Resumable Java Bytecode —
Process Mobility for the JVM

Jan Bekgaard PEDERSEN and Brian KAUKE

School of Computer Science, University of Nevada,
Las Vegas, Nevada, United States.

matt@cs.unlv.edu, kaukebGgmail.com

Abstract. This paper describes an implementation of resumable and mobile processes
for a new process-oriented language called ProcessJ. ProcessJ is based on CSP and
the m-calculus; it is structurally very close to occam-m, but the syntax is much closer
to the imperative part of Java (with new constructs added for process orientation).
One of the targets of ProcessJ is Java bytecode to be executed on the Java Virtual
Machine (JVM), and in this paper we describe how to implement the process mobility
features of Process] with respect to the Java Virtual Machine. We show how to add
functionality to support resumability (and process mobility) by a combination of code
rewriting (adding extra code to the generated Java target code), as well as bytecode
rewriting.

Introduction

In this paper we present a technique to achieve process resumability and mobility for ProcessJ
processes executed in one or more Java Virtual Machines.

ProcessJ is a new process-oriented language with syntax close to Java and a semantics
close to occam-7 [20]. In the next subsection we briefly introduce ProcesslJ.

We have developed a code generator (from ProcessJ to Java) and a rewriting technique of
the Java bytecode (which is the result of compiling the Java code generated by the ProcessJ
compiler) to alter the generated Java bytecode to save and restore state as well as support for
resuming execution in the middle of a code segment.

This capability we call transparent mobility [16], which differs from non-transparent
mobility in that the programmer does not need be concerned about preserving the state of the
system at any particular suspend or resume point. We do not, however, mean that processes
may be implicitly suspended at arbitrary points in their execution.

ProcessJ

ProcessJ is a new process-oriented language. It is based on CSP [8] and the m-calculus [10].
Structurally it is very much like occam-; it is imperative with support for synchronous com-
munication through typed channels. Like occam-7, it supports mobility of processes. Syn-
tactically it is very close to Java (but without objects), and with added constructs needed for
process orientation. ProcessJ currently targets the following execution platforms through dif-
ferent code generators (it produces source code which is then compiled using a compiler for
the target language):

e Any platform that supports the KRoC [21,23] occam-7 compiler. ProcessJ is trans-
lated to occam-7, and then passed to the KRoC compiler.

e Cand MPI [5], making it possible to write process-oriented programs for a distributed
memory cluster or wide area network. ProcessJ is translated to C with MPI message
passing calls and passed to a C compiler.

e Java with JCSP [17,19], which will run on any architecture supporting a JVM. Pro-
cessJ is translated to JCSP, which is Java with library-provided CSP support, and
passed to the Java compiler.

In this paper we focus on the process mobility of ProcessJ for Java/JCSP. As the JVM
itself provides no support for continuations and the Java language provides a restricted set of
flow control constructs on which to build such functionality, it was initially not clear whether
transparent process mobility could be usefully implemented on this platform.

Like any other process-oriented language, Process] has the notion of processes (pro-
cedures executing in their own executing context), but since the translation is to Java, it is
sometimes necessary to refer to methods when describing the generated Java code and Java
bytecode. A simple example of a piece of ProcessJ code (without mobility) is a multiplexer
that accepts input on two input channels (inl and in2) and outputs on an output channel
(out):

proc void mux(chan<int>.read inl,
chan<int>.read in2,
chan<int>.write out) {
int data;
while (true) {
alt {
data = inl.read ()
out .write(data);
data = in2.read ()
out .write(data);
}
}
}

where chan<int>.read inl declares cl to be the reading end of a channel that carries
integers, out .write(data) writes the value of data to the out channel, and alt represents
an “alternation” between the two input guards guarding two channel write statements.

Other approaches such as [2,16] consider thread migration (which involves general ob-
ject migration) in the Java language, but since ProcessJ is not object-oriented, we do not need
to be concerned with object migration at the programmer level. We do use an encapsulation
object at the translation level from ProcessJ to Java to hold the data that is transferred (this
object serves as a continuation for the translated ProcessJ process). In addition, mobile pro-
cesses, like in occam-m, are started, and resumed, by simply calling it as a regular procedure
(which translates into invoking it as a regular non-static method in the resulting Java code).
In this way, we can interpret the suspended mobile as a continuation [7] represented by the
object which holds the code, the saved state, and information about where to continue the
code execution upon resumption.

