
CSP as a Domain-Specific Language
Embedded in Python and Jython

Sarah MOUNT 1, Mohammad HAMMOUDEH, Sam WILSON and Robert NEWMAN

School of Computing and I.T., University of Wolverhampton, U.K.

Abstract. Recently, much discussion has taken place within the Python programming
community on how best to support concurrent programming. This paper describes a
new Python library, python-csp, which implements synchronous, message-passing
concurrency based on Hoare’s Communicating Sequential Processes. Although other
CSP libraries have been written for Python, python-csp has a number of novel fea-
tures. The library is implemented both as an object hierarchy and as a domain-specific
language, meaning that programmers can compose processes and guards using infix
operators, similar to the original CSP syntax. The language design is intended to be
idiomatic Python and is therefore quite different to other CSP libraries. python-csp
targets the CPython interpreter and has variants which reify CSP process as Python
threads and operating system processes. An equivalent library targets the Jython in-
terpreter, where CSP processes are reified as Java threads. jython-csp also has Java
wrappers which allow the library to be used from pure Java programs. We describe
these aspects of python-csp, together with performance benchmarks and a formal
analysis of channel synchronisation and choice, using the model checker SPIN.

Keywords. CSP, domain-specific languages, dynamic languages, Python

Introduction

Python is a lexically scoped, dynamically typed language with object-oriented features,
whose popularity is often said to be due to its ease of use. The rise of multi-core processor
architectures and web applications has turned attention in the Python community to concur-
rency and distributed computing. Recent versions of Python have language-level or standard
library support for coroutines2, (system) threads3 and process4 management, the latter two
largely in the style of the POSIX thread library. This proliferation of concurrency styles is
somewhat in contrast to the “Zen” of Python [1] which states that “There should be one—and
preferably only one—obvious way to do it.”.

One reason for adding coroutines (and therefore the ability to use “green” threads) and
operating-system processes is the performance penalty of using Python threads, which is
largely due to the presence of the global interpreter lock (GIL) in the C implementation of the
Python interpreter. The GIL is implemented as an operating system semaphore or condition
variable which is acquired and released in the interpreter every time the running thread blocks

1Corresponding Author: Sarah Mount, School of Computing and I.T., University of Wolverhampton,
Wulfruna St., Wolverhampton, WV1 1SB, U.K.. Tel.: +44 1902 321832; Fax: +44 1902 321478; E-mail:
s.mount@wlv.ac.uk.

2Python PEP 342: Coroutines via Enhanced Generators http://www.python.org/dev/peps/pep-0342/
3http://docs.python.org/library/threading.html#module-threading
4http://docs.python.org/library/multiprocessing.html#module-multiprocessing

for I/O, allowing the operating system to schedule a different thread. A recent presentation
by Dave Beazley5 contained benchmarks of the following CPU-bound task:

def count(n):
while n > 0:

n -= 1

and found that a parallel execution of the task in threads performed 1.8 times slower than a
sequential execution and that performance improved if one (of two) CPU cores was disabled.
These counter-intuitive results are often the basis for developers to call for the GIL to be
removed. The Python FAQ6 summarises why the GIL is unlikely to be removed from the
reference implementation of the interpreter, essentially because alternative implementations
of thread scheduling have caused a performance penalty to single-threaded programs. The
current solution, therefore, is to provide programmers with alternatives: either to write single-
threaded code, perhaps using coroutines for cooperative multitasking, or to take advantage
of multiple cores and use processes and IPC in favour of threads and shared state. A second
solution is to use another implementation of Python, apart from the CPython interpreter.
Stackless Python [2] is an implementation which largely avoids the use of the C stack and has
green threads (called “tasklets”) as part of its standard library. Google’s Unladen Swallow7

is still in the design phase, but aims to improve on the performance of CPython five-fold and
intends to eliminate the GIL in its own implementation by 2010.

This paper describes another alternative, to augment Python with a higher-level abstrac-
tion for message-passing concurrency, python-csp based on Hoare’s Communicating Se-
quential Processes [3]. The semantics of CSP are relatively abstract compared with libraries
such as pthreads and so the underlying implementation of CSP “processes” as either sys-
tem threads, processes or coroutines is hidden from the user. This means that the user can
choose an implementation which is suitable for the interpreter in use or the context of the
application they are developing (for example, processes where a multi-core architecture is
expected to be used, threads where one is not). Also CSP was designed specifically to help
avoid well-known problems with models such as shared memory concurrency (such as dead-
locks and race conditions) and to admit formal reasoning. Both properties assist the user by
encouraging program correctness. The authors have a particular interest in using Python to
implement complex tasks requiring coordination between many hosts. The SenSor simulator
and development tool [4,5] provided facilities for prototyping algorithms and applications for
wireless sensor networks in pure Python, using shared-memory concurrency. The burden of
managing explicit locking in an already complex environment made the implementation of
SenSor difficult. A new version of the tool is currently under development and will be built
on the python-csp and jython-csp libraries.

To deal with the different performance characteristics of threads and processes in the cur-
rent implementations of Python, the python-csp library currently has a number of different
implementations:

• The csp.cspprocess module which contains an implementation of python-csp based
on operating system processes, as managed by the multiprocessing library; and

• the csp.cspthread module which contains an implementation of python-csp based
on system threads.

