
python-csp
CSP as a DSL for Python

and Jython

Sarah Mount, University of Wolverhampton

w: http://www.snim2.org
e: s.mount@wlv.ac.uk
t: @snim2

Contents...

• Why we did this
• Advantages / disadvantages of Python for highly concurrent

or process oriented work
• General theme of python-csp
• Syntax / semantics / examples
• Future directions

The story of this work ...

Tmote Invent platform from MoteIV (now Sentilla)

TinyOS code to gather raw data from Tmote Invents

module HL2ControllerM
{

provides interface StdControl;
uses { ... interface ADC as AccelX; ... }

}
implementation {

task void getAccelXData() {
call AccelX.getData();

}
async event result_t AccelX.dataReady(uint16_t

data) {
atomic am->accelX[nextX++] = data;
post getAccelYData();
return SUCCESS;

}
}

... but what about the
application layer?

Soil science and agronomy

%RH to Soil Matric Pressure

Then I made SenSor and Dan Goldmsmith
made SensorPlus

Laboratory hardware running Dingo

... so we wrote a book about it all ...

Why python-csp

• Keep all the increased productivity and fun of Python
• Add scalable, mobile concurrency
• Profit.

Commstime results

Mean s.d.
(micro s)

JCSP (Java threads) 23.8 4.29

PyCSP (Processes) 394.97 75.82
PyCSP (Threads) 292.2 47.21
PyCSP (Greenlets) 24.41 0.36

python-csp (Processes) 116.75 35.53
python-csp (Threads) 225.77 17.51

jython-csp (Java threads) 157.8 30.78

Python oddities

• The Beazley effect
o A multi-threaded algorithm can be slower than a single-

threaded algorithm
o GIL preempts every $X OPCODES

• The state of Python's low-level threading libraries
o Implement POSIX threads
o Locking facilities (condition variables, locks, mutexes,

semaphores) usually implemented in natively in Python,
not provided by the OS

Morals of this story...

• Not every language has nice, high-level concurrency
features

• It is still worth porting CSP etc. to your favourite language
o If you don't like Python, try Actionscript ;-)

• The JVM is not the answer to every ill
• Sometimes waiting is a good idea ...

o Google will finish Unladen Swallow
o Jython will get faster (but will it get jythonc back?!)

Future directions
• Mobility
• Performance issues

o Can we do better?
Coroutines, protothreads, ...
Unladen Swallow (LLVM -> ???)

• Using the underlying thread / process libraries
o Brings an overhead
o Doesn't directly implement POSIX anything
o May prove useful to replace

• Pythonic issues
o Get high level concurrency into the standard library ;-)

• Pervasive computing -- bigraphs?