1. Resumability

We start by defining the term resumability. We denote a procedure as resumable if it can be
temporarily terminated by a programmer-inserted suspend statement and control returned to
the caller, and at some later time restarted at the instruction immediately following the sus-
pend point and with the exact same local state, possibly in a different JVM located on a dif-
ferent machine (i.e. all local variables contain the same values as they did when the method

was terminated). In a process-oriented language, the only option a process has for communi-
cating with its environment, that is, other processes, is though channel communication, which
means that when the process is resumed, it might be with a different set of (channel, channel
end, or barrier) parameters; in other situations a process might take certain parameters for
initialization purposes [22], which must be provided with “dummy values” upon subsequent
resumptions. Therefore, in this paper we consider resumability for procedures where the val-
ues of the local variables are saved and restored when the process is resumed, but where
each process resumption can happen with a new set of actual parameters. This allows the
environment to interact with the process. We start with a formal definition of resumability.

1.1. Formal Definition of Resumability

In this section we briefly define resumability for JVM bytecode in a more formal way (we
disregard objects and fields as neither are used in ProcessJ.)

Each invocation of a bytecode method has its own evaluation stack; recall, the JVM is a
stack based architecture, and all arithmetic takes place on the evaluation stack, which we can
model as an array s of values:

s =[eg, €1,...,€)

In addition to an evaluation stack, each invocation has its own activation record (AR) (we
consider non-static methods, but static methods are handled in a similar manner; the only
difference is that a reference to this is stored at address O in the activation record for non-static
method invocations). We can also represent a saved activation record as an array:

A = [thisuplu co s Pny U1,y - 7Um]7

where this is a reference to the current object, p; are parameters, and v; are local variables.
(p1 = A[l],...,pn = A[n],v1 = Aln +1],...,v,, = A[n + m]), where A[i] denotes the
value of the parameter/local variable stored at address . We do not need to store this in the
saved activation record as it is automatically replaced at address O of the activation record
for every invocation of a method, but we include it here as there are instructions that refer
to address 0, where this is always stored for non-static methods. It is worth mentioning that
the encapsulating object used in the ProcessJ to Java translation uses non-static methods and
fields; this is necessary since a ProcessJ program might have more mobile processes based
on the same procedure.

We can now define the semantic meaning of executing a basic block of bytecode instruc-
tions by considering the effect it has on the stack and the activation record. Only the last
instruction of such a block can be a jump, so we are working with a block of code that will
be executed completely. At this point, it is worth mentioning that at the end of a method in-
vocation the stack is always empty; in addition, a Process] suspend statement will translate
to a return instruction, and at these return (suspend) points, the evaluation stack will also be
empty. We consider a semantic function &;v/[B](s,.A) where B = i iy ... i) is a basic
block of bytecode statements and define:

5JVM|Ii0 il .. Zk]}(S,.A)
(s', A"

EJVM [[21 e Zk]] (S/, .A/), where
Evmlio](s, A)

We shall not give the full semantic specification for the entire instruction set for the Java
Virtual Machine as it would take up too much space in this paper, but most of the instructions
are straightforward. A few examples are (we assume non-static invocations here):

EJVM[[iload 1]]([],./4) = ([...,aﬂ,A)

where A = [this, a1, ..., Qyim]
Eyjvmistore 1]([. .., ex—1, k], A) = ([...,ex_1],[this, ek, as,. .., anim])
where A = [ag, a1, - - . , Gpim]

5JVM[[gOtO X]]([.],.A) = EJVM[[B,]]([. .],.A)

where B’ is the basic block
that starts at address X.

gJVM[[ifeq XH([G(), €1y, ek], .A) = gJVM[[B/]]([BQ, €1y..., ek], A),
if e, = 0 where B’ is the basic block
that starts at address X.

EvmlifteqX](leo, e1,-..,ex], A) = Eywvm[B](leo, €1, -, €], A),
if e, # 0 where B’ is the basic block
that immediately follows ifeq X.

Ejvulinvokevirtual £]([...,q1,..., ¢, A) = (...,r],A)

where r is the return value of
Ervm[By([], A)
and A = (g0, q1,---,¢5,L,..., L),
qo 1s an object reference, and
f(q1,-..,q;) is the actual
invocation. B is the code for a
non-void method f.

where | represents the undefined value. This is more of a semantic trick than reality as
no activation record entries are ever left undefined at the actual use of the value (the Java
compiler assures this), but here we simply wish to denote that the values of the locals might
not have been assigned a value by the user code at this moment.