There is also a version of the library called jython-csp that targets Jython, a version
of Python which runs on the Java VM. jython-csp uses Java threads (which are also sys-

5http://blip.tv/file/2232410
6http://www.python.org/doc/faq/library/
7http://code.google.com/p/unladenswallow/

tem threads), rather than Python threads. Jython allows the user to mix Java and Python
code in programs (almost) freely. As such, jython-csp allows users to use any combina-
tion of Python and Java, including being able to write pure Java programs using wrappers
for jython-csp types. In general, in this paper we will refer to python-csp, however, the
syntax and semantics of the libraries can be assumed to be identical, unless stated otherwise.

The remainder of this paper describes the design and implementation of python-csp
and jython-csp. Section 1 gives an overview of the design philosophy of the library and its
syntax and (informal) semantics. Section 2 describes a longer python-csp program and gives
a discussion of the design patterns used in the implementation. Section 3 begins an evaluation
of python-csp by describing benchmark results using the Commstime program and compar-
ing our work with similar libraries. python-csp and jython-csp have been bench-marked
against PyCSP [6], another realisation of CSP in Python and JCSP [7], a Java library. Section
4 outlines ongoing work on model checking channel synchronisation and non-deterministic
selection in the python-csp implementation. Section 5 concludes and describes future work.

1. python-csp and jython-csp: Syntax and Semantics

The design philosophy behind python-csp is to keep the syntax of the library as “Pythonic”
and familiar to Python programmers as possible. In particular, two things distinguish this li-
brary from others such as JCSP [7] and PyCSP [6]. Where languages such as Java have strong
typing and sophisticated control over encapsulation, Python has a dynamic type system, often
using so-called “duck typing” (which means that an object is said to implement a particular
type if it shares enough data and operations with the type to be used in the same context as the
type). Where an author of a Java library might expect users to rely on the compiler to warn of
semantic errors in the type-checking phase, Python libraries tend to trust the user to manage
their own encapsulation and use run-time type checking. Although Python is a dynamically
typed language, the language is helpful in that few, if any, type coercions are implicit. For
example, where in Java, a programmer could concatenate a String and an int type when
calling System.out.println, the equivalent expression in Python would raise an exception. In
general, the Python type system is consistent and this is largely because every Python type
is reified as an object. Java differs from Python in this respect, as primitive Java types (byte,
short, int, long, char, float, double, boolean) do not have fields and are not created on the
heap. In Python, however, all values are (first-class) objects, including functions and classes.
Importantly for the work described here, operators may be overloaded for new types as each
Python operator has an equivalent method inherited from the base object, for example:

>>> 1 + 2
3
>>> (1). __add__ (2)
3
>>> [1] * 3
[1, 1, 1]
>>> ([1]). __mul__ (3)
[1, 1, 1]
>>>

Lastly, Python comes with a number of features familiar to users of functional programming
languages such as ML that are becoming common in modern, dynamically typed languages.
These include generators, list comprehensions and higher-order functions.

CSP [3] contains three fundamental concepts: processes, (synchronous) channel com-
munication and non-deterministic choice. python-csp provides two ways in which the user
may create and use these CSP object types: one method where the user explicitly creates

instances of types defined in the library and calls the methods of those types to make use
of them; and another where users may use syntactic sugar implemented by overriding the
Python built in infix operators. Operator overloading has been designed to be as close to the
original CSP syntax as possible and is as follows:

Syntax Meaning CSP equivalent
P > Q Sequential composition of processes P ; Q
P&Q Parallel composition of processes P‖Q
c1 | c2 Non-deterministic choice c1 u c2

n ∗ A Repetition n • A
A ∗ n Repetition n • A
Skip() Skip guard, always ready to synchronise Skip

where:

• n is an integer;
• P and Q are processes;
• A is a non-deterministic choice (or ALT); and
• c1 and c2 are channels.

The following sections describe each of the python-csp features in turn.

1.1. python-csp Processes

In python-csp a process can be created in two ways: either explicitly by creating an instance
of the CSPProcess class or, more commonly, by using the @process decorator8. In either case,
a callable object (usually a function) must be created that describes the run-time behaviour
of the process. Listing 1 shows the two ways to create a new process, in this case one which
opens a sensor connected to the USB bus of the host and continuously prints out a transducer
reading every five minutes. Whichever method is used to create the process, P, a special
keyword argument _process must be passed in with a default value. When the process P is
started (by calling its start method) _process is dynamically bound to an object representing
the underlying system thread or process which is the reification of the CSPProcess instance.
This gives the programmer access to values such as the process identifier (PID), or thread
name which may be useful for logging and debugging purposes. When the start methods in
a CSPProcess object has returned the underlying thread or process will have terminated. Once
this has happened, accessing the methods or data of the corresponding _process variable will
raise an exception.

