects that the event a is not ready, and
evolves into P′.

Note the different fonts between ready and notReady, which are part of the syntax, and ready
and notReady, which are part of the semantics.

Define, for A ⊆ Σ:

ready A = {ready a | a ∈ A},
A† = A ∪ ready A ∪ notReady A,

notReady A = {notReady a | a ∈ A},
A†τ = A† ∪ {τ}.

Transitions, then, will be labelled by elements of Σ†τ . We think of the ready a−−→ and notReady a−−→
transitions as being internal in the sense that they cannot be directly observed by any parallel
peer. We refer to elements of Σ†τ as actions, and restrict the word events to elements of Στ .

Below we use standard conventions, writing, e.g., P a−→ for ∃P′ • P a−→ P′, and P 6 a−→
for ¬(∃P′ • P a−→ P′).

Recall our intuition that a process such as a → P may not make the a available imme-
diately. We model this by a τ transition to a state where the a is indeed available. It turns
out that this latter state is not expressible within the syntax of the language (this follows from
Lemma 11, below). Within the operational semantic definitions, we will write this state as
ǎ→ P. We therefore define the semantics of prefixing by the following two rules.

a→ P τ−→ ǎ→ P, ǎ→ P a−→ P.

We stress, though, that the ǎ→ . . . notation is only for the purpose of defining the operational
semantics, and is not part of the language.

The following rules for normal events are completely standard. For brevity, we omit the
symmetrically equivalent rules for external choice (2) and parallel composition (A‖B). The
identifier a ranges over visible events.

P a−→ P′

P 2 Q a−→ P′
P τ−→ P′

P 2 Q τ−→ P′ 2 Q

P a−→ P′

P . Q a−→ P′
P τ−→ P′

P . Q τ−→ P′ . Q

P . Q τ−→ Q P u Q τ−→ P P u Q τ−→ Q

P α−→ P′
α ∈ A− B ∪ {τ}

PA‖BQ α−→ P′A‖BQ

P a−→ P′

Q a−→ Q′
a ∈ A ∩ B

PA‖BQ a−→ P′A‖BQ′

P α−→ P′
α ∈ Σ− A ∪ {τ}

P \ A α−→ P′ \ A
P a−→ P′

a ∈ A
P \ A τ−→ P′ \ A

div
τ−→ div µX • P τ−→ P[µX • P/X]

The following rules show how the tests for readiness operate.

if ready a then P else Q
ready a−−→ P, if ready a then P else Q

notReady a−−→ Q.

The remaining rules show how the readiness tests are promoted by various operators.
We omit symmetrically equivalent rules for brevity. The rules for the choice operators are
straightforward.

P
ready a−−→ P′

P 2 Q
ready a−−→ P′ 2 Q

P
notReady a−−→ P′

P 2 Q
notReady a−−→ P′ 2 Q

P
ready a−−→ P′

P . Q
ready a−−→ P′ . Q

P
notReady a−−→ P′

P . Q
notReady a−−→ P′ . Q

The rules for parallel composition are a little more involved. A ready a action can occur
only if all processes with a in their alphabet are able to perform a.

P
ready b−−→ P′

Q b−→
b ∈ B

P A‖B Q
ready b−−→ P′ A‖B Q

P
ready a−−→ P′

a /∈ B
P A‖B Q

ready a−−→ P′ A‖B Q

A notReady a action requires at least one parallel peer with a in its alphabet to be unable
to perform a. In this case, the action is converted into a τ .

P
notReady b−−→ P′

Q 6 b−→
b ∈ B

P A‖B Q τ−→ P′ A‖B Q

P
notReady b−−→ P′

Q b−→
b ∈ B

P A‖B Q
notReady b−−→ P′ A‖B Q

P
notReady a−−→ P′

a /∈ B
P A‖B Q

notReady a−−→ P′ A‖B Q

Note that in the second rule, the notReady b may yet be blocked by some other parallel peer.
If a ready a action can be performed in a context where a is then hidden, then all relevant

parallel peers are able to perform a; hence the transition can occur; the action is converted
into a τ .

P
ready a−−→ P′

a ∈ A
P \ A τ−→ P′ \ A

P α−→ P′
α ∈ ready(Σ− A) ∪ notReady(Σ− A)

P \ A α−→ P′ \ A

Note that there is no corresponding rule for notReady a: in the context P \ A, if P can per-
form notReady a (with a ∈ A) then all parallel peers with a in their alphabet are able to
perform a, and so the a is available; hence the notReady a action is blocked for P \ A.

The following two lemmas can be proved using straightforward structural inductions.
First, ready a and notReady a actions are available as alternatives to one another.

Lemma 6 For every process P:

(∃Q • P
ready a−−→ Q)⇔ (∃Q′ • P

notReady a−−→ Q′).

Informally, the two transitions correspond to taking the two branches of a construct of the
form if ready a then R else R′. The if construct may be only part of the process P above, and so
R and R′ may be only part of Q and Q′ above.

Initially, each process can perform no standard events. This is a consequence of our
assumption that a process of the form a→ P cannot perform the a from its initial state.

Lemma 7 For every process P expressible using the syntax of the language (so excluding
the ǎ→ . . . construct), and for every standard event a ∈ Σ, P 6 a−→.

Of course, P might have a τ transition to a state where visible events are available.

4. Denotational Semantics

We now consider how to build a compositional denotational semantic model for our language.
We want the model to record at least the traces of visible events performed by processes: any
coarser model is likely to be trivial.

In order to consider what other information is needed in the model, it is useful to consider
(informally) a form of testing: we will say that test T distinguishes processes P and Q if
P ‖ T and Q ‖ T have different traces of visible events. In this case, the denotational model
should also distinguish P and Q.

We want to record within traces the ready and notReady actions that are performed. For
example, the processes b → STOP and ready a & b → STOP are distinguished by the test
STOP (with alphabet {a}); we will distinguish them denotationally by including the ready a
action in the latter’s trace.

Further, we want to record the events that were available as alternatives to those events
that were actually performed. For example, the processes a → STOP 2 b → STOP and

a → STOP u b → STOP can be distinguished by the test ready a & b → STOP; we will
distinguish them denotationally by recording that the former offers a as an alternative to b.

We therefore add actions offer a and notOffer a to represent that a process is offering
or not offering a, respectively. These actions will synchronise with ready a and notReady a
actions. We write

offer A = {offer a | a ∈ A},
A‡ = A† ∪ offer A ∪ notOffer A,

notOffer A = {notOffer a | a ∈ A},
A‡τ = A‡ ∪ {τ}.

A trace of a process will, then, be a sequence of actions from Σ‡. We can calculate the traces
of a process in two ways: by extracting then from the operational semantics, and by giving
compositional rules. We begin with the former.

