
On Congruence Property of Scope
Equivalence for Concurrent Programs

with Higher-Order Communication

Masaki MURAKAMI

Department of Computer Science,
Graduate School of Natural Science and Technology, Okayama University,

3-1-1 Tsushima-Naka, Okayama, 700-0082, Japan.

murakami@momo.cs.okayama-u.ac.jp

Abstract. Representation of scopes of names is important for analysis and verification
of concurrent systems. However, it is difficult to represent the scopes of channel names
precisely with models based on process algebra. We introduced a model of concurrent
systems with higher-order communication based on graph rewriting in our previous
work. A bipartite directed acyclic graph represents a concurrent system that consists of
a number of processes and messages in that model. The model can represent the scopes
of local names precisely. We defined an equivalence relation such that two systems
are equivalent not only in their behavior, but also in extrusion of scopes of names.
This paper shows that our equivalence relation is a congruence relation w.r.t. τ -prefix,
new-name, replication and composition, even when higher-order communication is
allowed. We also show our equivalence relation is not congruent w.r.t. input-prefix
though it is congruent w.r.t. input-prefix in the first-order case.

Keywords. theory of concurrency, π-calculus, bisimilarity, graph rewriting, higher-
order communication

Introduction

There are a number of formal models of concurrent systems. In models such as π-
calculus [11], “a name” represents, for example, an IP address, a URL, an e-mail address,
a port number and so on. Thus, the scopes of names in formal models are important for the
security of concurrent systems.

On the other hand, it is difficult to represent the scopes of channel names precisely with
models based on process algebra. In many such models based on process algebra, the scope
of a name is represented using a binary operation such as the ν-operation. Thus the scope of
a name is a subterm of an expression that represents a system. For example, in a π-calculus
term: νa2(νa1(b1|b2)|b3), the scope of the name a2 is the subterm (νa1(b1|b2)|b3) and the
scope of the name a1 is the subterm (b1|b2). However, this method has several problems. For
example, consider a system S consisting of a server and two clients. A client b1 communicates
with the server b2 using a channel a1 whose name is known only by b1 and b2. And a client b3
communicates with b2 using a channel a2 that is known only by b2 and b3. In this system a1

and a2 are private names. As b2 and b1 knows the name a1 but b3 does not, then the scope of

Figure 1. Scopes of names in S.

a1 includes b1 and b2 and the scope of a2 includes b3 and b2. Thus the scopes of a1 and a2 are
not nested as shown in Figure 1.

The method denoting private names as bound names using ν-operator cannot represent the
scopes of a1 and a2 precisely because scopes of names are subterms of a term and then they
are nested (or disjoint) in any π-calculus term.

Furthermore, it is sometimes impossible to represent the scope even for one name precisely
with ν-operator. Consider the example, νa(v̄a.P) | v(x).Q where x does not occur in Q.
In this example, a is a private name and its scope is v̄a.P . The scope of a is extruded by
communication with prefixes v̄a and v(x). Then the result of the action is νa(P |Q) and Q is
included in the scope of a. However, as a does not occur in Q, it is equivalent to (νaP)|Q by
rules of structural congruence. We cannot see the fact that a is ‘leaked’ toQ from the resulting
expression: (νaP)|Q. Thus we must keep the trace of communications for the analysis of
scope extrusion. This makes it difficult to analyze extrusions of scopes of names.

In our previous work we presented a model that is based on graph rewriting instead of process
algebra as a solution to the problem of representing the scopes of names [6]. We defined an
equivalence relation on processes called scope equivalence such that it holds if two processes
are equivalent not only on their behavior but also on the scopes of channel names. We showed
the congruence results of weak bisimulation equivalence [7] and of scope equivalence [9] on
the graph rewriting model.

On the other hand, a number of formal models with higher-order communication have been
reported. LHOπ (Local Higher Order π-calculus) [12] is the one of the most well studied
model in that area. It is a subcalculus of higher-order π-calculus with asynchronous commu-
nication. However the problem of scopes of names also happens in LHOπ. We need a model
with higher-order communication that can represent the scopes of names precisely. We ex-
tended the graph rewriting model of [6] for systems with higher-order communication [8]. We
extended the congruence results of the behavioral equivalence to the model with higher-order
communication [10].

This paper discusses the congruence property of scope equivalence for the graph rewriting
model with higher-order communication introduced in [8]. We show that the scope equiva-
lence relation is a congruence relation w.r.t. τ -prefix, new-name, replication and composition
even if higher-order communication is allowed as presented in section 4.1. These results are
extensions of the results presented in [9]. On the other hand, in section 4.2, we show that
it is not congruent w.r.t. input-prefix though it is congruent w.r.t. input-prefix in first-order
case [9].

Congruence results on bisimilarity based on graph rewriting models are reported in [2,13].
Those studies adopts graph transformation approach for proof techniques. In this paper, graph
rewriting is introduced to extend the model for the representation of name scopes.

Figure 2. A bipartite directed acyclic graph.

Figure 3. A message node.

Figure 4. A behavior node α.P .

Figure 5. Message receiving.

1. Basic Idea

Our model is based on graph rewriting system such as [2,3,5,4,13]. We represent a concurrent
program that consists of a number of processes (and messages on the way) with a bipartite
directed acyclic graph. A bipartite graph is a graph whose nodes are decomposed into two
disjoint sets: source nodes and sink nodes such that no two graph nodes within the same set
are adjacent. Every edge is directed from a source node to a sink node. The system of Figure
1 that consists of three processes b1, b2 and b3 and two names ai(i = 1, 2) shared by bi and
bi+1 is represented with a graph as Figure 2.

Processes and messages on the way are represented with source nodes. We call source nodes
behaviors. In Figure 2, b1, b2 and b3 are behaviors.

message: A behavior node that represents a message is a node labeled with a name of the
recipient n (it is called the subject of the message) and the contents of the message o as
Figure 3. The contents of the message is a name or a program code as we allow higher-order
messages. As a program code to be sent is represented with a graph structure, then the content
of a message may have bipartite graph structure also. Thus the message node has a nested
structure that has a graph structure inside of the node.

message receiving: A message is received by a receiver process that executes an input action
and then continues the execution. We denote a receiver process with a node that consists of its

Figure 6. Extrusion of the scope of n.