Now let B = 1y %1 ... %j—1 %; %41 ... U, be a basic block of instructions (from the
control flow graph associated with the code we are executing), and let ¢; represent a imaginary
suspend instruction (as mentioned, eventually it becomes a return):

Ewvu[BI([],A)
(s', A"

gJVM[[’ij+1 Ce Zkﬂ (8,, A,) where (1)
Emniliodr - i]([],A)

or equivalently:
gJVM[[iO il c. ij—l ij ij+1 Ce ,ik]](S,A) = gJVM[[iO il c. ij—l ij-‘,—l ce ik]](s, .A),

simply ignore the suspend instruction z;. Naturally, if the code is evaluated in two stages as
in the first semantic definition, the invoking code must look something like this (assuming B
is the body of a method foo()):

foo(..); Il Execute ig ... i;_1
foo(..); Il Execute i1 ... i

We call this form of resumability “resumability without parameter change” since (1) uses A’
and not an A" where A" has the same local variables but different parameter values (i.e, the
parameters passed to foo are exactly the same for both calls). Resumability without param-
eter changes is not particularly interesting from a mobility standpoint in a process-oriented

language; typically we wish to be able to supply different parameters (most often channels,
channel ends, and barriers) to the process when it is resumed (especially because the parame-
ters could be channel ends which allow the process to interact with a new environment, that is,
the process receiving the mobile). It turns out that if we can implement resumability without
parameter change in the JVM (i.e., devise a method of restoring activation records between
invocations), then the more useful type of resumability with parameter change comes totally
free of charge! For completeness, let us define this as well:

Let us consider again the basic block code B = 1y %y ... 1j_1 % tj41 ... iy, Where again
1; represents a suspend instruction that returns control to the caller, and let us assume that
the code in B is invoked by the calls foo(vy, . .., v,), and foo(v], . .., v!) respectively.
gJVM[[iO c. ij—l ij ij—i—l R Zk]] (S, .A) = EJVMHij+1 c. ik]]<8//, A”) where
A = Jag=this,a; = v1,a3 =V, ..., 0y = Up,@pr1 = L, apim = 1]
A" = [ag =this,a] = vi,af =vh,...,al =V, al = al ..., a0 =a]
(S,,A,) = SJVM[[iO il 7;]'1]](57./4)
A= [agv"'ua%+nJ

We call this “resumability with parameter changes”. The above extends to loops (through
multiple basic block code segments), and to code blocks with more than one suspend in-
struction. As we can see from the semantic function &£ j-5s, the activation record must “sur-
vive” between invocations/suspend-resumptions; local variables are saved and restored, pa-
rameters are not stored and are changed according to each invocation’s actual parameters.
Naturally we must assure that the locations in the activation record holding the locals are
restored before they are referenced again.

2. Target Bytecode Structure

All the extra code needed to save and restore state upon suspension and resumption can be
generated by the ProcessJ code generator; only the code associated with resuming execution
in the middle of a code block will require bytecode rewriting.

Let us consider a very simple example with a single suspend statement (the following
is a snippet of legal Process]J code):

type proc mobileFooType ();
mobile proc void foo() implements mobileFooType {
int a;
a = 0;
while (a == 0) {
a =a + 1;
suspend;
a =a - 1;
¥
}

The resulting bytecode would look something like this:

public void foo ();

Code:

0: iconst_0

1: istore_1 ;0 a = 0;

2: iload_1

3: ifne 20 ; while (a == 0) {
6: iload_1

7: iconst_1

8: iadd

9: istore_1 ; a =a + 1;

10: 777 ; suspend handled here
13: iload_1

14: iconst_1

15: isub

16: istore_1 ; a =a - 1;
17: goto 2 i

20: return

}

Since the suspend is handled in line 10 by inserting a return instruction, we need
to store the local state before the return, and upon resuming the execution, control must be
transferred to line 13 rather than starting at line 0 again, and the state must be restored before
executing line 13. This requires three new parts inserted into the bytecode:

1. Code to save the local state (in the above example the local variable a) before the
suspend statement in line 10.

2. Code to restore the local state before resuming execution of the instructions affer the
previous suspend statement, that is, after line 1 and before line 13.

3. Code to transfer control to the right point of the code depending on which suspend
was most recently executed (before line 0).

Thus the goal is to automate the generation of such code. 1 and 2 can be done completely
in Java by the ProcessJ code generator, and 3 can be done by a combination of Java code and
bytecode rewriting.