We augment the operational semantics with extra transitions as follows:

• We add offer a loops on every state P such that P a−→;
• We add notOffer a loops on every state P such that P 6 a−→.

Formally, we define a new transition relation −−. by:

P
α−−. Q ⇔ P α−→ Q, for α ∈ Σ†τ ,

P
offer a
−−−. P ⇔ P a−→ ,

P
notOffer a
−−−. P ⇔ P 6 a−→ .

Appendix A gives rules for the −−. that can be derived from the rules for the −→ relation
and the above definition.

We can then extract the traces (of Σ‡ actions) from the operational semantics (following
[4, Chapter 7]):

Definition 8 We write P tr7−→ Q, for tr = 〈α1, . . . , αn〉 ∈ (Σ‡τ)∗, if there exist P0 = P,
P1, . . . ,Pn = Q such that Pi

αi+1−−. Pi+1 for i = 0, . . . , n−1. We write P tr
=⇒ Q, for tr ∈ (Σ‡)∗,

if there is some tr′ such that P tr′7−→ Q and tr = tr′ \ τ .

The traces of process P can then be defined to be the set of all tr such that P tr
=⇒. The

following lemma states some healthiness conditions concerning this set.

Lemma 9 For all processes P expressible using the syntax of the language (so excluding the
ǎ→ . . . construct), the set T = {tr | P tr

=⇒} satisfies the following conditions:

1. T is non-empty and prefix-closed.
2. T includes (notOffer Σ)∗, i.e., the process starts in a state where no standard events

are available.
3. offer and notOffer actions can always be remove from or duplicated within a trace:

tr̂〈α〉̂tr′ ∈ T ⇒ tr̂〈α, α〉̂tr′ ∈ T ∧ tr̂tr′ ∈ T,

for α ∈ offer Σ ∪ notOffer Σ.
4. ready a and notReady a actions are available as alternatives to one another:

tr̂〈ready a〉 ∈ T ⇔ tr̂〈notReady a〉 ∈ T.

5. Either an offer a or notOffer a action is always available.

tr̂tr′ ∈ T ⇒ tr̂〈offer a〉̂tr′ ∈ T ∨ tr̂〈notOffer a〉̂tr′ ∈ T.

Proof: (Sketch)

1. This follows directly from the definition of =⇒.
2. The follows from Lemma 7 and the definition of −−..
3. This follows directly from the definition of−−.: offer and notOffer transitions always

form self-loops.
4. This follows directly from Lemma 6.
5. This follows directly from the definition of −−.: each state has either an offer a or a

notOffer a loop.

2

4.1. Compositional Traces Semantics

We now give compositional rules for the traces of a process. The semantics for each process
will be an element of the following model.

Definition 10 The Readiness-Testing Traces Model contains those sets T ⊆ (Σ‡)∗ that satisfy
conditions 2–5 of Lemma 9.

We write tracesR[[P]] for the traces of P3. Below we will show that these are congruent to the
operational definition above.

STOP and div are equivalent in this model: they can perform no standard events; they
can only signal that they are not offering events.

tracesR[[STOP]] = tracesR[[div]] = (notOffer Σ)∗.

The process a → P can initially signal that it is not offering events; it can then signal
that it is offering a but not offering other events; it can then perform a, and then continue
like P.

tracesR[[a→ P]] =
Init ∪ {tr̂〈a〉̂tr′ | tr ∈ Init ∧ tr′ ∈ tracesR[[P]]}
where Init = {tr̂tr′ | tr ∈ (notOffer Σ)∗ ∧ tr′ ∈ ({offer a} ∪ notOffer(Σ− {a}))∗}.

The process if ready a then P else Q can initially signal that it is not offering events; it can
then either detect that a is ready and continue as P, or detect that a is not ready and continue
like Q.

tracesR[[if ready a then P else Q]] =
(notOffer Σ)∗ ∪
{tr̂〈ready a〉̂tr′ | tr ∈ (notOffer Σ)∗ ∧ tr′ ∈ tracesR[[P]]} ∪
{tr̂〈notReady a〉̂tr′ | tr ∈ (notOffer Σ)∗ ∧ tr′ ∈ tracesR[[Q]]}.

The process P . Q can either perform a trace of P, or can perform a trace of P with no
standard events, and then (after the timeout) perform a trace of Q. The process P u Q can
perform traces of either of its components.

tracesR[[P . Q]] =
tracesR[[P]] ∪ {trP̂trQ | trP ∈ tracesR[[P]] ∧ trP |̀ Σ = 〈〉 ∧ trQ ∈ tracesR[[Q]]},

tracesR[[P u Q]] = tracesR[[P]] ∪ tracesR[[Q]].

Before the first visible event, the process P 2 Q can perform an offer a action if either P
or Q can do so; it can perform a notOffer a action if both P and Q can do so. Therefore, P

3We include the subscript “R” in tracesR[[P]] to distinguish this semantics from the standard traces semantics,
traces[[P]].

and Q must synchronise on all notOffer actions before the first visible event. Let tr ‖
notOffer Σ

tr′

be the set of ways of interleaving tr and tr′, synchronising on all notOffer actions (this oper-
ator is a specialisation of the ‖

X
operator defined in [4, page 70]). The three sets in the defini-

tion below correspond to the cases where (a) neither process performs any visible events (so
the two processes synchronise on notOffer actions throughout the execution), (b) P performs
at least one visible event (after which, Q is turned off), and (c) the symmetric case where
Q performs at least one visible event.

tracesR[[P 2 Q]] =
{tr | ∃ trP ∈ tracesR[[P]], trQ ∈ tracesR[[Q]] •

trP |̀ Σ = trQ |̀ Σ = 〈〉 ∧ tr ∈ trP ‖
notOffer Σ

trQ} ∪

{tr̂〈a〉̂tr′P | ∃ trP̂〈a〉̂tr′P ∈ tracesR[[P]], trQ ∈ tracesR[[Q]] •

trP |̀ Σ = trQ |̀ Σ = 〈〉 ∧ a ∈ Σ ∧ tr ∈ trP ‖
notOffer Σ

trQ} ∪

{tr̂〈a〉̂tr′Q | ∃ trP ∈ tracesR[[P]], trQ̂〈a〉̂tr′Q ∈ tracesR[[Q]] •

trP |̀ Σ = trQ |̀ Σ = 〈〉 ∧ a ∈ Σ ∧ tr ∈ trP ‖
notOffer Σ

trQ}.