Using the CSPProcess class:
def print_rh_reading ():

rhsensor = ToradexRH () # Oak temp / humidity sensor
rhsensor.open()
while True:

data = rhsensor.get_data ()
print ’Humidity %%g: Temp: %gC’ % data [1:]
dingo.platform.gumstix.sleep (60 * 5) # 5 min

P = CSPProcess(print_rh_reading , _process=None)
P.start()

Using the @process decorator:

8A “decorator” in Python is a callable object “wrapped” around another callable. For example, the definition
of a function fun decorated with the @mydec decorator will be replaced with fun = mydec(fun).

@process
def print_rh_reading(_process=None):

rhsensor = ToradexRH () # Oak temp / humidity sensor
rhsensor.open()
while True:

data = rhsensor.get_data ()
print ’Humidity %%g: Temp: %gC’ % data [1:]
dingo.platform.gumstix.sleep (60 * 5) # 5 min

P = print_rh_reading ()
P.start()

Listing 1. Two ways to create a python-csp process.

1.2. python-csp Parallel and Sequential Execution

CSP processes can be composed either sequentially or in parallel. In sequential execution
each process starts and terminates before the next in the sequence begins. In parallel execu-
tion all processes run “at once” and therefore the order of any output they effect cannot be
guaranteed. Parallel and sequential execution can be implemented in python-csp either by
instantiating Par and Seq objects or by using the overloaded & or > operators. In general, using
the overloaded infix operators results in clear, simple code where there are a small number of
processes. Listing 2 demonstrates sequential and parallel process execution in python-csp.

... def P(n, _process=None):

... print n

...
>>> # In sequence , using syntactic sugar ...
>>> P(1) > P(2)
1
2
>>> # In sequence , using objects ...
>>> Seq(P(1), P(2)). start()
1
2
>>> # In parallel , using syntactic sugar ...
>>> P(1) & P(2)
2
1
>>> # In parallel , using objects ...
>>> Par(P(1), P(2)). start()
1
2

Listing 2. Two ways to run processes sequentially and in parallel.

1.3. python-csp Channels

In CSP communication between processes is achieved via channels. A channel can be thought
of as a pipe (similar to UNIX pipes) between processes. One process writes data down the
channel and the other reads. Since channel communication in CSP is synchronous, the writing
channel can be thought of as offering data which is only actually written to the channel when
another process is ready to read it. This synchronisation is handled entirely by the language,
meaning that details such as locking are invisible to the user. Listing 3 shows how channels
can be used in python-csp.

In its csp.cspprocess implementation, python-csp uses an operating system pipe to
transmit serialised data between processes. This has a resource constraint, as operating sys-
tems limit the number of file descriptors that each process may have open. This means that
although python-csp programs can create any number of processes (until available memory
is saturated), a limited number of channels can be created. In practice this is over 600 on a
Ubuntu Linux PC. To compensate for this, python-csp offers a second implementation of
channels called FileChannel. A FileChannel object behaves in exactly the same way as any
other channel, except that it uses files on disk to store data being transferred between pro-
cesses. Each read or write operation on a FileChannel opens and closes the operating system
file, meaning that the file is not open for the duration of the application running time. Pro-
grammers can use FileChannel objects directly, or, if a new Channel object cannot be instan-
tiated then Channel will instead return a FileChannel object.

A third class of channel is provided by python-csp, called a NetworkChannel. A
NetworkChannel transfers data between processes via a socket listener which resides on each
node in the network for the purpose of distributing channel data. By default when the Python
csp.cspprocess package is imported, a socket server is started on the host (if one is not al-
ready running).

@process
def send_rh_reading(cout , _process=None):

rhsensor = ToradexRH () # Oak temp / humidity sensor
timer = TimerGuard ()
rhsensor.open()
while True:

data = rhsensor.get_data ()
cout.send(’Humidity %%g: Temp: %gC’ % data [1:])
timer.sleep (60 * 5) # 5 min
guard.read() # Synchronise with timer guard.

@process
def simple_sensor(_process=None):

ch = Channel ()
Printer(ch) & send_rh_reading(ch)

Listing 3. Two processes communicating via a channel.

1.4. Non-Deterministic Selection and Guards in python-csp

Non-deterministic selection (called “select” in JCSP and “ALT” or “ALTing” in occam) is
an important feature of many process algebras. Select allows a process to choose between a
number of waiting channel reads, timers or other “guards” which are ready to synchronise.
In python-csp this is achieved via the select method of any guard type. To use select an
Alt object must be created and should be passed any number of Guard instances. See Listing
4 for an example. The select method can be called on the Alt object and will return the value
returned from the selected guard. To implement a new guard type, users need to subclass the
Guard class and provide the following methods:

enable which should attempt to synchronise.
disable which should roll back from an enable call to the previous state.
is selectable which should return True if the guard is able to complete a synchronous

transaction and False otherwise.
select which should complete the synchronous transaction and return the result (note this

semantics is slightly different from that found in JCSP, as described by Welch [7],
where an index to the selected guard in the guard array is returned by select).

poison which should be used to finalize and delete the current guard and gracefully termi-
nate any processes connected with it [8,9].

Since Python has little support for encapsulation, the list of guards inside an Alt object is
available to any code which has access to the Alt.