Figure 7. Message sending.

Figure 8. Receiving a program code.

epidermis that denotes the first input action and its content that denotes the continuation. For
example, a receiver that executes an input action α and then become a program P (denoted as
α.P in CCS term) is denoted with a node whose epidermis is labeled with α and the content
is P (Figure 4). As the continuation P is a concurrent program, then it has a graph structure
inside of the node. Thus the receiver process also has a nested structure.

Message receiving is represented as follows. Consider a message to send an object (a name
or an abstraction) n and the receiver with a name m (Figure 5a). The execution of message
input action is represented by “peeling the epidermis of the receiver process node”. When
the message is received then it vanishes, the epidermis of the receiver is removed and the
content is exposed (Figure 5b). Now the continuation P is activated. The received object n is
substituted to the name x in the content P .

The scope of a name is extruded by message passing. For example, π-calculus has a transition
such that (νna〈n〉)|a(y).P

τ→ νnP [n/y]. This extrusion is represented by a graph rewriting
as Figure 6. A local name n occurs in the message node but there is no edge from the node
of the receiver because n is new to the receiver. After receiving the message, as n is a newly
imported local name, then a new sink node corresponding to n is added to the graph and
new edges are created from each behavior of the continuation to n as the continuation of the
receiver is in the scope of n.

message sending: In asynchronous π-calculus, message sending is represented in the same
way as process activation. We adopt the similar idea. Consider an example that executes an
action α and sends a message m (Figure 7 left). When the action α is executed, then the
epidermis is peeled and the message m is exposed as Figure 7 right. Now the message m is
transmitted and m can move to the receiver. And the execution of Q continues.

higher-order communications: Consider the case that the variable x occurs as the subject
of a message like x〈u〉 in the content of a receiver (Figure 8a). If the received object n is a
program code, then n〈u〉 becomes a program to be activated. As LHOπ, a program code to
transfer is in the form of an abstraction in a message. An abstraction denoted as (y)Q consists
of a graph Q representing a program and its input argument y. When an abstraction (y)Q is
sent to the receiver and substituted to x in Figure 8a, the behavior node (y)Q〈u〉 is exposed
and ready to be activated(Figure 8b). To activate (y)Q〈u〉, u is substituted to y in Q (Figure
8c). This action corresponds to the β-conversion in LHOπ. Then we have a program Q with
input value u, and it is activated. Note that new edges from each behaviours Q to the sink
node which had a edge from x〈u〉 are created.

2. Formal Definitions

In this section, we present formal definitions of the model presented informally in the previ-
ous section.

2.1. Programs

First, a countably-infinite set of names is presupposed as other formal models based on pro-
cess algebra.

Definition 2.1 (program, behavior) Programs and behaviors are defined recursively as fol-
lows.

(i) Let a1, . . . , ak are distinct names. A program is a bipartite directed acyclic graph with
source nodes b1, . . . , bm and sink nodes a1, . . . , ak such that

• Each source node bi(1 ≤ i ≤ m) is a behavior. Duplicated occurrences of the same
behavior are possible.

• Each sink node is a name aj(1 ≤ j ≤ k). All aj’s are distinct.
• Each edge is directed from a source node to a sink node. Namely, an edge is an ordered

pair (bi, aj) of a source node and a name. For any source node bi and a name aj there is at
most one edge from bi to ai.

For a program P , we denote the multiset of all source nodes of P as src(P), the set of all
sink nodes as snk(P) and the set of all edges as edge(P). Note that the empty graph: 0 such
that src(0) = snk(0) = edge(0) = ∅ is a program.

(ii) A behavior is an application, a message or a node consists of the epidermis and the content
defined as follows. In the following of this definition, we assume that any element of snk(P)
nor x does not occur in anywhere else in the program.

1. A tuple of a variable x and a program P is an abstraction and denoted as (x)P . An object
is a name or an abstraction.

2. A node labeled with a tuple of a name: n (called the subject of the message) and an object:
o is a message and denoted as n〈o〉.

3. A node labeled with a tuple of an abstraction and an object is an application. We denote
an application as A〈o〉 where A is an abstraction and o is an object.

4. A node whose epidermis is labeled with “!” and the content is a program P is a replication,
and denoted as !P .

5. An input prefix is a node (denoted as a(x).P) that the epidermis is labeled with a tuple of
a name a and a variable x and the content is a program P .

6. A τ -prefix is a node (denoted as τ.P) that the epidermis is labeled with a silent action τ
and the content is a program P .

Definition 2.2 (local program) A program P is local if for any input prefix c(x).Q and any
abstraction (x)Q occurring in P , x does not occur in the epidermis of any input prefix in Q.
An abstraction (x)P is local if P is local. A local object is a local abstraction or a name.

The locality condition says that “anyone cannot use a name given from other one to receive
messages”. Though this condition affects the expressive power of the model, we do not con-
sider that the damage to the expressive power by this restriction is significant. Because as
transfer of receiving capability is implemented with transfer of sending capability in many
practical example, we consider local programs have enough expressive power for many im-
portant/interesting examples. So in this paper, we consider local programs only. Theoretical
motivations of this restriction are discussed in [12].

Definition 2.3 (free/bound name)

1. For a behavior or an object p, the set of free names of p : fn(p) is defined as follows:
fn(0) = ∅, fn(a) = {a} for a name a, fn(a〈o〉) = fn(o) ∪ {a}, fn((x)P) = fn(P) \ {x},
fn(!P) = fn(P), fn(τ.P) = fn(P), fn(a(x).P) = (fn(P) \ {x}) ∪ {a} and fn(o1〈o2〉) =
fn(o1) ∪ fn(o2).

2. For a program P where src(P) = {b1, . . . , bm}, fn(P) =
⋃
i fn(bi) \ snk(P).

The set of bound names of P (denoted as bn(P)) is the set of all names that occur in P but not
in fn(P) (including elements of snk(P) even if they do not occur in any element of src(P)).