In order to give a semantic equation for parallel composition, we define a relation to

capture how traces of parallel components are combined4. We write (trP, trQ) A‖B7−→ tr if the
traces trP of P and trQ of Q can lead to the trace tr of PA‖BQ. Let privateA = (A − B) ∪
offer(A− B)∪ notOffer A∪ ready (Σ− B)∪ notReady(Σ− B); these are the actions that the
process with alphabet A can perform without any cooperation from the other process. Let
syncA,B = (A ∩ B) ∪ offer(A ∩ B); these are the actions that the two processes synchronise

upon. The relation A‖B7−→ is defined by:

(〈〉, 〈〉) A‖B7−→ 〈〉,

if (trP, trQ) A‖B7−→ tr and b ∈ B, then

(〈α〉̂trP, trQ) A‖B7−→ 〈α〉̂tr, for α ∈ privateA,

(〈α〉̂trP, 〈α〉̂trQ) A‖B7−→ 〈α〉̂tr, for α ∈ syncA,B,

(〈ready b〉̂trP, 〈offer b〉̂trQ) A‖B7−→ 〈ready b〉̂tr,

(〈notReady b〉̂trP, 〈notOffer b〉̂trQ) A‖B7−→ tr,

(〈notReady b〉̂trP, 〈offer b〉̂trQ) A‖B7−→ 〈notReady b〉̂tr,

〈The symmetric equivalents of the above cases〉.

In the second clause: the first case corresponds to P performing a private action; the second
case corresponds to P and Q synchronising on a shared action; the third case corresponds
to a readiness test of P detecting that Q is offering b; the fourth case corresponds to a non-
readiness test of P detecting that Q is not offering b; the fifth case corresponds to a non-
readiness test of P detecting that Q is offering b. The reader might like to compare this
definition with the corresponding operational semantics rules for parallel composition.

The semantics of parallel composition is then as follows; note that each component
is restricted to its own alphabet, and that the composition can perform arbitrary notOffer
(Σ− A− B) actions:

4One normally defines a set-valued function to do this, but in our case it is more convenient to define a
relation, since this leads to a much shorter definition.

tracesR[[PA‖BQ]] =
{tr | ∃ trP ∈ tracesR[[P]], trQ ∈ tracesR[[Q]] •

trP |̀ (Σ− A) ∪ offer(Σ− A) ∪ notOffer(Σ− A) = 〈〉 ∧
trQ |̀ (Σ− B) ∪ offer(Σ− B) ∪ notOffer(Σ− B) = 〈〉 ∧
(trP, trQ) A‖B7−→ tr \ notOffer(Σ− A− B)}.

The semantic equation for hiding of A captures that notReady A and offer A actions are
blocked, A and ready A actions are internalised, and arbitrary notOffer A actions can occur.

tracesR[[P \ A]] =
{tr | ∃ trP ∈ tracesR[[P]] • trP |̀ (notReady A ∪ offer A) = 〈〉 ∧

trP \ (A ∪ ready A) = tr \ notOffer A}.

We now consider the semantics of recursion. Our approach follows the standard method
using complete partial orders; see, for example, [4, Appendix A.1].

Lemma 11 The Readiness-Testing Traces Model forms a complete partial order under the
subset ordering ⊆, with tracesR[[div]] as the bottom element.

Proof: That tracesR[[div]] is the bottom element follows from item 2 of Lemma 9. It is straight-
forward to see that the model is closed under arbitrary unions, and hence is a complete partial
order. 2

The following lemma can be proved using precisely the same techniques as for the standard
traces model; see [4, Section 8.2].

Lemma 12 Each of the operators is continuous with respect to the ⊆ ordering.

Hence from Tarski’s Theorem, each mapping F definable using the operators of the language
has a least fixed point given by

⋃
n≥0 Fn(div). This justifies the following definition.

tracesR[[µX • F(X)]] =
the ⊆-least fixed point of the semantic mapping corresponding to F.

The following theorem shows that the two ways of capturing the traces are congruent.

Theorem 13 For all traces tr ∈ (Σ‡)∗:

tr ∈ tracesR[[P]] iff P tr
=⇒ .

Proof: (Sketch) By structural induction over the syntax of the language. We give a couple of
cases in Appendix B. 2

Theorem 14 For all processes, tracesR[[P]] is a member of the Readiness-Testing Traces
Model (i.e., it satisfies conditions 2–5 of Lemma 9).

Proof: This follows directly from Lemma 9 and Theorem 13. 2

We can relate the semantics of a process in this model to the standard traces semantics.
Let φ be the function that replaces readiness tests by nondeterministic choices, i.e.,

φ(if ready a then P else Q) = φ(P) u φ(Q)

and φ distributes over all other operators (e.g. φ(PA‖BQ) = φ(P)A‖Bφ(Q)). The standard
traces of φ(P) are just the projection onto standard events of the readiness-testing traces
of P.

Theorem 15 traces[[φ(P)]] = {tr |̀ Σ | tr ∈ tracesR[[P]]}.

4.2. Failures

We now consider how to refine the semantic model, to make it analogous to the stable failures
model [4], i.e. to record information about which events can by stably refused.

The refusal of events seems, at first sight, to be very similar to those events not being
offered, as recorded by notOffer actions. The difference is that refusals are recorded only in
stable states, i.e. where no internal events are available: this means that if an event is stably
refused, it will continue to be refused (until a visible event is performed); on the other hand,
notOffer actions can occur in any states, and may subsequently become unavailable. So, for
example:

• a → STOP u STOP is equivalent to a → STOP in the Readiness-Testing Traces
model, since the traces of STOP are included in the initial traces of a → STOP; but
a→ STOP u STOP can stably refuse a initially, whereas a→ STOP cannot.

• a→ STOP . STOP . a→ STOP has the trace 〈offer a, notOffer a, offer a〉 (where the
notOffer a action is from the intermediate STOP state) whereas a → STOP does not;
but neither process can stably refuse a before a is performed.

Recall that in the standard model, stable failures are of the form (tr,X), where tr is a
trace and X is a set of events that are stably refused. For the language in this paper, should
refusal sets contain actions other than standard events?

Firstly, we should not consider states with ready or notReady transitions to be stable:
recall that we consider these actions to be similar to τ events, in that they are not externally
visible. We define:

stable P⇔∀α ∈ ready Σ ∪ notReady Σ ∪ {τ} • ¬P α−→ .

Therefore such actions are necessarily unavailable in stable states, so there is no need to
record them in refusal sets.

There is also no need to record the refusal of an offer a action, since this will happen
precisely when the event a is refused. It turns out that including notOffer actions within
refusal sets can add to the discriminating power of the model. Consider

P = a→ STOP . STOP,

Q = (a→ STOP . STOP) u a→ STOP.

Then P and Q have the same traces, and have the same stable refusals of standard events.
However, Q can, after the empty trace, stably refuse {b, notOffer a} (i.e., stably offer a and
stably refuse b), whereas P cannot.

