On Congruence Property of Scope Equivalence for Concurrent Programs with Higher-Order Communication

> Masaki Murakami Okayama University JAPAN

A Formal Model of Concurrent Systems

the model presented here is

a translation of

 asynchronous local highr-order πcalculus (Sangiorge)

into graph rewriting

Motivation

To represent the scopes of channel names precisely

v-operator

Not convenient to express scopes of names for some purpose..

Scopes not nested

• Impossible to represent with a ν -operator $va(P \mid vb(Q \mid R))$

We can not decide..

$\{ va(P | vb(Q | R)) \text{ means....} \}$

Our approach..

Our model is based on graph rewriting. Inot based on process algebra.

a translation of asynchronous higherorder π -calculus into graph rewriting

Basic Idea

- A system is a collection of processes sharing names
 - A system is represented as a bipartite graph
 - Source nodes ==> processes
 - Sink nodes ==> names
 - There is an edge iff the source nodes is in the scope of the sink node

bipartite graph

Processes

A source node consists of labels for its prefix and its continuation Reduce a process by "peeling" the node.

Message node

a message node is a tuple of its subject and its object

a

Operational Semantics

a set of graph rewriting rules

by translating the rules for the labeled transition system of asynchronous π -calculus into rules for graph rewriting

Rules for graph rewriting

The rule for message receiving..

Rules for graph rewriting

If the imported name is new to the receiver, new edges are created

Higher-Order Communication

Scope Equivalence

- We define a new equivalence relation
- to distinguish two processes
- which are equivalent on their behavior
- but not for their scopes of names

When x does not occur in Q

- P_1 and P_2 are equivalent in their behavior - but <u>not equivalent</u> for scopes of names - $P_1 = m(x).\tau.Q$ - $P_2 = \nu n(m(u). (n < a > | n(x). Q))$

Note that Q may be just a specification of the behavior. It does not represent the implementation.

- "x does not occur in Q" does not mean "the imported name no longer exists in Q" - $P_1 = m(x).\tau.Q$

If the name receive by m(x) is a secret data which should not be leaked to Q, this P_1 is no good (but P_2 is OK).

Behavior equivalences can not tell you the difference. The graph rewriting model can represent the difference.

$P_2 = vn(m(u). (n < a > | n(x). Q))$

Scope Equivalence

 Define a new equivalence relation that is called scope equivalence that can distinguish these two processes.

$$P_1 = m(x).\tau.Q$$

 $P_2 = vn(m(u). (n < a > | n(x). Q))$

Definitions

- For a graph *P* and a name *n*, *P*/*n* is a subgraph of *P* which consists of
 - source nodes in the scope of n
 - and sink nodes other than n

Scope Bisimulation

- [a relation R is a scope bismulaiton if for any P and Q such that (P, Q) in R,
 - -P is an empty graph iff Q is an empty graph
 - the set of source nodes of P/n is empty iff the source nodes Q/n is also empty for any common name n
 - *P/n* and *Q/n* are strongly bisimular for any common name n
 - R is a strong bisimulation

Scope Equivalence

There exists the largest scope bisimulation

— which is a equivalence relation

— congruent w.r.t. contexts (composition, prefix, replication, new name...) in first-order case (ICTAC 08)

Congruence : for higherorder model

When *P* and *Q* are scope equivalent..

are also equivalent

Congruence(2)

When *P* and *Q* are scope equivalent..

Non Congruence w.r.t. input prefix

P and *Q* are scope equivalent but....

The Non Congruence result

It comes from....

• Scope equivalence is NOT congruent w.r.t. higher-order substitution.

The Counter Example

P and Q are equivalent.

The Counter Example

• Not equivalent after the higher-order substitution.

The counter example

Conclusion

A graph rewriting model of concurrent/ distributed systems with higher-order message represents scopes of names precisely equivalence relation

- Congruent w.r.t. any context in first order
- Not congruent w.r.t. input (and higher-order) context