@process
def printAvailableReading(cins , _process=None):

alt = Alt(cins)
while True:

print alt.select ()
@process
def simpleSensorArray(_process=None):

chans , procs = [], []
for i in NUMSENSORS:

chans.append(Channel ())
procs.append(sendRHReading(chans [-1]))

procs.append(printAvailableReading(chans))
Par(* procs). start()

Listing 4. Servicing the next available sensor reading with non-deterministic selection.

Like many other implementations of CSP, python-csp implements a number of variants
of non-deterministic selection:

select enables all guards and either returns the result of calling select on the first available
guard (if only one becomes available) or randomly chooses an available guard and
returns the result of its select method. The choice is truly random and determined by
a random number generator seeded by the urandom device of the host machine.

priority select enables all guards and, if only one guard becomes available then
priority_select returns the result of its select method. If more than one guard be-
comes available the first guard in the list passed to Alt is selected.

fair select enables all guards and, if only one guard becomes available then fair_select

returns the result of its select method. Alt objects keep a reference to the guard which
was selected on the previous invocation of any select method, if there has been such
an invocation and the guard is still in the guards list. If fair_select is called and more
than one guard becomes available, then fair_select gives lowest priority to the guard
which was returned on the previous invocation of any of the select methods. This idiom
is used to reduce the likelihood of starvation as every guard is guaranteed that no other
guard will be serviced twice before it is selected.

There are two forms of syntactic sugar that python-csp implements to assist in dealing
with Alt objects: a choice operator and a repetition operator. Using the choice operator, users
may write:

result = guard_1 | guard_2 | ... | guard_n

which is equivalent to:

alt = Alt(guard_1 , guard_2 , ..., guard_n)
result = alt.select ()

To repeatedly select from an Alt object n times, users may write:

gen = n * Alt(guard_1 , guard_2 , ..., guard_n)

or:

gen = Alt(guard_1 , guard_2 , ..., guard_n) * n

this construct returns a generator object which can be iterated over to obtain results from
Alt.select method calls. Using generators in this way is idiomatic in Python and will be
familiar to users. The following is a typical use case:

gen = Alt(guard_1 , guard_2 , ..., guard_n) * n
while True:

... gen.next() ...

Each time gen.next() is called within the loop, the select() method of the Alt object is
called, and its result returned.

In addition to channel types, python-csp implements two commonly used guard types:
Skip and TimerGuards. Skip is the guard which is always ready to synchronise. In python-csp

its select method always returns None, which is the Python null value. TimerGuards are used
to either suspend a running process (by calling their sleep method) or as part of a synchroni-
sation where the guard will become selectable after a timer has expired:

@process
def alarm(self , cout , _process=None):

alt = Alt(TimerGuard ())
t0 = alt.guard [0]. read() # Fetch current time
alt.guard [0]. set_alarm (5) # Selectable 5 secs from now
alt.select ()
duration = guard.read() - t0 # In seconds
cout.write(duration)

1.5. Graceful Process Termination in python-csp

Terminating a parallel program without leaving processes running in deadlock is a difficult
problem. The most widely implemented solution to this problem was invented by Peter Welch
[10] and is known as “channel poisoning”. The basic idea is to send a special value down a
channel which, when read by a process, is then propagated down any other channels known
to that process before it terminates. In python-csp this can be affected by calling the poison

method on any guard.
A common idiom in python-csp, especially where producer-consumer patterns are im-

plemented, is this:

alt = Alt(* channels)
for i in xrange(len(channels)):

alt.select ()

Here, it is intended that each guard in channels be selected exactly once. Once a guard has
been selected its associated writer process(es) will have finished its computation and ter-
minate. In order to support this idiom efficiently, python-csp implements a method called
poison on Alt objects which serves to poison the writer process(es) attached to the last se-
lected guard and remove that guard from the list, used as follows:

a = Alt(* channels)
for i in xrange(len(channels)):

a.select ()
a.poison ()

By shortening the list of guards less synchronisation is required on each iteration of the for

loop, reducing the computational effort required by the select method.

1.6. Built-In Processes and Channels

python-csp comes with a number of built-in processes and channels, aimed to speed de-
velopment. This includes all of the names defined in the JCSP “plugnplay” library. In addi-
tion to these and other built-in processes and guards, python-csp comes with analogues of
every unary and binary operator in Python. For example, the Plus process reads two values
from channels and then writes the addition of those values to an output channel. An example
implementation9 of this might be:

@process
def Plus(cin1 , cin2 , cout , _process=None):

while True:
in1 = cin1.read()
in2 = cin2.read()
cout.write(in1 + in2)

return

Listing 5. A simple definition of the built-in Plus process.

1.7. jython-csp Implementation and Integration with Pure Java

jython-csp is a development of python-csp for integration with Jython. Jython has sim-
ilar semantics as Python but uses the Java runtime environment (JRE) which allows access
to the large number of Java libraries, such as Swing, which are useful, platform-independent
and well optimised. jython-csp has similar workings to the initial python-csp with the
ability to utilise any class from the standard Java and Python class libraries. jython-csp
utilises Java threads and would be expected to perform similarly to other CSP implementa-
tions based on Java threads, such as JCSP (e.g. [7]). A comparison between jython-csp and
python-csp implementations of the Monte Carlo approximation to π is shown in Table 1.

Table 1. Results of testing Java threads against Python threads and OS processes.