We therefore have a choice as to whether or not we include notOffer actions within
refusal sets. We choose not to, because the distinctions one can make by including them do
not seem useful, and excluding them leads to a simpler model: in particular, the refusal of
notOffer actions do not contribute to the performance or refusal of any standard events. I
suspect that including notOffer actions within refusal sets would lead to a model similar in
style to the stable ready sets model [9,10].

Hence, we define, for X ⊆ Σ:

P ref X⇔ stable P ∧ ∀ x ∈ X • ¬P x−→ .

We then define the stable failures of a process in the normal way:

(tr,X) ∈ failuresR[[P]]⇔∃Q • P tr
=⇒ Q ∧ Q ref X. (2)

Definition 16 The Readiness-Testing Stable Failures Model contains those pairs (T,F)
where T ⊆ (Σ‡)∗, F ⊆ (Σ‡)∗ × P Σ, T satisfies conditions 2–5 of the Readiness-Testing
Traces Model, and also

6. If (tr,X) ∈ F then tr ∈ T .

Below, we give compositional rules for the stable failures of a process. Since the notion
of refusal is identical to as in the standard stable failures model, the refusal components are
calculated precisely as in that model, and so the equations are straight-forward adaptations of
the rules for traces. The only point worth noting is that in the construct if ready a then P else Q,
no failures are recorded before the if is resolved.

failuresR[[div]] = {},

failuresR[[STOP]] = {(tr,X) | tr ∈ (notOffer Σ)∗ ∧ X ⊆ Σ},

failuresR[[a→ P]] =
{(tr,X) | tr ∈ Init ∧ a /∈ X} ∪
{(tr̂〈a〉̂tr′,X) | tr ∈ Init ∧ (tr′,X) ∈ failuresR[[P]]}
where Init = {tr̂tr′ | tr ∈ (notOffer Σ)∗ ∧ tr′ ∈ ({offer a} ∪ notOffer(Σ− {a}))∗},

failuresR[[if ready a then P else Q]] =
{(tr̂〈ready a〉̂tr′,X) | tr ∈ (notOffer Σ)∗ ∧ (tr′,X) ∈ failuresR[[P]]} ∪
{(tr̂〈notReady a〉̂tr′,X) | tr ∈ (notOffer Σ)∗ ∧ (tr′,X) ∈ failuresR[[Q]]},

failuresR[[P . Q]] =
{(tr,X) | (tr,X) ∈ failuresR[[P]] ∧ tr |̀ Σ 6= 〈〉} ∪
{(trP̂trQ,X) | trP ∈ traces[[P]] ∧ trP |̀ Σ = 〈〉 ∧ (trQ,X) ∈ failuresR[[Q]]},

failuresR[[P u Q]] = failuresR[[P]] ∪ failuresR[[Q]],

failuresR[[P 2 Q]] =
{(tr,X) | ∃(trP,X) ∈ failuresR[[P]], (trQ,X) ∈ failuresR[[Q]] •

trP |̀ Σ = trQ |̀ Σ = 〈〉 ∧ tr ∈ trP ‖
notOffer Σ

trQ} ∪

{(tr̂〈a〉̂tr′P,X) |
∃(trP̂〈a〉̂tr′P,X) ∈ failuresR[[P]], trQ ∈ traces[[Q]] •

trP |̀ Σ = trQ |̀ Σ = 〈〉 ∧ a ∈ Σ ∧ tr ∈ trP ‖
notOffer Σ

trQ} ∪

{(tr̂〈a〉̂tr′Q,X) |
∃ trP ∈ traces[[P]], (trQ̂〈a〉̂tr′Q,X) ∈ failuresR[[Q]] •

trP |̀ Σ = trQ |̀ Σ = 〈〉 ∧ a ∈ Σ ∧ tr ∈ trP ‖
notOffer Σ

trQ},

failuresR[[PA‖BQ]] =
{(tr,Z) | ∃(trP,X) ∈ failuresR[[P]], (trQ,Y) ∈ failuresR[[Q]] •

trP |̀ (Σ− A) ∪ offer(Σ− A) ∪ notOffer(Σ− A) = 〈〉 ∧
trQ |̀ (Σ− B) ∪ offer(Σ− B) ∪ notOffer(Σ− B) = 〈〉 ∧
(trP, trQ) A‖B7−→ tr \ notOffer(Σ− A− B) ∧ Z − A− B = X ∩ A ∪ Y ∩ B},

failuresR[[P \ A]] =
{(tr,X) | ∃(trP,X ∪ A) ∈ failuresR[[P]] •

trP |̀ (notReady A ∪ offer A) = 〈〉 ∧ trP \ (A ∪ ready A) = tr \ notOffer A},

failuresR[[µX • F(X)]] =
the ⊆-least fixed point of the semantic mapping corresponding to F.

The fixed-point definition for recursion can be justified in a similar way to as for traces.
The congruence of the above rules to the operational definition of stable failures —i.e., equa-
tion (2)— can be proved in a similar way to Theorem 13. Conditions 2–5 of the Readiness-
Testing Stable Failures Model are satisfied, because of the corresponding result for traces

(Theorem 14). Condition 6 follows directly from the definition of a stable failure, and the
congruence of the operational and denotational semantics.

The following theorem relates the semantics of a process in this model to the standard
stable failures semantics.

Theorem 17 failures[[φ(P)]] = {(tr |̀ Σ,X) | (tr,X) ∈ failuresR[[P]]}.

5. Model Checking

In this section we illustrate how one can use a standard CSP model checker, such as FDR [5,
6], to analyse processes in the extended language of this paper. We just give an example
here, in order to give the flavour of the translation; we discuss prospects for generalising the
approach in the concluding section of the paper.

We consider the following solution to the readers and writers problem.

Guard(r,w) =
w = 0 ∧ r < N & notReady startWrite & startRead → Guard(r + 1,w)
2 r > 0 & endRead → Guard(r − 1,w)
2 r = 0 ∧ w = 0 & startWrite→ Guard(r,w + 1)
2 w > 0 & endWrite→ Guard(r,w− 1).

This is the solution from Section 2 that gives priority to writers, except we impose a bound
of N upon the number of readers, and add guards to the second and fourth branches, in order
to keep the state space finite. We will show that this solution is starvation free as far as the
writers is concerned: i.e. if a writer is trying to gain access then one such writer eventually
succeeds.

