On Congruence Property of Scope Equivalence for Concurrent Programs with Higher-Order Communication

Masaki Murakami
Okayama University
JAPAN
A Formal Model of Concurrent Systems

the model presented here is a translation of asynchronous local high-order π-calculus (Sangiorgi) into graph rewriting.
Motivation

To represent the scopes of channel names precisely

\forall-operator

$$\forall a(P \mid \forall b(Q \mid R))$$

Not convenient to express scopes of names for some purpose..
Scopes not nested

- Impossible to represent with a \forall-operator

$$\forall a (P \mid \forall b (Q \mid R))$$
We can not decide..

\[\nu a(P \mid \nu b(Q \mid R)) \] means......

or
Our approach..

Our model is based on graph rewriting.

not based on process algebra.

a translation of asynchronous higher-order π-calculus into graph rewriting
Basic Idea

A system is a collection of *processes* sharing *names*

A system is represented as a bipartite graph

- Source nodes \implies processes
- Sink nodes \implies names
- There is an edge iff the source nodes is in the scope of the sink node
Basic Idea

bipartite graph
Processes

A source node consists of labels for its prefix and its continuation.

Reduce a process by "peeling" the node.

\[a(x).P \]
Message node

A message node is a tuple of its subject and its object.

\[a < c > \]
Operational Semantics

- a set of graph rewriting rules
- by translating the rules for the labeled transition system of asynchronous π-calculus into rules for graph rewriting
Rules for graph rewriting

The rule for message receiving..
Rules for graph rewriting

- If the imported name is new to the receiver, new edges are created.
Higher-Order Communication
We define a new equivalence relation to distinguish two processes which are equivalent on their behavior but not for their scopes of names.
Example

When x does not occur in Q

P_1 and P_2 are equivalent in their behavior

but not equivalent for scopes of names

$P_1 = m(x).\tau.Q$

$P_2 = \forall n(m(u). (n<a> \mid n(x).Q))$
Example

— Note that Q may be just a specification of the behavior. It does not represent the implementation.

— “x does not occur in Q” does not mean “the imported name no longer exists in Q”

— $P_1 = m(x).\tau.Q$

— If the name receive by $m(x)$ is a secret data which should not be leaked to Q, this P_1 is no good (but P_2 is OK).
Behavior equivalences can not tell you the difference.
The graph rewriting model can represent the difference.

\[m\langle o \rangle \xrightarrow{m(x)} \]

\[Q \]

\[o \]
Example

\[P_2 = \forall n(m(u). \ (n < a > \mid n (x). \ Q)) \]
Define a new equivalence relation that is called scope equivalence that can distinguish these two processes.

\[P_1 = m(x).\tau.Q \]

\[P_2 = \forall n(m(u). (n<a> | n(x). Q)) \]
For a graph P and a name n, P/n is a subgraph of P which consists of

- source nodes in the scope of n
- and sink nodes other than n
Scope Bisimulation

A relation R is a **scope bisimulation** if for any P and Q such that (P, Q) in R,

- P is an empty graph iff Q is an empty graph
- the set of source nodes of P/n is empty iff the source nodes Q/n is also empty for any common name n
- P/n and Q/n are strongly bisimilar for any common name n
- R is a strong bisimulation
There exists the largest scope bisimulation which is an equivalence relation congruent w.r.t. contexts (composition, prefix, replication, new name...) in first-order case (ICTAC 08)
Congruence: for higher-order model

When P and Q are scope equivalent, P and Q are also equivalent.
When \(P \) and \(Q \) are scope equivalent, then

\[P \quad \text{and} \quad Q \]

are also equivalent.
Non Congruence w.r.t. input prefix

P and Q are scope equivalent but....
The Non Congruence result

- It comes from....
- Scope equivalence is NOT congruent w.r.t. higher-order substitution.
The Counter Example

- \(P \) and \(Q \) are equivalent.

\[
\begin{align*}
& b_1 \quad x(a) \quad b_2 \\
& \quad n_1 \quad \quad \quad \quad \quad n_2
\end{align*}
\]

\(P\)

\[
\begin{align*}
& b \quad x(a) \\
& \quad n_1 \quad n_2
\end{align*}
\]

\(Q\)
The Counter Example

- Not equivalent after the higher-order substitution.

\[P[(y)(c(u).d(v).R) / x] \]

\[Q[(y)(c(u).d(v).R) / x] \]
The counter example

\[
\begin{align*}
&b'[o/x] \\
&\quad (y)(c(u).d(v).R[α]) \langle α \rangle \\
&\quad (y)(c(u).d(v).R[α]) \langle α \rangle \\
&\quad n_1 \quad n_2
\end{align*}
\]

\[
\begin{align*}
&\tau \\
&\quad (y)(c(u).d(v).R[α]) \langle α \rangle \\
&\quad n_1 \quad n_2
\end{align*}
\]

\[
\begin{align*}
&\quad \tau \\
&\quad (y)(c(u).d(v).R[α]) \langle α \rangle \\
&\quad n_1 \quad n_2
\end{align*}
\]

\[
\begin{align*}
&\quad (y)(c(u).d(v).R[a / y]) \langle α \rangle \\
&\quad (y)(c(u).d(v).R[a / y]) \langle α \rangle \\
&\quad (y)(c(u).d(v).R[a / y]) \langle α \rangle \\
&\quad n_1 \quad n_2
\end{align*}
\]

\[
\begin{align*}
&c(m) \\
&\quad (y)(c(u).d(v).R[a / y]) \langle α \rangle \\
&\quad n_1 \quad n_2
\end{align*}
\]

\[
\begin{align*}
&c(m) \\
&\quad (y)(c(u).d(v).R[a / y]) \langle α \rangle \\
&\quad n_1 \quad n_2
\end{align*}
\]

\[
\begin{align*}
&\quad (y)(c(u).d(v).R[a / y][m/u]) \\
&\quad (y)(c(u).d(v).R[a / y][m/u]) \\
&\quad (y)(c(u).d(v).R[a / y][m/u]) \\
&\quad n_1 \quad n_2
\end{align*}
\]
Conclusion

A graph rewriting model of concurrent/distributed systems with higher-order message represents scopes of names precisely equivalence relation

- Congruent w.r.t. any context in first order
- Not congruent w.r.t. input (and higher-order) context