Before turning to this, let us first mention a few restrictions that mobile processes have in
ProcessJ: processes have no return type (the equivalent in Java is a void method), and mobile
processes cannot be recursive. The semantics for a recursive mobile process are not yet clear,
and we do not see any obvious need for recursion of mobiles at this time.

3. Source Code Rewriting

As mentioned, the ProcessJ code generator emits Java source code, which is then compiled
using the Java compiler, and the resulting bytecode is subsequently rewritten.

Let us describe the Java code emitted from the ProcessJ compiler first. To transform the
foo method from the previous section into a resumable process, we encapsulate it in a Java
Object that contains two auxiliary fields as well as the process rewritten as a Java method and
two dummy placeholder methods.

1. The method is encapsulated in a new class:
public class Foo {

private Object[] actRec;

private static void suspend() { }
private static void resume() { }
private int jumpTarget = O;

public void foo() {
switch statement that jumps to resume point.
int a;
a = 0;
while (a == 0) {
a = a + 1;
code to save the current state.

suspend () ;
resume () ;

code to restore the previous state.
a =a - 1;

where actRec represents a saved activation record. The suspend and resume meth-
ods are just dummy methods that are added to satisfy the compiler (more about
these later). Finally, a field jumpTarget has been added. jumpTarget will hold non-
negative values (0 if the execution is to start from the beginning), and 1, 2, if the
execution is to resume from somewhere within the code (i.e., not from the start).

2. The code for foo must also be rewritten to support resumability:

e Support must be added for saving and restoring the local variable part of the JVM
activation record; this is done through the Object array actRec.

e A lookupswitch JVM instruction [9] must be added; based on the jumpTarget
field it will jump to the instruction following the last suspend executed. A simple
Java switch statement that switches on the jumpTarget will translate to such a
lookupswitch instruction.

3.1. Saving Local State

A Java activation record consists of two or three parts: Local variables, parameters and for
non-static methods, a reference to this stored at address 0 in the activation record. The layout
is illustrated in Figure 1. Recall, we need the encapsulated method to be non-static. Since this
never changes for an object, and since each resumption of the method provides a new set of
parameters, all we have to save is the set of locals. As we rely on the JVM invocation instruc-
tions, each invocation of a method creates its own new JVM activation record that contains
this, the provided parameters, and room for the locals. The first step in resuming the method
is to restore the locals to the state they were in when the method was suspended. We use an
array of Objects to store the m locals. If the field jumpTarget has value 0, representing that
the method starts from the top (this is the initial invocation of the process), no restoration of
locals is necessary as the execution starts from the beginning of the code (and the ProcessJ
and Java compilers have assured that no path to a use of an uninitialized variable exists).
On subsequent resumptions, the saved array of locals must be restored, and the value of the
field jumpTarget determines from where execution should continue (immediately after the
return instruction that suspended the previous activation of the method).

0 1 2 3 4 5 6 7 8 9
Param | ... |Param | Local .| Local
1 n 1 m

Activation record for a static method with n parameters and m locals.

0 1 2 3 4 5 6 7 8 9 10
this |Param | ... |Param | Local ... | Local
1 n 1 m

Activation record for a non—static method with n parameters and m locals.

Figure 1. JVM Activation Records.

If for example a method has locals a, b, and c of integer type, we can save an Object
array with their values in the following way by using the auto-boxing feature provided by the
Java compiler:

actRec = new Object[] { a, b, c};
jumpTarget = ...;

and they can be restored in the following manner:

a (Integer)actRec [0];
(Integer)actRec [1];

(Integer)actRec [2];

C

Both of these code blocks are generated by the Process) code generator, the former
before the suspend and the latter after.

3.2. Resuming Execution

When a method is resumed (by being invoked), the jumpTarget field determines where in
the code execution should continue; namely immediately after the return that suspended the
previous invocation. We cannot add Java code that gets translated by the Java compiler for
this; in order to do so we would need a goto instruction (as well as support for labels), and
although goto is a reserved word in Java, it is not currently in use. To achieve this objective,
we must turn to bytecode rewriting.