The role of free names is a little bit different from that of π-calculus in our model. For
example, a free name x occurs in Q is used as a variable in (x)Q or a(x).Q. A channel name
that is used for communication with the environments is an element of snk, so it is not a free
name.

Definition 2.4 (normal program) A program P is normal if for any b ∈ src(P) and for any
n ∈ fn(b) ∩ snk(P), (b, n) ∈ edge(P) and any program occurs in b is also normal.

It is quite natural to assume the normality for programs, because someone must know a name
to use it. In the rest of this paper we consider normal programs only.

Definition 2.5 (composition) Let P and Q be programs such that src(P) ∩ src(Q) = ∅ and
fn(P) ∩ snk(Q) = fn(Q) ∩ snk(P) = ∅. The composition P‖Q of P and Q is the program
such that src(P‖Q) = src(P) ∪ src(Q), snk(P‖Q) = snk(P) ∪ snk(Q) and edge(P‖Q) =
edge(P) ∪ edge(Q).

Intuitively, P‖Q is the parallel composition of P andQ. Note that we do not assume snk(P)∩
snk(Q) = ∅. Obviously P‖Q = Q‖P and ((P‖Q)‖R) = (P‖(Q‖R)) for any P,Q and R
from the definition. The empty graph 0 is the unit of “‖”. Note that src(P) ∪ src(Q) and
edge(P)∪ edge(Q) denote the multiset unions while snk(P)∪ snk(Q) denotes the set union.

It is easy to show that for normal and local programs P and Q, P‖Q is normal and local.

Definition 2.6 (N -closure) For a normal program P and a set of names N such that
N ∩ bn(P) = ∅, the N -closure νN(P) is the program such that src(νN(P)) = src(P),
snk(νN(P)) = snk(P) ∪N and edge(νN(P)) = edge(P) ∪ {(b, n)|b ∈ src(P), n ∈ N}.

We denote νN1(νN2(P))) as νN1νN2(P) for a program P and sets of names N1 and N2.

Definition 2.7 (deleting a behavior) For a normal program P and b ∈ src(P), P \ b is a
program that is obtained by deleting a node b and edges that are connected with b from P .
Namely, src(P \ b) = src(P) \ {b}, snk(P \ b) = snk(P) and edge(P \ b) = edge(P) \
{(b, n)|(b, n) ∈ edge(P)}.

Note that src(P) \ {b} and edge(P) \ {(b, n)|(b, n) ∈ edge(P)} mean the multiset subtrac-
tions.

Definition 2.8 (context) Let P be a program and b ∈ src(P) where b is an input prefix, a
τ -prefix or a replication and the content of b is 0. A simple first-order context is a graph P []
such that the contents 0 of b is replaced with a hole “[]”. We call a simple context a τ -context
if the hole is the contents of a τ -prefix, an input context if is the contents of an input prefix
and a replication context if it is the contents of a replication.

Let P be a program such that b ∈ src(P) and b is an application (x)0〈Q〉. An application
context P [] is a graph obtained by replacing the behavior b with (x)[]〈Q〉. A simple context
is a simple first-order context or an application context.

A context is a simple context or the graph P [Q[]] that is obtained by replacing the hole of
P [] with Q[] for a simple context P [] and a context Q[] (with some renaming of the names
which occur in Q if necessary).

For a context P [] and a program Q, P [Q] is the program obtained by replacing the hole in
P [] by Q (with some renaming of the names which occur in Q if necessary).

2.2. Operational Semantics

We define the operational semantics with a labeled transition system. The substitution of an
object to a program, to a behavior or to an object is defined recursively as follows.

Definition 2.9 (substitution) Let p be a behavior, an object or a program and o be an ob-
ject. For a name a, we assume that a ∈ fn(p). The mapping [o/a] defined as follows is a
substitution.

• for a name c, c[o/a] =

{
o if c = a
c otherwise

• for behaviors, ((x)P)[o/a] = (x)(P [o/a]), (o1〈o2〉)[o/a] = o1[o/a]〈o2[o/a]〉, (!P)[o/a] =
!(P [o/a]), (c(x).P)[o/a] = c(x).(P [o/a]) and (τ.P)[o/a] = τ.(P [o/a]),

• and for a program P and a ∈ fn(P), P [o/a] = P ′ where P ′ is a program such that
src(P ′) = {b[o/a]|b ∈ src(P)}, snk(P ′) = snk(P) and edge(P ′) = {(b[o/a], n)|(b, n) ∈
edge(P)}.

For the cases of abstraction and input prefix, note that we can assume x 6= a because a ∈
fn((x)P) or ∈ fn(c(x).P) without losing generality. (We can rename x if necessary.)

Definition 2.10 Let p be a local program or a local object. A substitution [a/x] is acceptable
for p if for any input prefix c(y).Q occurring in p, x 6= c.

In the rest of this paper, we consider acceptable substitutions only for a program or an ab-
straction. Because in any execution of a local programs if a substitution is applied by one
of the rules of operational semantics then it is acceptable. Namely we assume that [o/a] is
applied only for the objects such that a does not occur as a subject of any input prefix.

It is easy to show that substitution and N -closure can be distributed over “‖” and “\” from
the definitions.

Definition 2.11 (action) For a name a and an object o, an input action is a tuple of a and o
that is denoted as a(o), and an output action is a tuple that is denoted as a〈o〉. An action is a
silent action τ , an output action or an input action.

Definition 2.12 (labeled transition) For an action α, α→ is the least binary relation on normal
programs that satisfies the following rules.

input : If b ∈ src(P) and b = a(x).Q, then P
a(o)→ (P\b)‖ν{n|(b, n) ∈ edge(P)}νM(Q[o/x])

for an object o and a set of names M such that fn(o) ∩ snk(P) ⊂M ⊂ fn(o) \ fn(P).

β-conversion : If b ∈ src(P) and b = (y)Q〈o〉, then P
τ→ (P \ b)‖ν{n|(b, n) ∈

edge(P)}(Q[o/y]).

