
On Congruence Property
of Scope Equivalence for
Concurrent Programs
with Higher-Order
Communication

Masaki Murakami
Okayama University

JAPAN

A Formal Model of Concurrent
Systems

the model presented here is
a translation of

asynchronous local highr-order π-
calculus (Sangiorge)

into graph rewriting

Motivation
To represent the scopes of channel names
precisely

ν-operator

Not convenient to express scopes of names for
some purpose..

€

νa(P |νb(Q |R))

Scopes not nested

• Impossible to represent with a ν-operator

P a
bQ
R

€

νa(P |νb(Q |R))

We can not decide..
 means......

€

νa(P |νb(Q |R))

P

a
b

Q
R

P

a
b

Q
Ror

?

Our approach..

Our model is based on graph rewriting.

not based on process algebra.

a translation of asynchronous higher-
order π-calculus into graph rewriting

Basic Idea
A system is a collection of processes sharing names

A system is represented as a bipartite graph

Source nodes ==> processes

Sink nodes ==> names

There is an edge iff the source nodes is in
the scope of the sink node

Basic Idea

P
a

b
Q

R Q RP

a b

bipartite graph

Processes

A source node consists of labels for its prefix and its continuation

Reduce a process by “peeling” the node.

a(x)
Pa(x).P

Message node
a message node is a tuple of its subject and its object

a
ca<c>

Operational Semantics

a set of graph rewriting rules

by translating the rules for the labeled transition
system of asynchronous π-calculus into rules
for graph rewriting

Rules for graph rewriting

The rule for message receiving..

a
c

a(x)

cx

Rules for graph
rewriting

• If the imported name is new to the receiver, new edges
are created

a
c

a(x)

x

テ

c

c

Higher-Order Communication

a(x)

c

a

Scope Equivalence

We define a new equivalence relation

to distinguish two processes

which are equivalent on their behavior

but not for their scopes of names

Example

When x does not occur in Q

P1 and P2 are equivalent in their behavior

but not equivalent for scopes of names

　P1 = m(x).τ.Q

　P2 = νn(m(u). (n<a> | n(x). Q))

Example
 Note that Q may be just a specification of the behavior. It
does not represent the implementation.

 “x does not occur in Q”　does not mean “the imported

name no longer exists in Q”

　P1 = m(x).τ.Q

If the name receive by m(x) is a secret data which should
not be leaked to Q, this P1 is no good (but P2 is OK).　

Example
Behavior equivalences can not tell you the difference.

The graph rewriting model can represent the difference.

P1 = m(x).τ.Q

€

m(x)

€

m o

o

Q
Q

Example

　　P2 = νn(m(u). (n<a> | n (x). Q))

Scope Equivalence

•Define a new equivalence relation that is called
scope equivalence that can distinguish these two
processes.

　P1 = m(x).τ.Q

　P2 = νn(m(u). (n<a> | n(x). Q))

Definitions
For a graph P and a name n, P/n is a subgraph of P which
consists of

source nodes in the scope of n

and sink nodes other than n

B CA

a b

B CA

a b

P/a

Scope Bisimulation
a relation R is a scope bismulaiton if for any P and Q such that
(P, Q) in R,

P is an empty graph iff Q is an empty graph

the set of source nodes of P/n is empty iff the source nodes
Q/n is also empty for any common name n

P/n and Q/n are strongly bisimular for any common
name n

R is a strong bisimulation

Scope Equivalence

There exists the largest scope bisimulation

which is a equivalence relation

congruent w.r.t. contexts (composition, prefix, replication,
new name...) in first-order case (ICTAC 08)

Congruence : for higher-
order model

When P and Q are scope equivalent..

P and

are also equivalent

Q

! !

Congruence(2)

When P and Q are scope equivalent..

P and

are also equivalent

Q

a(x)a(x)

/

Non Congruence w.r.t. input prefix

P and Q are scope equivalent but....

P = Q

The Non Congruence result

• It comes from….

•Scope equivalence is NOT congruent w.r.t.
higher-order substitution.

The Counter Example

!

€

x a

€

n1

€

n2

!

€

x a

€

n1

€

n2

!

€

x a

€

P

€

Q

€

b1

€

b2

€

b

• P and Q are equivalent.

The Counter Example

€

n1

€

n2

€

n1

€

n2

! !

€

(y)(c(u).d(v).R) a

€

(y)(c(u).d(v).R) a
!

€

(y)(c(u).d(v).R) a

€

P[(y)(c(u).d(v).R) / x]

€

Q[(y)(c(u).d(v).R) / x]

• Not equivalent after the higher-order
substitution.

The counter example

€

n1

€

n2

! !

€

(y)(c(u).d(v).R) a

€

(y)(c(u).d(v).R) a

€

τ

!

€

n1

€

n2
€

(y)(c(u).d(v).R) a

€

c(u).d(v).R[a / y]

€

c(m)

!

€

(y)(c(u).d(v).R) a

!

€

n1

€

n2
€

(y)(c(u).d(v).R) a!

€

(y)(c(u).d(v).R) a

€

d(v).R[a / y] [m / u]

€

b1[o / x]

€

b2[o / x]

b’

b”

!

€

n1

€

n2
€

(y)(c(u).d(v).R) a

€

c(u).d(v).R[a / y]
€

n1

€

n2

!

€

(y)(c(u).d(v).R) a

!

€

n1

€

n2
€

(y)(c(u).d(v).R) a

€

d(v).R[a / y] [m / u]
€

c(m)

€

τ

b’

b”

Conclusion

A graph rewriting model of concurrent/
distributed systems with higher-order message
represents scopes of names precisely
equivalence relation

Congruent w.r.t. any context in first order
Not congruent w.r.t. input (and higher-order)
context