We need to insert a lookupswitch instruction that switches on the jumpTarget field,
and jumps to the address of the instruction following the return that suspended the previous
invocation. We can generate parts of the code with help from the Java compiler; we insert
code like this at the very beginning of the generated Java code:

switch (jumpTarget) {
case 1: break;
default: break;

}

There will be as many cases as there are suspends in the ProcessJ code. We get bytecode
like this:

4: lookupswitch{
1: 24;
default: 27 }
24: goto 27
27:

In the rewriting of the bytecode all we have to do is replace the absolute addresses (24
and 27) in the switch by the addresses of the resume points. The addresses of the resume
points can be found by keeping track of the values assigned to the jumpTarget field in the
generated Java code or by inspecting the bytecode as explained below.

Since we replaced the suspend keyword by calls to the dummy suspend() and
resume () method, we can look for the static invocation of resume () :

52: aload_0
53: iconst_1

54: putfield #5; //Field jumpTarget:I
57: invokestatic #18; //Method suspend:()V
60: invokestatic #19; //Method resume:()V

63:

(here found in line 60), and the two instructions immediately before the suspend call will
reveal the jumpTarget value that the address (60) should be associated with. The instruction
in line 53 will be one of the iconst_X (X=1,2,3,4,5) instructions or a bipush instruction. For
the above, the 1ookupswitch should be rewritten as:

4: lookupswitch{
1: 60;
default: 27 }
24: goto 27
27 :

Furthermore the lines 57 and 60 must be rewritten to be a return (this cannot be done
before compile time, as the Java compiler will complain about unreachable code) and a nop
respectively. Alternatively, the resume method can be removed and the jump target will be
the instruction following the suspend call.

4. Example

Let us rewrite the previous example to obtain this new Foo class:

public class Foo {

private Object[] actRec;

private static void suspend() { }
private static void resume() { 1}
private int jumpTarget = O0;

public void foo() {
int a;
switch (jumpTarget) A // Begin: jump
case 1: break;
default: break;

} // End: jump
a = 0;
while (a == 0) {
a = a + 1;
actRec = new Object[] { a }; // Begin: save state
jumpTarget = 1; // End: save state
suspend () ;
resume () ;
a = (Integer)actRec[0]; // restore state
a =a - 1;
}
jumpTarget = 0; // Reset jumpTarget

}

Note that the jumpTarget should be set to 0 before each original return statement to
assure that the next time the process is resumed, it will start from the beginning. This is very
close to representing the code we really want, and best of all, it actually compiles.

Note also that the line saving local state must include all locals in scope. If the rewriting
is done solely in bytecode, this would require an analysis of the control flow graph (CFG)
associated with the code — like the approach taken in the Southampton Portable Occam Com-
piler (SPOC) [12]. But since we generate the store code as part of the code generation from

the ProcessJ compiler, we have access to all scope information. It is further simplified by the

fact that scoping rules for ProcessJ follows those of Java (when removing fields and objects).
Let us look at the generated bytecode. Because of the incomplete switch statement, every

invocation of foo will always execute the a = 0 statement (i.e. start from the beginning):

public void foo ();

Code:

0:
1:
4

24 :
27 :
28:
29:
30:
33:
34:
35:
36:
37:
38:
39:
42:
43:
44
45:

48:
49:

52:
53:
54:
57:
60:
63:
64:
67:
68:
69:
T2:
75:
76:
TT7:
78:
79:
80:
83:
84:
85:
88:

aload_o0
getfield jumpTarget I // switch (jumpTarget) {
lookupswitch{

1: 24; // case 1:

default: 27 } // default:
goto 27 /73
iconst_0
istore_1 // a = 0;
iload_1 // while (a == 0) {
ifne 83
iload_1
iconst_1
iadd
istore_1
aload_0O // a = a + 1;
iconst_1
anewarray java/lang/0Object
dup
iconst_0
iload_1
invokestatic java/lang/Integer.

valueOf (I)Ljava/lang/Integer;
aastore
putfield actRec [Ljava/lang/Object;
// actRec = new Object[]{al};

aload_0
iconst_1
putfield jumpTarget I // jumpTarget = 1;
invokestatic suspend()V // suspend;
invokestatic resume()V // // resume point
aload_0
getfield actRec [Ljava/lang/0Object;
iconst_0
aaload
checkcast java/lang/Integer
invokevirtual java/lang/Integer.intValue()I
istore_1 // a = (Integer)actRec[0];
iload_1
iconst_1
isub
istore_1 // a=a - 1;
goto 29 /73
aload_o0
iconst_1
putfield jumpTarget I // jumpTarget = O;
return

Lines 0-24 represent the switch statement, 38—54 the save state code, 57-60 the sus-
pend/resume placeholder method calls, 63—75 the restore state code, and 83—88 the rewritten
original return code.