τ -action : If b ∈ src(P) and b = τ.Q, then P τ→ (P \ b)‖ν{n|(b, n) ∈ edge(P)}(Q).

replication 1 : P α→ P ′ if !Q = b ∈ src(P) and P‖ν{n|(b, n) ∈ edge(P)}Q′ α→ P ′, where
Q′ is a program obtained from Q by renaming all names in snk(R) to distinct fresh
names that do not occur elsewhere in P nor programs executed in parallel with P , for
all R’s where each R is a program that occur in Q (including Q itself).

replication 2 : P τ→ P ′ if !Q = b ∈ src(P) and P‖ν{n|(b, n) ∈ edge(P)}(Q′
1‖Q′

2)
τ→ P ′,

where each Q′
i(i = 1, 2) is a program obtained from Q by renaming all names in

snk(R) to distinct fresh names that do not occur elsewhere in P nor programs executed
in parallel with P , for all R’s where each R is a program that occur in Q (including Q
itself).

output : If b ∈ src(P), b = a〈v〉 then, P
a〈v〉→ P \ b.

communication : If b1, b2 ∈ src(P), b1 = a〈o〉, b2 = a(x).Q then,

P
τ→ ((P \ b1) \ b2)‖ν{n|(b2, n) ∈ edge(P)}ν(fn(o) ∩ snk(P))(Q[o/x]).

In all rules above except replication 1/2, the behavior that triggers an action is removed from
src(P). Then the edges from the removed behaviors no longer exist after the action.

The set of names M that occur in the input rule is the set of local names imported by the
input action. Some name in M may be new to P , and other may be already known to P but
b is not in the scope.

We can show that for any program P and P ′, and any action α such that P α→ P ′, if P is
local then P ′ is local and if P is normal then P ′ is normal.

Proposition 2.1 For any normal programs P , P ′ and Q, and any action α if P α→ P ′ then
P‖Q α→ P ′‖Q.

proof (outline): By the induction on the number of replication 1/2 rules to derive P α→ P ′.

Proposition 2.2 For any program P,Q and R and any action α, if P‖Q α→ R is derived
by one of input, β-conversion, τ -action or output immediately, then R = P ′‖Q for some
P

α→ P ′ or R = P‖Q′ for some Q α→ Q′.

proof (outline): Straightforward from the definition.

Proposition 2.3 If Q
a〈o〉→ Q′ and R

a(o)→ R′ then Q‖R τ→ Q′‖R′ (and R‖Q τ→ R′‖Q′) .

proof (outline): By the induction on the total number of replication 1/2 rules to derive
Q

α→ Q′ and R α→ R′.

2.3. Behavioral Equivalence

Strong bisimulation relation is defined as usual. It is easy to show ∼ defined as Definition
2.13 is an equivalence relation.

Definition 2.13 (strong bisimulation equivalence) A binary relation R on normal programs
is a strong bisimulation if: for any (P,Q) ∈ R (or (Q,P) ∈ R), for any α and P ′ if P α→ P ′

then there exists Q′ such that Q α→ Q′ and (P ′, Q′) ∈ R ((Q′, P ′) ∈ R) and for any Q α→ Q′

the similar condition holds.

Strong bisimulation equivalence ∼ is defined as⋃
{R|R is a strong bisimulation}.

The following proposition is straightforward from the definitions.

Proposition 2.4 If src(P1) = src(P2) then P1 ∼ P2.

We can show the congruence results of strong bisimulation equivalence [10] as Proposition
2.6 - 2.10 and Theorem 2.1. First we have the congruence result w.r.t. “‖”.

Proposition 2.5 For any program R, if P ∼ Q then P‖R ∼ Q‖R.

The following propositions Proposition 2.6 - 2.9 say that ∼ is a congruence relation w.r.t.
τ -prefix, replication, input prefix and application respectively.

Proposition 2.6 For any P and Q such that P ∼ Q and for any τ -context, R[P] ∼ R[Q].

Proposition 2.7 For any P and Q such that P ∼ Q and for any replication context, R[P] ∼
R[Q].

Proposition 2.8 For any P and Q such that P ∼ Q and for any input context, R[P] ∼ R[Q].

Proposition 2.9 For any P and Q such that P ∼ Q and for any application context R[],
R[P] ∼ R[Q].

From Proposition 2.6 - 9, we have the following result by the induction on the definition of
context.

Theorem 2.1 For any P and Q such that P ∼ Q and for any context R[], R[P] ∼ R[Q].

For asynchronous π-calculus, the congruence results w.r.t. name restriction: “P ∼ Q im-
plies νxP ∼ νxQ” is reported also. We can show the corresponding result with the similar
argument to the first order case [7].

Proposition 2.10 For any P andQ and a set of namesN such thatN∩(bn(P)∪bn(Q)) = ∅,
if P ∼ Q then νN(P) ∼ νN(Q).

3. Scope Equivalence

This section presents an equivalence relation on programs which ensures that two systems
are equivalent in their behavior and for the scopes of names.

Definition 3.1 For a process graph P and a name n such that n, P/n is the program defined
as follows:src(P/n) = {b|b ∈ src(P), (b, n) ∈ edge(P)}, snk(P/n) = snk(P) \ {n} and
edge(P/n) = {(b, a)|b ∈ src(P/n), a ∈ snk(P/n), (b, a) ∈ edge(P)}.

Figure 9. The graph P/a1.

Intuitively P/n is the subsystem of P that consists of behaviors which are in the scope of n.
Let P be an example of Figure 2, P/a1 is a subgraph of Figure 2 obtained by removing the
node of b3 (and the edge from b3 to a2) and a1 (and the edges to a1) as shown in Figure 9. It
consists of process nodes b1 and b2 and a name node a2.

The following propositions are straightforward from the definitions. We will refer to these
propositions in the proof of congruence results w.r.t. to scope equivalence that will be defined
below.

Proposition 3.1 For any P,Q and n ∈ snk(P) ∪ snk(Q), (P‖Q)/n = P/n‖Q/n.

Proposition 3.2 For a program P , a set of names N such that N ∩ bn(P) = ∅ and n ∈
snk(P), (νN(P))/n = νN(P/n).

Proposition 3.3 Let R[] be a context and P be a program. For any name m ∈ snk(R),
(R[P])/m = R/m[P].