We will simulate the above guard process using standard CSP, in particular simulating
the ready, notReady, offer and notOffer actions by fresh CSP events on channels ready,
notReady, offer and notOffer. Each process is translated into a form that uses these chan-
nels, following the semantics presented earlier; the simulation will have transitions that cor-
respond to the−−. transitions of the original, except it will have a few additional τ transitions
that do not affect the failures-divergences semantics. More precisely, let α̂ be the event used
to simulate the action α; for example, if α = ready e then α̂ = ready.e. Then each process P
is simulated by a translation trans(P), where if P

α−−. Q then trans(P)
α̂−→(

τ−→)∗ trans(Q),
and vice versa. In particular, for each standard event e, we must add an offer.e or
notOffer.e loop to each state.

For convenience, and to distinguish between the source and target languages, we present
the simulation using prettified machine-readable CSP.5

The standard events and the channels to simulate the non-standard actions are declared
as follows:

channel startWrite, endWrite, startRead, endRead
E = {startWrite, endWrite, startRead, endRead}
channel ready, notReady, offer, notOffer : E

We start by defining some helper processes. The following process is the translation of
STOP: it can only signal that it is not offering standard events.

STOPT = notOffer?e → STOPT

5The CSP text below is produced (almost) directly from the machine-readable CSP using LATEX macros.

The following process is the translation of e→ P: initially it can signal that it is not offering
standard events; it can then timeout into a state where e is available, after which it acts like P;
in this latter state it can also signal that it is offering e but no other standard events.6

Prefix(e,P) = notOffer?e1 → Prefix(e,P) . Prefix1(e,P)

Prefix1(e,P) =
e → P
2 offer.e → Prefix1(e,P)
2 notOffer?e1:diff(E,{e}) → Prefix1(e,P)

The reader might like to compare these with the −−. semantics in Appendix A.
In order to simulate the Guard process, we simulate each branch as a separate parallel

process: the branches of Guard synchronise on notOffer actions before the choice is resolved,
so the processes simulating these branches will synchronise on appropriate notOffer events.
The first branch is simulated as below:

Branch(1,r,w) =
if w==0 and r<N then

notReady.startWrite → Prefix(startRead, Restart(1,r+1,w))
2 ready.startWrite → STOPT
2 notOffer?e → Branch(1,r,w)

else STOPT

We explain the Restart process below. Note how the notReady startWrite test is simulated
by the notReady.startWrite and ready.startWrite events. Note also how the process
signals which standard events are and are not available in the different states. The other
branches are slightly simpler, as they do not include readiness tests.

Branch(2,r,w) =
if r>0 then Prefix(endRead, Restart(2,r−1,w)) else STOPT

Branch(3,r,w) =
if r==0 and w==0 then Prefix(startWrite, Restart(3,r,w+1)) else STOPT

Branch(4,r,w) =
if w>0 then Prefix(endWrite, Restart(4,r,w−1)) else STOPT

When one branch executes and reaches a point corresponding to a recursion within the
Guard process, all the other branch processes need to be restarted, with new values for r or
w. We implement this by the executing branch signalling on the channel restart.

R = {0..N} −− possible values of r
W = {0..1} −− possible values of w
BRANCH = {1..4} −− branch identifiers
channel restart : BRANCH.R.W

Restart(i,r,w) = restart!i.r.w → Branch(i,r,w)

Each branch can receive such a signal from another branch, as an interrupt, and restart with
the new values for r and w.7

Branch’(i,r,w) =
Branch(i,r,w) 4 restart?j:diff(BRANCH,{i})?r’.w’ → Branch’(i,r’,w’)

6The operator diff represents set difference.
7The4 is an interrupt operator; the left hand side is interrupted when the right hand side performs an event.

Below we will combine these Branch’ processes in parallel so as to simulate Guard.
We will need to be able to identify which branch performs certain events. For events e other
than notOffer events, we rename e performed by branch i to c.i.e. We rename each
notOffer.e event performed by branch i to both itself and notOffer1.i.e: the former will
be used before the choice is resolved (synchronised between all branch processes), and the
latter will be used after the choice is resolved (privately to branch i):8

EE = union(E, {|ready, notReady, offer|}) −− events other than notOffer
channel c : BRANCH.EE −− c.i.e represents event e done by Branch(i, ,)
channel notOffer1 : BRANCH.E

Branch’’(i,r,w) =
Branch’(i,r,w)

[[e \ c.i.e | e ← EE]]
[[notOffer.e \ notOffer.e, notOffer.e \ notOffer1.i.e | e ← E]]

alpha(i) = {|c.i,restart,notOffer,notOffer1.i|} −− alphabet of branch i

Below we will combine the branch processes in parallel, together with a regulator pro-
cess Reg that, once a branch has done a standard event to resolve the choice, blocks all events
of the other branches until a restart occurs; further, it forces processes to synchronise on
notOffer events before the choice is resolved, and subsequently allows the unsynchronised
notOffer1 events.9

Reg = c?i?e → (if member(e,E) then Reg’(i) else Reg)
2 notOffer? → Reg

Reg’(i) = c.i? → Reg’(i) 2 restart.i? ? → Reg 2 notOffer1.i? → Reg’(i)

We build the guard process by combining the branches and regulator in parallel, hiding
the restart events, and reversing the above renaming.10

Guard0(r,w) =

(‖ i : BRANCH • [alpha(i)] Branch’’(i,r,w))

[| {|c,restart,notOffer,notOffer1|} |] Reg
Guard(r,w) =

(Guard0(r,w) \ {| restart |})
[[c.i.e \ e | e ← EE, i ← BRANCH]]
[[notOffer1.i.e \ notOffer.e | e ← E, i ← BRANCH]]

We can check the simple safety property that the guard allows at most one active writer
at a time, and never allows both readers and writers to be active.

Spec(r,w) =
w==0 and r<N & startRead → Spec(r+1,w)
2 r>0 & endRead → Spec(r−1,w)
2 r==0 and w==0 & startWrite → Spec(r,w+1)
2 w>0 & endWrite → Spec(r,w−1)

internals = {|ready, notReady, offer, notOffer, writerTrying|}

assert Spec(0,0) vT Guard(0,0) \ internals

8union represents the union operation.
9member tests for membership of a set.
10The ‖ is an indexed parallel composition, indexed by i; here the ith component has alphabet alpha(i).

The notation [| A |] is the machine-readable CSP version of ‖
A

.

This test succeeds, at least for small values of N.
In order to verify a liveness property, we need to model the readers and writers them-

selves. Each reader alternates between performing startRead and endRead, or may decide
to stop (when not reading). Each writer is similar, but, for later convenience, we add an
event writerTrying to indicate that it is trying to perform a write. It is important that the
startWrite event becomes available immediately after the writerTrying event, in order for
the liveness property below to be satisfied, hence we have the following form.

channel writerTrying

Reader = Prefix(startRead, Prefix(endRead, Reader)) u STOPT
Writer =

(writerTrying → Prefix1(startWrite , Prefix(endWrite, Writer)) u STOPT)
2 notOffer.startWrite → Writer

Following the semantic definitions, we need to synchronise the notOffer.startWrite

events of the individual writers, and we need to synchronise the offer.startWrite

and notOffer.startWrite events of the writers with the ready.startWrite and
notReady.startWrite events of the guard, respectively. For convenience, we block the re-
maining offer and notOffer events, since we make no use of them, and processes do not
change state when they perform such an event.