Thread Library Running time of π approximation (seconds)
jython-csp (Java Threads) 26.49
python-csp (Python Threads) 12.08
python-csp (OS Processes) 9.59

As we shall see in Section 3 the JCSP library performs channel communication very
efficiently, so one might expect that jython-csp would also execute quickly. A speculation
as to why jython-csp (using Java threads) performs poorly compared to the other CSP
implementations is a slow Java method dispatch within Jython.

In addition to the modification of the threading library used jython-csp also takes ad-
vantage of Java locks and semaphores from the java.util.concurrent package. jython-csp
has no dependency on non standard packages; the library will work with any JRE which is
compatible with Jython 2.5.0final.

9In fact, these processes are implemented slightly differently, taking advantage of Python’s support for re-
flection. Generic functions called _applybinop and _applyunaryop are implemented, then Plus may be de-
fined simply as Plus = _applybinop(operator.__add__). The production version of this code is slightly
more complex as it allows for documentation for each process to be provided whenever _applybinop and
_applyunaryop are called.

1.8. Java-csp

Java-csp is the integration of jython-csp with Java to allow Java applications to utilise the
flexibility of jython-csp.

The Java CSP implementation attempts to emulate the built in Java thread library
(java.lang.Thread) with a familiar API. As with Java threads there are two ways to use
threads in an application:

• By extending the Thread class and overwriting the run method; or
• By implementing the Runnable interface.

The Java csp implementation has a similar usage:

• Extending the JavaCspProcess and overwriting the target method; or
• Implementing the JavaCspProcessInterface interface.

jython-csp and python-csp uses the pickle library as a means of serialising data down
a channel. Pickle takes a Python/Jython object and returns a sequence of bytes; this approach
only works on Python/Jython object and is unsuitable for native Java objects. As a solution
java-csp implements a wrapped version of Java object serialization which allows Jython to
write pure Java objects, which implement the Serializable interface, to a channel, in addition
to this, Python/Jython objects can be written down a channel if they extend the PyObject class.

2. Mandelbrot Generator: an Example python-csp Program

2.1. Mandelbrot Generator

Listing 6 shows a longer example of a python-csp program as an illustration of typical cod-
ing style. The program generates an image of a Mandelbrot set which is displayed on screen
using the PyGame library10 (typically used for implementing simple, 2D arcade games).

The Mandelbrot set is an interesting example, since it is embarrassingly parallel – i.e.
each pixel of the set can be calculated independently of the others. However, calculating
each pixel of a large image in a separate process may be a false economy. Since channel
communication is likely to be an expensive part, the resulting code is likely to be I/O bound.
The code in Listing 6 is structured in such a way that each column in the image is generated
by a separate “producer” process. Columns are stored in memory as a list of RGB tuples
which are then written to a channel shared by the individual producer process and a single
“consumer” process. The main work of the consumer is to read each image column via an
Alt object and write it to the display surface.

This producer-consumer architecture is common to many parallel and distributed pro-
grams. It it not necessarily, however, the most efficient structure for this program. Since some
areas of the set are essentially flat and so simple to generate, many producer processes are
likely to finish their computations early and spend much of their time waiting to be selected
by the consumer. If this is the case, it may be better to use a “farmer” process to task a smaller
number of “worker” processes with generating a small portion of the image, and then re-task
each worker after it has communicated its results to the farmer. Practically, if efficiency is
an important concern, these options need to be prototyped and carefully profiled in order to
determine the most appropriate solution to a given problem.

from csp.cspprocess import *
@process
def mandelbrot(xcoord , (width , height), cout ,

10http://www.pygame.org

acorn =-2.0, bcorn =-1.250, _process=None):
Generate image data for column xcoord ...
cout.write((xcoord , imgcolumn))
_process._terminate ()

@process
def consume(IMSIZE , filename , cins , _process=None):

Create initial pixel data.
pixmap = Numeric.zeros((IMSIZE [0], IMSIZE [1], 3))
pygame.init()
screen = pygame.display.set_mode ((IMSIZE [0], IMSIZE [1]), 0)
Wait on channel data.
alt = ALT(*cins)
for i in range(len(cins)):

xcoord , column = alt.select ()
alt.poison () # Remove last selected guard and producer.
Update column of blit buffer
pixmap[xcoord] = column
Update image on screen.
pygame.surfarray.blit_array(screen , pixmap)

def main(IMSIZE , filename):
channels , processes = [], []
for x in range(IMSIZE [0]): # Producer + channel per column.

channels.append(Channel ())
processes.append(mandelbrot(x, IMSIZE , channels[x]))

processes.insert(0, consume(IMSIZE , filename , channels))
mandel = PAR(* processes)
mandel.start()

Listing 6. Mandelbrot set in python-csp (abridged).

The worker-farmer architecture shows an improvement in performance over the producer-
consumer architecture. The code in Listing 7 is structured in such a way that each column in
the image is computed by a single process. Initially a set of workers are created and seeded
with the value of the column number, the pixel data for that column is generated then written
to a channel. When the data has been read, the “farmer” then assigns a new column for the
worker to compute. If there are no remaining columns to be generated, the farmer will write
a terminating value and the worker will terminate. This is required to instruct the “worker”
that there are no more tasks to be performed. The consumer has the same function as before
although with a smaller set of channels to choose from. Workers which have completed their
assigned values have a shorter amount of time to wait until the Alt object selects them.