Definition 3.2 (scope bisimulation) A binary relation R on programs is scope bisimulation
if for any (P,Q) ∈ R,

1. P = 0 iff Q = 0,
2. src(P/n) = ∅ iff src(Q/n) = ∅ for any n ∈ snk(P) ∩ snk(Q),
3. P/n ∼ Q/n for any n ∈ snk(P) ∩ snk(Q) and
4. R is a strong bisimulation.

It is easy to show that the union of all scope bisimulations is a scope bisimulation and it is
the unique largest scope bisimulation.

Definition 3.3 (scope equivalence) The largest scope bisimulation is scope equivalence and
denoted as ⊥.

It is obvious from the definition that ⊥ is an equivalence relation. The motivation and the
background of the definition of ⊥ is reported in [6,8]. As ⊥ is a strong bisimulation from
Definition 3.2, 4, we have the following proposition.

Proposition 3.4 P ⊥ Q implies P ∼ Q.

Definition 3.4 (scope bisimulation up to ⊥) A binary relation R on programs is a scope
bisimulation up to ⊥ if for any (P,Q) ∈ R,

1. P = 0 iff Q = 0,
2. src(P/n) = ∅ iff src(Q/n) = ∅ for any n ∈ snk(P) ∩ snk(Q),
3. P/n ∼ Q/n for any n ∈ snk(P) ∩ snk(Q) and
4. R is a strong bisimulation up to ⊥, namely for any P and Q such that (P,Q) ∈ R (or

(Q,P) ∈ R), for any P ′ such that P α→ P ′, there exists Q′ such that Q α→ Q′ and
P ′ ⊥R⊥ Q′ (Q′ ⊥R⊥ P ′.).

The following proposition is straightforward from the definition and the transitivity of “⊥”.

Figure 10. Graph representation of P1 and mo.

Proposition 3.5 IfR is a strong bisimulation up to ⊥, then ⊥R⊥ is a scope bisimulation.

Proposition 3.6 If b ∈ src(P) and !Q = b then, P‖ν{n|(b, n) ∈ edge(P)}Q′ ⊥ P where
Q′ is a program obtained from Q by renaming names in bn(Q) to fresh names.

proof (outline): We have the result by showing the following relation: {(P‖ν{n|(b, n) ∈
edge(P)}Q′, P)|!Q ∈ src(P), Q′ is obtained from Q by fresh renaming of bn(Q).}∪ ⊥ is a
scope bisimulation up to ⊥ and Proposition 3.5.

Example 3.1 Consider the following (asynchronous) π-calculus processes: P1 = m(x).τ.Q
and P2 = νn(m(u).na | n(x).Q). Assume that neither x nor n occurs in Q. P1 and P2 are
strongly bisimilar. Consider the case that a message mo is received by Pi(i = 1, 2). In P1,
the object o reaches τ.Q by the execution of m(o). On the other hand, o does not reach to
Q in the case of P2. Assume that o is so confidential that it must not be received by any
unauthorized process andQ and τ.Q are not authorized. (Here, we consider that just receiving
is not allowed even if the data is not stored.) Then P1 is an illegal process but P2 is not. Thus
P1 and P2 should be distinguished but they cannot be distinguished with usual behavioral
equivalences in π-calculus. Furthermore we cannot see if o reached to unauthorised process
or not just from the resulting processes Q and νnQ.

This means that for a system which is implemented with a programming language based on
a model such as π-calculus, if someone optimize the system into behavioural equivalent one
without taking care of the scopes, the security of the original system may be damaged.

One may say that stronger equivalence relations such as syntactic equivalence or structural
congruence work. Of course, syntactic equivalence can distinguish these two cases, but it
is not convenient. How about structural congruence? Unfortunately it is not successful. It
is easy to give an example such that P2 6≡ P3 but both of them are legal (and behavioural
equivalent), for example P3 = νn(m(u).(n1a1|n1a2) | n1(x1).n2(x2).Q). (Furthermore, we
can also give an example of two processes which are structural congruent and one of them is
legal but the other is not.)

We can use bipartite directed acyclic graph model presented here to distinguish P1 and P2.
The example that corresponds to the system consists of P1 and the message m〈o〉 is given by
the graph in Figure 10 left 1. This graph evolves to the graph in Figure 10 right (in the case
that o is a name) that corresponds to the π-calculus process Q. This graph explicitly denotes
that Q is in the scope of the newly imported name o.

On the other hand the example of P2 with m〈o〉 is Figure 11 left. After receiving the message
carrying o, the graph evolves into Figure 11 right. This explicitly shows that Q is not in the
scope of o. We can see this difference by showing P1 6⊥ P2.

One may consider that an equivalence relation similar to ⊥ can be defined on a model based
on process algebra, for example, by encoding a graph into an algebraic term. However it is

1The sink nodes corresponding n are not depicted in the following examples.

Figure 11. Graph representation of P2 and mo.

Figure 12. Graph P and Q.

not easy to define an operational semantics on which we can enjoy the merit of algebraic
model by naive encoding of the graph model. Especially, it seems difficult to give an orthodox
structural operational semantics or reduction semantics that consists of a set of rules to rewrite
subterms locally. We consider that we need some tricky idea for encoding.

4. Congruence Results of Scope Equivalence

This section discusses on congruence property of scope equivalence.

4.1. Congruence Results w.r.t. Composition, τ -prefix and Replication

The next proposition says that ⊥ is a congruence relation w.r.t. ‖.

Proposition 4.1 If P ⊥ Q then P‖R ⊥ Q‖R.

proof: See Appendix I.

The following proposition is also straightforward from the definitions.

Proposition 4.2 For any program P and Q, let P ′ and Q′ be programs obtained from P and
Q respectively by renaming n ∈ snk(P)∩snk(Q) to a fresh name n′. If P ⊥ Q then P ′ ⊥ Q′.

The following proposition is the congruence result of ⊥ w.r.t. new name.