Readers = (||| r:{1..N} • Reader)

Writers = ([|{notOffer.startWrite}|] w:{1..N} • Writer)
[[offer.startWrite \ ready.startWrite,
notOffer.startWrite \ notReady.startWrite]]

ReadersWriters = Readers ||| Writers

System =
let SyncSet = union(E,{ready.startWrite,notReady.startWrite}) within
(Guard(0,0) [| SyncSet |] ReadersWriters) [| {|offer,notOffer|} |] STOP

We now consider the liveness property that the guard is fair to the writers, in the sense
that if at least one writer is trying to gain access, then one of them eventually succeeds.
Testing for this property is not easy: the only way to test that a startWrite event eventually
becomes available is to hide the readers’ events, and to check that startWrite becomes
available without a divergence (so after only finitely many readers’ events); however, hiding
all the readers’ events will lead to a divergence when no writer is trying to gain access (at
which point refinement tests do not act in the way we would like). What we therefore do
is use a construction that has the effect of hiding the readers’ events when a writer is trying
to gain access, but leaving the startRead events visible when no writer is trying to gain
access. We then test against the following specification (where all other irrelevant events are
hidden).

WLSpec(n) = n<N & (writerTrying → WLSpec(n+1) u STOP)
2 n>0 & startWrite → WLSpec(n−1)
2 n==0 & (startRead → WLSpec(n) u STOP)

The parameter n records how many writers are currently trying; when n>0 (i.e. at least one
writer is trying), this process insists that a writer can start after a finite amount of (hidden)
activity by the readers; when n==0 (i.e. no writer is trying), the process allows arbitrary
startRead events.

The way to implement the state-dependent hiding described above is to rename
startRead events both to themselves and a new event startRead’, put this in parallel with
a regulator that allows startRead events when no writer is trying and startRead’ events
when at least one writer is trying, and then hide startRead’ and other irrelevant events.

channel startRead’

System’ =
(System [[startRead \ startRead, startRead \ startRead’]]
[| {writerTrying,startWrite,startRead,startRead’} |] Reg1(0))
\ {|endRead,endWrite,ready,notReady,startRead’|}

Reg1(n) = n<N & writerTrying → Reg1(n+1)
2 n>0 & startWrite → Reg1(n−1)
2 n==0 & startRead → Reg1(n)
2 n>0 & startRead’ → Reg1(n)

We can then use FDR to verify

assert WLSpec(0) vFD System’

In particular, this means that the right hand side is divergence-free, so when n>0 the
startWrite events will become available after a finite number of the hidden events.

6. Discussion

In this paper we have considered an extension of CSP that allows processes to test whether
an event is available. We have formalised this construct by giving an operational semantics
and congruent denotational semantic models. We have illustrated how we can use a standard
model checker to analyse systems in this extended language.

In this final section we discuss some related work and possible extensions to this work.

6.1. Comparison with Standard Models

There have been several different denotational semantic models for CSP. Most of these
are based on the standard syntax of CSP, with the standard operational semantics. It is not
possible to compare these models directly with the models in this paper, since we have used
a more expressive language, with the addition of readiness tests; however, we can compare
them with the sub-language excluding this construct.

For processes that do not use readiness tests, the two models of this paper are more
distinguishing than the standard traces and stable failures models, respectively. Theorems 15
and 17 show that our models make at least as many distinctions as the standard models. They
distinguish processes that the standard models identify, such as

a→ STOP u (a→ STOP . b→ STOP) and a→ STOP u b→ STOP :

the former, but not the latter, has the trace 〈offer a, b〉.
In [10], Roscoe gives a survey of the denotational models based on the standard syn-

tax. The most distinguishing of those models based on finite observations (and so not mod-
elling divergences) is the finite linear model, FL. This model uses observations of the form
〈A0, a0,A1, a1, . . . , an−1,An〉, where each ai is an event that is performed, and each Ai is either
(a) a set of events, representing that those events are offered in a stable state (and so ai ∈ Ai),
or (b) the special value • representing no information about what events are stably offered
(perhaps because the process did not stabilise).

For processes with no readiness tests, FL is incomparable with the models in this paper.
Our models distinguish processes that FL identifies, essentially because the latter records
the availability of events only in stable states, whereas our models record this information
also in unstable states. For example, the processes

(b→ STOP . a→ STOP) u b→ STOP and a→ STOP u b→ STOP

are distinguished in our models since just the former has the trace 〈offer b, a〉; however they
are identified in FL (and hence all the other finite observation models from [10]) because
this b is not stably available.

Conversely, FL distinguishes processes that our models identify, such as

a→ b→ STOP u (a→ STOP . STOP) and a→ (b→ STOP u STOP) . STOP,

since the former has the observation 〈{a}, a, •, b, •〉, but the latter does not since its a is
performed from an unstable state; however, they are identified by our failures model (and
hence our traces model) since this records stability information only at the end of a trace.
I believe it would be straightforward to extend our models to record stability information
throughout the trace in the way FL does.

Roscoe also shows that each of the standard finite observation models can be extended
to model divergences in three essentially different ways. I believe it would be straightforward
to extend the model in this paper to include divergences following any of these techniques.

6.2. Comparison with Other Prioritised Models

As we described in the introduction, the readiness tests can be used to implement a form of
priority. There have been a number of previous attempts to add priority to CSP.

Lawrence [11] models priorities by representing a process as a set of triples of the
form (tr,X,Y), meaning that after performing trace tr, if a process is offered the set of
events X, then it will be willing to perform any of the events from Y . For example, a process
that initially gives priority to a over b would include the triple 〈〉, {a, b}, {a}).

Fidge [12] models priorities using a set of “preferences” relations over events. For
example, a process that gives priority to a over b would have the preferences relation
{a 7→ a, b 7→ b, a 7→ b}.

In [13,14], I modelled priorities within timed CSP using an order over the sets (actually,
multi-sets) of events that the process could do at the same time. For example, a process that
gives priority to a over b (and would rather do either than nothing) at time 0 would have the
ordering (0, {a}) A (0, {b}) A (0, {}).

All the above models are rather complex: I would claim that the model in this paper
is somewhat simpler, and has the advantage of allowing a translation into standard CSP, in
order to use the FDR model checker.