@process
def mandelbrot(xcoord , (width , height), cout ,

acorn =-2.0, bcorn =-1.250, _process=None):
Generate image data for column xcoord ...
cout.write((xcoord , imgcolumn))
xcoord = cout.read()
if xcoord == -1:

_process._terminate ()
@process
def consume(IMSIZE , filename , cins , _process=None):

global SOFAR
Create initial pixel data
pixmap = Numeric.zeros((IMSIZE [0], IMSIZE [1], 3))
pygame.init()
screen = pygame.display.set_mode ((IMSIZE [0], IMSIZE [1]), 0)
Wait on channel data
alt = Alt(*cins)

for i in range(IMSIZE [0]):
xcoord , column = alt.pri_select ()
Update column of blit buffer
pixmap[xcoord] = column
Update image on screen.
pygame.surfarray.blit_array(screen , pixmap)
if SOFAR < IMSIZE [0]:

alt.last_selected.write(SOFAR)
SOFAR = SOFAR + 1

else:
alt.last_selected.write(-1)

Listing 7. Mandelbrot set in python-csp (abridged) using the “farmer” /“worker” architecture.

The improvement in performance can been seen in Figure 1: using a smaller number of
processes reduces the run time of the program.

Figure 1. Run times of “farmer” / “worker” Mandelbrot program with different numbers of CSP processes.

The graph shows a linear characteristic, which would be expected as the select method
in Alt is O(n).

3. Performance Evaluation and Comparison to Related Work

The Commstime benchmark was originally implemented in occam by Peter Welch at the
University of Kent at Canterbury and has since become the de facto benchmark for CSP
implementations such as occam-π [11], JCSP [7] and PyCSP [6].

Table 2 shows results of running the Commstime benchmark on JCSP version 1.1rc4,
PyCSP version 0.6.0 and python-csp. To obtain fair results the implementation of Comm-
stime used in this study was taken directly from the PyCSP distribution, with only syntactic
changes made to ensure that tests run correctly and are fairly comparable. In each case, the
type of “process” used has been varied and the default channel implementation has been used.
In the case of the python-csp channels are reified as UNIX pipes. The JCSP implementation
uses the One2OneChannelInt class. The PyCSP version uses the default PyCSP Channel class
for each process type. All tests were run on an Intel Pentium dual-core 1.73 GHz CPU and

1 GB RAM, running Ubuntu 9.04 (Jaunty Jackalope) with Linux kernel 2.6.28-11-generic.
Version 2.6.2 of the CPython interpreter was used along with Sun Java(TM) SE Runtime
Environment (build 1.6.0 13-b03) and Jython 2.50.

Table 2. Results of testing various CSP libraries against the Commstime benchmark. In each case the default
Channel class is used.

CSP Process min max mean standard
implementation reification (µ s) (µ s) (µ s) deviation
JCSP JVM thread 15 29 23.8 4.29
PyCSP OS process 195.25 394.97 330.34 75.82
PyCSP Python thread 158.46 311.2 292.2 47.21
PyCSP Greenlet 24.14 25.37 24.41 0.36
python-csp OS process 67.6 155.97 116.75 35.53
python-csp Python thread 203.05 253.56 225.77 17.51
jython-csp JVM thread 135.05 233 157.8 30.78

The results show that channel operations in jython-csp are faster than channel opera-
tions between python-csp objects when reified as threads, but slower than the thread-based
version of python-csp. This is a surprising result, as Java threads are better optimised than
Python threads (because of the way the Python GIL is implemented) and, as the results for
JCSP show, it is possible to implement CSP channels very efficiently in pure Java. The loss
of performance is likely to be due to the way in which methods are invoked in Jython. Rather
than all compiling Jython code directly to Java bytecode (as was possible when Jython sup-
ported the jythonc tool), Jython wraps Python objects in Java at compile time and executes
pure Python code in and instance of a Python interpreter. Mixing Python and Java code, as
the jython-csp library does, can therefore result in poor performance. It may be possible
to ameliorate these problems by implemented more of the jython-csp library in pure Java
code. It is also possible that future versions of Jython will improve the performance of method
invocation and/or provide a method of compiling Python code directly to Java bytecode.

The difference between the python-csp and PyCSP libraries is also surprising.
python-csp implements channel synchronisation in a simple manner, with two semaphores
protecting each channel, and two reentrant locks to guard against conflicts between multiple
readers and/or writers. PyCSP has a very different architecture and synchronisation strategy
which may account for the difference in performance. More detailed profiling of the two
libraries, together with the completion of the model checking work described in Section (to
ensure that python-csp is not simply faster because it is somehow incorrect) will form part
of our future work.