Proposition 4.3 For any P and Q and a set of names N such that N ∩ (bn(P)∪bn(Q)) = ∅,
if P ⊥ Q then νN(P) ⊥ νN(Q).

proof (outline): We show that the following relation is a scope bisimulation:

{(νN(P), νN(Q))|P ⊥ Q}.

It is straightforward from the definition to show Definition 3.2 1 and 2. 3. is from Proposi-
tion 3.2 and Proposition 2.10. 4. is by the induction on the number of replication 1/2.

Proposition 4.4 For any P andQ such that P ⊥ Q and for any τ -contextR[],R[P] ⊥ R[Q].

proof: See Appendix II.

Proposition 4.5 For any P and Q such that P ⊥ Q and for any replication context R[],
R[P] ⊥ R[Q].

proof: See Appendix III.

4.2. Input and Application Context

We can show that the strong bisimulation equivalence is congruent w.r.t. input prefix context
and application context [10]. Unfortunately, this is not the case for the scope equivalence of
higher-order programs. Our results show that ⊥ is not congruent w.r.t. the input context nor
the application context. The essential problem is that ⊥ is not congruent w.r.t. substitutions
of abstractions as the following counter example shows.

Example 4.1 (i) Let P be a graph such that src(P) = {b1, b2}, edge(P) = {(b1, n1), (b2, n2)}
and snk(P) = {n1, n2} andQ be a graph such that src(Q) = {b}, edge(Q) = {(b, n1), (b, n2)}
and snk(Q) = {n1, n2} where both of b and bi(i = 1, 2) are !x〈a〉 as Figure 12. Note that
nj(j = 1, 2) does not occur in b nor bi(i = 1, 2).

Lemma 4.1 Let P and Q be as Example 4.1 (i). Then we have P ⊥ Q.

proof (outline): We show that the relation {(P,Q)} is a scope bisimulation. Definition 3.2, 1
is obvious as neither P norQ is an empty graph. For nj(j = 1, 2), both of P/nj andQ/nj are
not 0, so Definition 3.2, 2. holds. For 3. P/nj is the graph such that src(P/nj) = {bj} and
Q/nj is the graph such that src(Q/nj) = {b}. As bi = b =!x〈a〉, src(P/nj) = src(Q/nj).
From Proposition 2.4, P/nj ∼ Q/nj . For 4., it is easy to show that the relation {(P,Q)} is a

bisimulation because P
x〈a〉→ P and Q

x〈a〉→ Q are the only transition for P and Q respectively.

Example 4.1 (ii) Let P and Q be as Example 4.1(i). Now, let o be an abstrac-
tion : (y)c(u).d(v).R where R is a program. P [o/x] is the graph such that src(P) =
{b1[o/x], b2[o/x]}, snk(P) = {n1, n2} and edge(P) = {(b1[o/x], n1), (b2[o/x], n2)} as Fig-
ure 13a, top. And Q[o/x] is a graph such that src(Q) = {b[o/x]}, snk(Q) = {n1, n2}
and edge(Q) = {(b[o/x], n1), (b[o/x], n2)} where b[o/x] and bi[o/x](i = 1, 2) are
!(y)c(u).d(v).R〈a〉 as Figure 13b, top.

Lemma 4.2 Let P [o/x] and Q[o/x] be as Example 4.1 (ii). Then, P [o/x] 6⊥ Q[o/x].

proof: See Appendix IV.

Note that the object o in the counter example is an abstraction. This incongruence happens
only in the case of higher-order substitution. In fact, scope equivalence is congruent w.r.t.
substitution of any first-order term by the similar argument as presented in [9].

From Lemma 4.1 and 4.2,we have the following results.

Proposition 4.1 There exist P and Q such that P ⊥ Q but P [o/x] 6⊥ Q[o/x] for some object
o.

Proposition 4.2 There exist P and Q such that P ⊥ Q but I[P] 6⊥ I[Q] for some input
context I[].

a. P [o/x] b. Q[o/x]

Figure 13. Transitions of P [o/x] and Q[o/x].

proof (outline): Let P andQ be as Example 4.1 (i) and I[] be a input context with a behavior

m(x).[]. Consider the transitions: I[P]
m(o)→ P [o/x] and I[Q]

m(o)→ Q[o/x] for o of Example
4.1 (ii).

Proposition 4.3 There exist P andQ such that P ⊥ Q butA[P] 6⊥ A[Q] for some application
context A[].

proof: (outline) Let P,Q and o be as Example 4.1 (ii) and A[] be an application context
with a behavior (x)[]〈o〉.

5. Conclusion and Future Work

This paper presented congruence results of scope equivalence w.r.t. new name, composition,
τ -prefix and replication for a model with higher-order communication. We also showed that
scope equivalence is not congruent w.r.t. input context and application context. As we pre-
sented in [9], scope equivalence is congruent w.r.t. input context for first order case. Thus,
the non-congruent problem arise from higher-order substitutions. The lack of substitutivity
of the equivalence relation makes analysis or verification of systems difficult. We will study
this problem by the following approaches as future work.

The first approach is revision of the definition of scope equivalence. The definition of ⊥ is
based on the idea that two process are equivalent if the components that know the name are
equivalent for each name. This idea is implemented as the Definition 3.2, 3. Our alternative
idea for the third condition is P/N ∼ Q/N for each subset N of common private names

instead of P/n ∼ Q/n. P andQ in lemma 4.1 are not equivalent based on this definition. We
should study if this alternative definition is suitable or not for the equivalence of processes.

The second approach involves the counter example. As the counter example presented in
Section 4.2 is an artificial one, we should study whether there are any practical examples.

Finally, we must reconsider our model of higher-order communication. In our model an out-
put message has the same form as a tuple of a process variable that receives a higher-order
term and an argument term. This idea is from LHOπ [12]. One of the main reasons why
LHOπ adopts this approach is type theoretical convenience. As we saw in lemma 4.2, this
identification of output messages and process variables causes the problem with congruence.
Thus we should reconsider the model of higher-order communication used.

References

[1] Martin Abadi and Andrew D. Gordon. A Calculus for Cryptographic Protocols: Spi Calculus. Information
and Computation 148: pp. 1-70, 1999.