One issue that sometimes arises when considering priority is what happens when two
processes with opposing priorities are composed in parallel. For example, consider P ‖ Q
where P and Q give priority to a and b respectively:

P = a→ P1 2 notReady a & b→ P2,

Q = b→ Q1 2 notReady b & a→ Q2.

There are essentially three ways in which this parallel composition can behave (in a context
that doesn’t block a or b):

• If P performs its notReady test before Q, the test succeeds; if, further, P makes the b
available before Q performs its notReady test, then Q’s notReady test will fail, and so
the parallel composition will perform b;

• The symmetric opposite of the previous case, where Q performs its notReady test and
makes a available before P performs its notReady test, and so the parallel composition
performs a;

• If both processes perform their notReady tests before the other process makes the
corresponding event available, then both tests will succeed, and so both events will be
possible.

I consider this to be an appropriate solution. By contrast, the model in [11] leads to this
system deadlocking; in [13,14] I used a prioritised parallel composition operator to give
priority to the preferences of one components, thereby avoiding this problem, but at the cost
of considerable complexity.

6.3. Readiness Testing for Channels

Most CSP-like programming languages make use of channels that pass data. In such lan-
guages, one can often test for the availability of channels, rather than of individual events.
Note, though, that there is an asymmetry between the reader and writer of the channel: the
reader will normally want to test whether there is any event on the channel that is ready for
communication (i.e. the writer is ready to communicate), whereas the writer will normally
want to test if all events on the channel are ready for communication (i.e. the reader is ready
to communicate). It would be interesting to extend the language of this paper with constructs

if ready all A then P else Q and if ready any A then P else Q,

where A is a set of events (e.g. all events on a channel), to capture this idea.

6.4. Model Checking

In Section 5, we gave an indication as to how to simulate the language of this paper using
standard CSP, so as to use a model checker such as FDR.

This technique works in general. This can be shown directly, by exhibiting the transla-
tion. Alternatively, we can make use of a general result from [15], where Roscoe shows that
any operator with an operational semantics that is “CSP-like” —essentially that the operator
can turn arguments on, interact with arguments via visible events, promote τ events of argu-
ments, and maybe turn arguments off— can be simulated using standard CSP operators. The
−−. semantics of this paper is “CSP-like” in this sense, so we can use those techniques to
simulate this semantics. We intend to automate the translation.

One difficulty is that the translation from [15] can produce processes that are infinite state
because they branch off extra parallel processes at each recursion of the simulated process.
In Section 5 we avoided this problem by restarting the Branch processes that constituted the
guard at each recursion (this uses an idea also due to Roscoe), whereas Roscoe’s approach
would branch off new processes at each recursion. I believe the technique in Section 5 can
be generalised and probably automated.

6.5. Full Abstraction

The denotational semantic models we have presented turn out not to be fully abstract with
respect to may-testing [16]. Consider the process if ready a thenPelseP. This is denotationally
distinct from P, since its traces have ready a or notReady a events added to the traces of P.
Yet there seems no way to distinguish the two processes by testing: i.e., there is no good
reason to consider those processes as distinct.

We believe that one could form a fully abstract semantics as follows. Consider the
relation ∼ over sets of traces defined by

(S ∪ {tr̂tr′}) ∼ (S ∪ {tr̂〈ready a〉̂tr′, tr̂〈notReady a〉̂tr′})
for all S ∈ P(Σ∗), tr, tr′ ∈ Σ∗, a ∈ Σ.

In other words, two sets are related if one is formed from the other by adding ready a and
notReady a actions in the same place. Let ≈ be the transitive reflexive closure of ∼. This
relation essentially abstracts away irrelevant readiness tests. We conjecture that P and Q
are testing equivalent iff traces[[P]] ≈ traces[[Q]], and that it might be possible to produce a
compositional semantics corresponding to this equivalence. It is not clear that the benefits of
full abstraction are worth this extra complexity, though.

Acknowledgements

I would like to thank Bill Roscoe and Bernard Sufrin for interesting discussions on this work.
I would also like to thank the anonymous referees for a number of very useful suggestions.

References

[1] Peter Welch, Neil Brown, James Morres, Kevin Chalmers, and Bernhard Sputh. Integrating and extending
JCSP. In Communicating Process Architectures, pages 48–76, 2007.

[2] Peter Welch and Neil Brown. Communicating sequential processes for Java (JCSP). http://www.cs.
kent.ac.uk/projects/ofa/jcsp/, 2009.

[3] Gregory R. Andrews. Foundations of Multithreaded, Parallel, and Distributed Programming. Addison-
Wesley, 2000.

[4] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall, 1997.
[5] A. W. Roscoe. Model-checking CSP. In A Classical Mind, Essays in Honour of C. A. R. Hoare. Prentice-

Hall, 1994.
[6] Formal Systems (Europe) Ltd. Failures-Divergence Refinement—FDR 2 User Manual, 1997.
[7] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[8] P. J. Courtois, F. Heymans, and D. L. Parnas. Concurrent control with “readers” and “writers”. Communi-

cations of the ACM, 14(10):667–668, 1971.
[9] E. R. Olderog and C. A. R. Hoare. Specification-oriented semantics for communicating processes. Acta

Informatica, 23(1):9–66, 1986.
[10] A. W. Roscoe. Revivals, stuckness and the hierarchy of CSP models. Journal of Logic and Algebraic

Programming, 78(3):163–190, 2009.
[11] A. E. Lawrence. Triples. In Proceedings of Communicating Process Architectures, pages 157–184, 2004.
[12] C. J. Fidge. A formal definition of priority in CSP. ACM Transactions on Programming Languages and

Systems, 15(4):681–705, 1993.
[13] Gavin Lowe. Probabilities and Priorities in Timed CSP. DPhil thesis, Oxford, 1993.
[14] Gavin Lowe. Probabilistic and prioritized models of Timed CSP. Theoretical Computer Science, 138:315–

352, 1995.
[15] A.W. Roscoe. On the expressiveness of CSP. Available via http://web.comlab.ox.ac.uk//files/

1383/complete(3).pdf, 2009.
[16] R. de Nicola and M. C. B. Hennessy. Testing equivalences for processes. Theoretical Computer Science,

34:83–133, 1984.

A. Derived Operational Semantics

The definition of the−−. relation, and the operational semantic rules for the−→ relation can
be translated into the following defining rules for −−..