3.1. Related Work

There are some differences between the implementation of python-csp and other realisa-
tions of CSP, such as occam-π, JCSP [7] and PyCSP [6]. In particular, any channel object
may have multiple readers and writers. There are no separate channel types such as JCSP’s
One2OneChannel. This reflects the simplicity that Python programmers are used to and the
PEP20 [1] maxim that ““There should be one—and preferably only one—obvious way to
do it.”. Also, when a Channel object (or variant of such) is instantiated, the instance itself is
returned to the caller. In contrast, other systems return a “reader” and “writer” object, often
implemented as the read and write method of the underlying channel. This is similar to the
implementation of operating system pipes in many libraries, where a reader and writer to the
pipe is returned by a library call, rather than an abstraction of the pipe. The authors of these
other CSP realisations would argue that their design is less likely to be error prone and that

they are protecting the error-prone programmer from inadvertently reading from a channel
that is intended to be a “output” channel to the given process or writing to a channel that is
intended to be an “input” to the process. However, python-csp comes with strong tool sup-
port which may ameliorate some of these potential errors, and the profusion of channel types
in some systems may confuse rather than simplify. Similarly, Alt.select methods return the
value read by a guard rather than the index to the selected guard (as in JCSP) or a reference to
the selected guard (PyCSP). The last guard selected is stored in the field Alt.last_selected

and so is available to users.
Some pragmatic concessions to the purity of python-csp have been made. In particular,

the three default channel types (Channel, FileChannel and NetworkChannel) have very different
performance and failure characteristics and so are implemented separately and conspicuously
to the user. The chances of a network socket failing, and the potential causes of such a fail-
ure, differ greatly from that of an operating system pipe. Equally, a process which times-out
waiting for a channel read will need to wait considerably longer for a read on a FileChannel

than a Channel. These are non-trivial differences in semantics and it seems beneficial to make
them explicit.

4. Correctness of Synchronisation in python-csp

To verify the correctness of synchronisation in python-csp, a formal model was built using
high level language to specify systems descriptions, called PROMELA (a PROcess MEta
LAnguage). This choice is motivated by convenience since a large number of PROMELA
models are available in the public domain and some of the features of the SPIN (Simple
PROMELA INterpreter) tool environment [12], which interprets PROMELA, greatly facil-
itate our static analysis. PROMELA is a non-deterministic language, loosely based on Di-
jkstra’s guarded command language notation and borrowing the notation for I/O operations
from Hoare’s CSP language.

The model was divided into the two primary processes: the read and the write. Synchro-
nisation was modeled by semaphores for several readers and several writers in PROMELA.
Process type declarations consist of the keyword proctype, followed by the name of the pro-
cess type, and an argument list. For example, n instances of the process type read are defined
as follows:

active [n] proctype read()
{ do

:: (rlock) -> rlock = false; /* obtain rlock*/
atomic{ /*wait(sem)... acquire available */

available > 0 -> available --
}
c_r?msg; /*get data from pipe ... critical section */
taken ++; /* release taken */
rlock = true; /* release rlock */

od;
}

The do-loop (terminated by od) is an infinite loop. The body of the loop obtains the
rlock flag to protect from races between multiple readers, then blocks until an item becomes
available in the pipe, then gets the item from the pipe (in the critical section), then announces
the item has been read, then releases the rlock flag. The :: symbol indicates the start of a
command sequence block. In a do-loop, a non-deterministic choice will be made among the
command sequence blocks. In this case, there is only one to choose from. The write process is
declared in a similar style to the read process. The body of the do-loop obtains the wlock flag

to protect from races between multiple writers, then places an item in the pipe, then makes
the item available for the reader, then blocks until the item has been read, and finally releases
the wlock.

active [n] proctype write()
{ do

:: (wlock) -> wlock = false; /* obtain wlock*/
s_c!msg; /* place item in pipe ... critical section */
available ++; /* release available */
atomic {

taken > 0;
taken -- /* acquire taken*/

}
wlock = true; /* release wlock */

od;
}

The channel algorithm used in this model is defined as:

chan s_c = [0] of {mtype}; /* rendezvous channel */
chan c_r = [0] of {mtype};

active proctype data()
{ mtype m;

do
:: s_c?m -> c_r!m
od

}

The first two statements declare sc and cr to be channels. These will provide communi-
cation to write into or read from the pipe, with no buffering capacity (i.e., communication
will be via rendezvous) that carries messages consisting of a byte (mtype). The body of the
do-loop retrieves the received message and stores it into the local variable m on the receiver
side. The data is always stored in empty channels and is always retrieved from full channels.

Firstly, the model was run in SPIN random simulation mode. The SPIN simulator en-
ables users to gain early feedback on their system models that helps in the development of
the designer’s understanding of the design space before they advance in any formal analy-
sis. However, SPIN provides a limited form of support for verification in terms of assertion
checking, i.e. the checking of local and global system properties during simulation runs. For
example, a process called monitor was devoted to assert that a read process will not be exe-
cuted if the buffer is empty and the buffer can not be overwritten by write process before the
read process is executed.

proctype monitor ()
{ do

:: assert(taken <2) ;
:: assert(available <2);
od

}

Figure 2 shows the Message Sequence Chart (MSC) Panel. Each process is associated
with a vertical line where the “start of time” corresponds to the top of the MSC moving down
with the vertical distance represents the relative time between different temporal events. The
message passing is represented by the relative ordering of arrows between process execution
lines.

Figure 2. Message sequence chart of SPIN model checker showing two readers and two writers.