[2] Hartmut Ehrig and Barbara König. Deriving Bisimulation Congruences in the DPO Approach to Graph
Rewriting with Borrowed Contexts. Mathematical Structures in Computer Science, vol.16, no.6, pp. 1133-
1163, 2006.

[3] Fabio Gadducci. Term Graph rewriting for the π-calculus. Proc. of APLAS ’03 (Programming Languages
and Systems), LNCS 2895, pp. 37-54, 2003.

[4] Barbara König. A Graph Rewriting Semantics for the Polyadic π-Calculus. Proc. of GT-VMT ’00 (Work-
shop on Graph Transformation and Visual Modeling Techniques), pp. 451-458, 2000.

[5] Robin Milner. Bigraphical Reactive Systems, Proc. of CONCUR’01. LNCS 2154, Springer, pp. 16-35,
2001.

[6] Masaki Murakami. A Formal Model of Concurrent Systems Based on Bipartite Directed Acyclic Graph.
Science of Computer Programming, Elsevier, 61, pp. 38-47, 2006.

[7] Masaki Murakami. Congruence Results of Behavioral Equivalence for A Graph Rewriting Model of
Concurrent Programs. Proc of ICITA 2008, pp. 636-641, 2008 (to appear in IJTMS, Indersience).

[8] Masaki Murakami. A Graph Rewriting Model of Concurrent Programs with Higher-Order Communica-
tion. Proc. of TMFCS 2008, pp. 80-87, 2008.

[9] Masaki Murakami. Congruence Results of Scope Equivalence for a Graph Rewriting Model of Concurrent
Programs. Proc. of ICTAC2008, LNCS 5160, pp. 243-257, 2008.

[10] Masaki Murakami. Congruence Results of Behavioral Equivalence for A Graph Rewriting Model of
Concurrent Programs with Higher-Order Communication. Submitted to FST-TCS 2009.

[11] Davide Sangiorgi and David Walker. The π-calculus, A Theory of Mobile Processes. Cambridge University
Press, 2001.

[12] Davide Sangiorgi. Asynchronous Process Calculi: The First- and Higher-order Paradigms. Theoretical
Computer Science, 253, pp. 311-350, 2001.

[13] Vladimiro Sassone and Paweł Sobociński. Reactive Systems over Cospans. Proc. of LICS ’05 IEEE, pp.
311-320, 2005.

Appendix I: Proof of Proposition 4.1 (outline)

We can show that the following relationR is a scope bisimulation.

R = {(P‖R,Q‖R)|P ⊥ Q}

Definition 3.2, 1. is straightforward from the definition of “‖”. The second condition is also
straightforward from Proposition 3.1 and the definition of “‖”. 3. is from Proposition 2.5
and Proposition 3.1.

4. is by the induction on the number of replication 1/2 used to derive P‖R α→ P ′. If it is
derived by one of input, β-conversion, τ -action or output immediately, there exists Q′ such
that Q‖R α→ Q′ from Proposition 2.2 and 2.1 and (P ′, Q′) ∈ R as ⊥ is a bisimulation.

For the case that it is derived from communication rule immediately, we consider two cases.
First, if both of b1 and b2 are in one of src(P) or src(R), we can show the existence ofQ′ such
that Q‖R α→ Q′ and P ′ ⊥ Q′ by the similar argument as the cases of input etc. mentioned
above.

The second case is that one of b1 and b2 is in src(P) and the other is in src(R). If b1 is in

src(P), then P
a〈o〉→ P ′

1 from output and R
a(o)→ R′

1 from input. From P ⊥ Q, Q
a〈o〉→ Q′

1

and P ′
1 ⊥ Q′

1. From Proposition 2.3, Q‖R τ→ Q′
1‖R′

1 and (P ′
1‖R′

1, Q1‖R′
1) ∈ R from the

definition. The case b2 is in src(P) is similar.

Consider the case that P‖R α→ P ′ is derived by applying k + 1 replication 1/2 rules. If the
k + 1th rule is replication 1, b =!S ∈ src(P‖R).

First we consider b ∈ src(P). From the premises of replication 1, P‖R‖ν{n|(b, n) ∈
edge(P‖R)}S ′ α→ P ′. As b ∈ src(P), ν{n|(b, n) ∈ edge(P)}S ′ = ν{n|(b, n) ∈
edge(P‖R)}S ′. From Proposition 3.6 and the transitivity of ⊥,

P‖ν{n|(b, n) ∈ edge(P)}S ′ ⊥ Q.

Thus, (P‖ν{n|(b, n) ∈ edge(P)}S ′‖R,Q‖R) ∈ R. And P‖R‖ν{n|(b, n) ∈ edge(P)}S ′ α→
P ′ is derived by applying k replication 1/2 rules. From the inductive hypothesis, there exists
Q′ such that Q‖R α→ Q′ and P ′ ⊥ Q′.

If b ∈ src(R), ν{n|(b, n) ∈ edge(P‖R)}S ′ = ν{n|(b, n) ∈ edge(R)}S ′. From the premises
of replication 1, P‖R‖ν{n|(b, n) ∈ edge(R)}S ′ α→ P ′ with k applications of replication
1/2. As (P‖R‖ν{n|(b, n) ∈ edge(R)}S ′, Q‖R‖ν{n|(b, n) ∈ edge(R)}S ′) ∈ R, there ex-
ists Q′ such that Q‖R‖ν{n|(b, n) ∈ edge(R)}S ′ α→ Q′ and P ′ ⊥ Q′ from the inductive
hypothesis. As b =!S ∈ src(Q‖R), Q‖R α→ Q′ by replication 1.

The case of replication 2 is similar.

Appendix II: Proof of Proposition 4.4 (outline)

We have the result by showing that the following relationR is a scope bisimulation.

R = {(R[P1], R[P2])|P1 ⊥ P2, R[] is a τ -context.}∪ ⊥ .

To show Definition 3.2, 1 is straightforward from the definitions. 2. is from Proposition 3.3.
3. is from Proposition 3.3, 3.4 and 2.6.