STOP
notOffer a
−−−. STOP for a ∈ Σ

a→ P
notOffer b
−−−. a→ P for b ∈ Σ

ǎ→ P
offer a
−−−. a→ P

a→ P
τ−−. ǎ→ P

ǎ→ P
a−−. P

ǎ→ P
notOffer b
−−−. a→ P for b 6= a

if ready a then P else Q
ready a
−−−. P

if ready a then P else Q
notReady a
−−−. Q

if ready a then P else Q
notOffer b
−−−. if ready a then P else Q for b ∈ Σ

P
a−−. P′

P 2 Q
a−−. P′

P
τ−−. P′

P 2 Q
τ−−. P′ 2 Q

P
ready a
−−−. P′

P 2 Q
ready a
−−−. P′ 2 Q

P
notReady a
−−−. P′

P 2 Q
notReady a
−−−. P′ 2 Q

P
offer a
−−−. P′

P 2 Q
offer a
−−−. P′ 2 Q

P
notOffer a
−−−. P′

Q
notOffer a
−−−. Q′

P 2 Q
notOffer a
−−−. P′ 2 Q′

P
a−−. P′

P . Q
a−−. P′

P
τ−−. P′

P . Q
τ−−. P′ . Q

P
ready a
−−−. P′

P . Q
ready a
−−−. P′ . Q

P
notReady a
−−−. P′

P . Q
notReady a
−−−. P′ . Q

P
offer a
−−−. P′

P . Q
offer a
−−−. P′ . Q

P
notOffer a
−−−. P′

P . Q
notOffer a
−−−. P′ . Q

P
α−−. P′ α ∈ (Σ− A)) ∪ {τ} ∪ ready(Σ− A) ∪ notReady(Σ− A) ∪

offer(Σ− A) ∪ notOffer(Σ− A)P \ A
α−−. P′ \ A

P
α−−. P′

α ∈ A ∪ ready A
P \ A

τ−−. P′ \ A
P \ A

notOffer a
−−−. P \ A, for a ∈ A

P
α−−. P′

α ∈ privateA ∪ {τ}
PA‖BQ

α−−. P′A‖BQ

P
α−−. P′

Q
α−−. Q′

α ∈ syncA,B
PA‖BQ

α−−. P′A‖BQ

P
ready b
−−−. P′

Q
offer b
−−−. Q′

b ∈ B
PA‖BQ

ready b
−−−. P′A‖BQ′

P
notReady b
−−−. P′

Q
notOffer b
−−−. Q′

b ∈ B
PA‖BQ

τ−−. P′A‖BQ′

P
notReady b
−−−. P′

Q
offer b
−−−. Q′

b ∈ B
PA‖BQ

notReady b
−−−. P′A‖BQ′

PA‖BQ
notOffer d
−−−. PA‖BQ,

for d ∈ Σ− A− B.

B. Congruence of the Operational Semantics

In this appendix, we prove some of the cases in the proof of Theorem 13:

tr ∈ tracesR[[P]] iff P tr
=⇒ .

Hiding

We prove the case of hiding in Theorem 13 using the derived rules in Appendix A.

(⇒) Suppose tr ∈ tracesR[[P \ A]]. Then there exists some trP ∈ tracesR[[P]] such that
trP |̀ (notReady A ∪ offer A) = 〈〉 and trP \ (A ∪ ready A) = tr \ notOffer A. By the inductive
hypothesis, P

trP=⇒, i.e., P
α1−−. . . . αn−−. for some α1, . . . , αn such that trP = 〈α1, . . . , αn〉 \

{τ}. From the derived operational semantics rules, P\A has the same transitions but with each
αi ∈ A∪ready A replaced by a τ , i.e., transitions corresponding to the trace trP\(A∪ready A).
Further, using the third derived rule for hiding, arbitrary notOffer A self-loops can be added
to the transitions, giving transitions corresponding to trace tr. Hence P \ A tr

=⇒.

(⇐) Suppose P \ A tr
=⇒. Consider the transitions of P that lead to this trace. By considera-

tion of the derived rules, we see that P
trP=⇒ for some trace trP such that trP |̀ (notReady A ∪

offer A) = 〈〉 and trP \ (A ∪ ready A) = tr \ notOffer A. By the inductive hypothesis,
trP ∈ tracesR[[P]]. Hence, tr ∈ tracesR[[P \ A]].

Parallel Composition

We prove the case of parallel composition in Theorem 13 using the derived rules from Ap-
pendix A.

(⇒) Suppose tr ∈ tracesR[[PA‖BQ]]. Then there exist trP ∈ tracesR[[P]] and trq ∈ tracesR[[Q]]
such that trP |̀ (Σ−A)∪offer(Σ−A)∪notOffer(Σ−A) = 〈〉, trQ |̀ (Σ−B)∪offer(Σ−B)∪
notOffer(Σ−B) = 〈〉 and (trP, trQ) A‖B7−→ tr\notOffer(Σ−A−B). By the inductive hypothesis,

P
trP=⇒ and Q

trQ
=⇒. So P

α1−−. . . . αn−−. and Q
β1−−. . . .

βm−−. for some α1, . . . , αn, β1, . . . , βm

such that trP = 〈α1, . . . , αn〉 \ {τ} and trq = 〈β1, . . . , βm〉 \ {τ}. We then have that

PA‖BQ
tr\notOffer(Σ−A−B)

==⇒ , since each event implied by (trP, trQ) A‖B7−→ tr \ notOffer(Σ− A− B)
has a corresponding transition implied by the operational semantics rules (formally, this is a

case analysis over the clauses of A‖B7−→, combined with a straightforward induction on m + n).
Further, using the final derived rule for parallel composition, arbitrary notOffer(Σ − A − B)
self-loops can be added to the transitions, giving transitions corresponding to trace tr. Hence
PA‖BQ tr

=⇒.

(⇐) Suppose PA‖BQ tr
=⇒. Then by item 3 of Lemma 9, PA‖BQ

tr\notOffer(Σ−A−B)
==⇒ . Con-

sider the transitions of P and Q that lead to this trace according to the operational seman-

tics rules, say P
α1−−. . . .

αn−−. and Q
β1−−. . . .

βm−−.. Let trP = 〈α1, . . . , αn〉 \ {τ} and

trq = 〈β1, . . . , βm〉\{τ}; so P
trP=⇒ and Q

trQ
=⇒. By the inductive hypothesis, trP ∈ tracesR[[P]]

and trQ ∈ tracesR[[Q]]. Also, by consideration of the operational semantics rules, trP |̀ (Σ −
A)∪offer(Σ−A)∪notOffer(Σ−A) = 〈〉 and trQ |̀ (Σ−B)∪offer(Σ−B)∪notOffer(Σ−B) = 〈〉.
Further, (trP, trQ) A‖B7−→ tr \ notOffer(Σ− A− B), since each transition implied by the opera-

tional semantics rules has a corresponding event implied by the definition of A‖B7−→ (formally,
this is a case analysis over the operational semantics rules, combined with a straightforward
induction on m + n). Hence tr ∈ tracesR[[PA‖BQ]].