SPIN verification mode is used to verify liveness and safety properties like deadlock
detection, invariants or code reachability. Verification parameters are set to enable check for
“invalid endstates” in the model. The verification output does not show any output referring
to “invalid end states” which means that the verification has passed.

5. Conclusions and Future Work

python-csp provides a “Pythonic” library for the structuring of concurrent programs in a
CSP style. This provides an alternative to the event-driven style which has become preva-
lent with the increasing popularity of object oriented methods. python-csp realises the
three fundamental concepts of CSP, processes, synchronous channel communication and non-
deterministic choice, for use both explicitly and with appropriate syntactic sugar to provide
program texts with much more of the “look and feel” of CSP.

python-csp has been realised as a number of distinct realisations. One notable imple-
mentation is jython-csp, which, as a result of Jython’s reliance on the Java Virtual Machine,
yields a platform independent implementation.

As an example of a real program, parallelised using python-csp, the Mandelbrot gener-
ator has been presented. Both a producer-consumer and worker-farmer implementation have
been described, and the worker-farmer shows a linear performance relationship with the num-
ber of processes used (running on a dual-core computer).

The correctness of channel synchronisation in python-csp has been demonstrated using
a model checker. Future work will include a study of the correctness of non-deterministic

selection in python-csp.
Evaluation of the performance of python-csp shows that it performs slightly faster than

equivalent implementations of PyCSP (significantly faster for the OS process version).
The motivation for the constriction of python-csp was to provide a syntactically natu-

ral and semantically robust framework for the design and implementation of large scale, dis-
tributed, parallel systems, in particular wireless sensor networks. It is hoped that such systems
will one day be grounded in a secure theory of communication and concurrency. python-csp
has provided such a framework, but is so far limited to a shared memory, single machine
implementation. The next stages in this work are to extend the synchronised communications
to operate over inter-machine communications links. In some ways, CSP communications,
being already modelled on a “channel”, are ideal for such a purpose. On the other hand,
real communications channels, particularly wireless ones, have quite different characteristics
from the instantaneous and reliable CSP channel. Finding efficient means for duplicating the
semantics of the CSP channel using real communications remains a challenge for the authors.

Acknowledgements

The authors wish to acknowledge the Nuffield Foundation’s support for this research through
an Undergraduate Research Bursary (URB/37018), which supported the work of the third
author.

References

[1] Tim Peters. PEP 20: the Zen of Python. http://www.python.org/dev/peps/pep-0020/, August
2004.

[2] Christian Tismer. Continuations and Stackless Python or ”how to change a paradigm of an existing pro-
gram”. In Proceedings of the 8th International Python Conference, January 2000.

[3] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, London, 1985. ISBN: 0-131-53271-
5.

[4] S.N.I. Mount, R.M. Newman, and E.I. Gaura. A simulation tool for system services in ad-hoc wireless
sensor networks. In Proceedings of NSTI Nanotechnology Conference and Trade Show (Nanotech’05),
volume 3, pages 423–426, Anaheim, California, USA, May 2005.

[5] S. Mount, R.M. Newman, E. Gaura, and J. Kemp. Sensor: an algorithmic simulator for wireless sensor
networks. In Proceedings of Eurosensors 20, volume II, pages 400–411, Gothenburg, Sweden, 2006.

[6] John Markus Bjørndalen, Brian Vinter, and Otto J. Anshus. PyCSP - Communicating Sequential Processes
for Python. In Alistair A. McEwan, Wilson Ifill, and Peter H. Welch, editors, Communicating Process
Architectures 2007, pages 229–248, jul 2007.

[7] Peter H. Welch. Process Oriented Design for Java: Concurrency for All. In H.R.Arabnia, editor, Proceed-
ings of the International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’2000), volume 1, pages 51–57. CSREA, CSREA Press, June 2000.

[8] Neil C.C. Brown and Peter H. Welch. An introduction to the Kent C++CSP library. In J.F. Broenink and
G.H. Hilderink, editors, Communicating Process Architectures 2003, volume 61 of Concurrent Systems
Engineering Series, pages 139–156, Amsterdam, The Netherlands, September 2003. IOS Press.

[9] Bernhard H.C. Sputh and Alastair R. Allen. JCSP-Poison: Safe termination of CSP process networks. In
Jan F. Broenink, Herman W. Roebbers, Johan P.E. Sunter, Peter H. Welch, and David C. Wood, editors,
CPA, volume 63 of Concurrent Systems Engineering Series, pages 71–107. IOS Press, 2005.

[10] Peter H. Welch. Graceful Termination – Graceful Resetting. In Applying Transputer-Based Parallel
Machines, Proceedings of OUG 10, pages 310–317, Enschede, Netherlands, April 1989. Occam User
Group, IOS Press, Netherlands. ISBN 90 5199 007 3.

[11] Peter H. Welch and Fred R.M. Barnes. Communicating mobile processes: introducing occam-pi. In
A.E. Abdallah, C.B. Jones, and J.W. Sanders, editors, 25 Years of CSP, volume 3525 of Lecture Notes in
Computer Science, pages 175–210. Springer Verlag, April 2005.

[12] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering, 23:279–295,
1997.