For 4., we can assume that R[] has the form of τ.[]‖R1 where τ.[] is a context that consists
of just one behavior node that is a τ -prefix with a hole. Then any transition: R[P1]

α→ P ′
1

of R[P1] is derived by application of τ -rule to τ.[P1] or is caused by a transition of R1. For
the first case, P ′

1 has the form of νN(P1)‖R1. Similarly, there exists a transition for R[P2]

such that R[P2]
α→ νN(P2)‖R1. As P1 ⊥ P2, we have νN(P1)‖R1 ⊥ νN(P2)‖R1 from

Proposition 4.1 and 4.3.

If the transition is derived by applying some rule to R1, P ′ has the form of τ.[P1]‖R′
1

where R1
α→ R′

1. Then we have τ.[P2]‖R1
α→ τ.[P2]‖R′

1 from Proposition 2.1 and
(τ.[P1]‖R′

1, τ.[P2]‖R′
1) ∈ R .

Appendix III: Proof of Proposition 4.5 (outline)

We can show the result by showing the following relation R is a scope bisimulation up to ⊥
and Proposition 3.5.

{(R[P1], R[P2])|P1 ⊥ P2, R[] is a replication context.}∪ ⊥ .

To show Definition 3.4, 1. is straightforward from the definitions. 2 is from Proposition 3.3.
3 is from Proposition 3.3, 3.4 and 2.7.

4. is by the induction on the number of the replication rules to derive R[P1]
α→ R′

1. We can
assume that R[] has the form of ![]‖R1 Where ![] is a context that consists of just one
behavior node that is a replication of a hole.

If R[P1] =![P1]‖R1
α→ R′

1 is derived without any application of replication 1/2, that is a
transition of R1. For this case, we can show that there exists R′

2 such that R[P2]
α→ R′

2 and
(R′

1, R
′
2) ∈ R with the similar argument to the proof of Proposition 4.4.

Now we go into the induction step. If replication 1/2 is applied to R1, then we can show the
result by the similar way to the base case again.

We consider the case that R[P1]
α→ R′

1 is derived by replication 1 for ![P1]. Then
![P1]‖ν{n|(![P1], n) ∈ edge(R[P1])}(P ′

1)‖R1
α→ R′

1

where P ′
1 is a renaming of P1. By the induction hypothesis, there exists R′

2 such that
![P2]‖ν{n|(![P1], n) ∈ edge(R[P1])}(P ′

1)‖R1
α→ R2”

and (R′
1, R2”) ∈ R. From Proposition 4.2, P1 ⊥ P2 implies P ′

1 ⊥ P ′
2, and we have

![P2]‖ν{n|(![P1], n) ∈ edge(R[P1])}(P ′
1)‖R1 ⊥![P2]‖ν{n|(![P1], n) ∈ edge(R[P1])}(P ′

2)‖R1

from Proposition 4.3 and Proposition 4.1. From this, we have
![P2]‖ν{n|(![P1], n) ∈ edge(R[P1])}(P ′

2)‖R1 ⊥![P2]‖ν{n|(![P2], n) ∈ edge(R[P2])}(P ′
2)‖R1

as {n|(![P1], n) ∈ edge(R[P1])} = {n|(![P2], n) ∈ edge(R[P2])}.
Then there exists R′

2 such that ![P2]‖ν{n|(![P2], n) ∈ edge(R[P2])}(P ′
2)‖R1

α̂⇒ R′
2 and

R2” ⊥ R′
2. Thus (R′

1, R
′
2) ∈ R ⊥.

The case of Replication 2 is similar and thenR is a scope bisimulation up to ⊥.

Appendix IV: Proof of lemma 4.2 (outline)

We show that for any relationR, if (P [o/x], Q[o/x]) ∈ R, then it is not a scope bisimulation.
If R is a scope bisimulation, R is a strong bisimulation from Definition 3.2. Then for any
P [o/x]′ such that P [o/x]

α→ P [o/x]′, there exists Q[o/x]′ such that Q[o/x]
α→ Q[o/x]′ and

(P [o/x]′, Q[o/x]′) ∈ R.

From replication 1 and β-conversion, we have P [o/x]′ such that: src(P [o/x]′) = {b′} ∪
src(P [o/x]) where b′ = c(u).d(v).R, snk(P [o/x]′) = snk(P [o/x]) and edge(P [o/x]′) =
edge(P [o/x]∪{(b′, n1)} for α = τ (Figure 13a, middle). On the other hand, the only transition
forQ[o/x] isQ[o/x]

τ→ Q[o/x]′ where src(Q[o/x]′) = {b′}∪src(Q[o/x]′), b′ = c(u).d(v).R,
snk(Q[o/x]′) = snk(Q[o/x]) and edge(Q[o/x]′) = edge(Q[o/x]∪ {(b′, n1), (b

′, n2)} (Figure
13b, middle) by replication 1 and β-conversion.

If R is a scope bisimulation, there exists Q[o/x]” such that Q[o/x]′
c(m)→ Q[o/x]” and

(P [o/x]”, Q[o/x]”) ∈ R for any P [o/x]′
c(m)→ P [o/x]”. Let P [o/x]” be a graph such that:

src(P [o/x]′) = {b”} ∪ src(P [o/x]) where b” = d(v).R[m/u], snk(P [o/x]′) = snk(P [o/x])
and edge(P [o/x]”) = edge(P [o/x]) ∪ {(b”, n1)} obtained by applying input rule (Fig-

Figure 14. P [o/x]”/n2 and Q[o/x]”/n2.

ure 13a, bottom). The only transition of Q[o/x]′ by c(m) makes src(Q[o/x]′) = {b”} ∪
src(Q[o/x]′) where b” = d(v).R[m/u], snk(Q[o/x]′) = snk(Q[o/x]) and edge(Q[o/x]”) =
edge(Q[o/x] ∪ {(b”, n1), (b”, n2)} (Figure 13b, bottom).

Then (P [o/x]”, Q[o/x]”) is in R if R is a bisimulation. However, (P [o/x]”, Q[o/x]”) does
not satisfy the condition 3. of Definition 3.2 because P [o/x]”/n2 and Q[o/x]”/n2 (Figure
14) are not strong bisimilar. ThusR cannot be a scope bisimulation.