As pointed out above, this code is not correct; a number of things still need to be
changed:

e Line 4 is the jump table that must be filled with correct addresses. If the field
jumpTarget equals 1, execution continues at the invocation of the dummy resume ()
method — line 60. The default label is already correct and can be left unchanged.

e Line 57, the dummy suspend () invocation, should be replaced by a return instruc-
tion (we could not simply place a Java return instruction in the source code because
the compiler would complain about the code following the return statement being
unreachable).

e Line 60, the dummy resume() invocation should be replaced by a nop. This
only serves as a placeholder; theoretically we could have used address 63 in the
lookupswitch.

An example of use in ProcessJ could be this:

proc void sender (chan<mobileFooType>.write ch) {
// create mobile
mobileFooType mobileFoo = new mobile foo;
// invoke foo (1st invocation)
mobileFoo ();
// send to different process
ch.write(mobileFoo);

}

proc void receiver (chan<mobileFooType>.read ch) {
mobileFooType mobileFoo;
// receive mobileFooType process
mobileFoo = ch.read();
// invoke foo (2nd invocation)
mobileFoo ();
}

proc void main () {
chan<MobileFooType> ch;
par {
sender (ch.write);
receiver (ch.read);

}

The resulting Java/JCSP code looks like this:
import org.jcsp.lang.x*;
public class PJtest {

public static void sender (ChannelOutput ch_write) {
Foo mobileFoo = new Foo();
mobileFoo.foo ();
ch_write.write(mobileFoo);

}

public static void receiver (ChannelInput ch_read) {
Foo mobileFoo;
mobileFoo = (Foo)ch_read.read();
mobileFoo.foo ();

¥

public static void main(String args[]) {
final One20neChannel ch = Channel.one2one();
new Parallel(new CSProcess[] {

new CSProcess () {
public void run() {
sender (ch.out ());
}
3,

new CSProcess () {
public void run() {
receiver (ch.in());

}
}

}).run();

One small change is still needed to support mobility across a network. Since the gen-
erated Java code is a class, this can be made serializable by making the generated classes
implement the Serializable interface. An object of such a class can now be serialized and
sent across a network. Welch et al. [18] provide such a mechanism in their jcsp.net package
as well.

Since the rewriting described encapsulates the mobile process in a new class, objects of
that class can be sent as data across the network and the mobile process inside that object can
be resumed by invoking the method that encapsulates the mobile process (mobileFoo.foo()
above).

5. Related Work and Other Approaches

Approaches to process mobility can be categorized as either transparent or non-transparent,
sometimes termed strong and weak migration (mobility), respectively [2,6]. With non-
transparent mobility the programmer must explicitly provide the logic to suspend and re-
sume the mobile process whenever necessary. Existing systems such as jcsp.mobile [3,4]
already provide this functionality. Transparent mobility significantly eases the task of the
programmer, but requires support from the run-time system which does not exist within the
Java Virtual Machine.

Some early approaches to supporting resumable programs in Java involved modification
of the JVM itself [2]. In our view, however, one of the most important advantages of targeting
the JVM is portability across the large installed base of Java runtime environments. Therefore
any approach that extends the JVM directly is of limited utility.

Some success has been demonstrated using automated transformation of Java source
code [6]. Due to the lack of support within the language for labeled gotos, this approach
suffers from a proliferation of conditional guards and a corresponding increase in code size.

Bytecode-only transformations methods targeting general thread resumability in Java are
explored in [1] and [16]. These approaches require control flow analysis of the bytecode in
order to generate code for the suspend point. Alternatively, the Kilim [15] actor-based frame-

work uses a CPS bytecode transformation to support cooperatively scheduled lightweight
threads (fibers) within Java.

Another example of bytecode state capture can be found in Java implementation of the
object-oriented language Python (Jython [13]) in order to support generators, a limited form
of co-routines [11]. This is perhaps the most similar to our implementation, even though gen-
erator functions are somewhat different in concept and application from ProcessJ procedures.
We wish, however, to be able to utilize the existing Java compilers to produce optimized
bytecode with our back-end.

The process-oriented nature of ProcessJ allows us to adopt a simple hybrid approach that
combines Java source and bytecode methods.

6. Conclusion

In this paper we have shown that a compiler for a process-oriented language can provide
transparent mobility using the existing Java compiler tool chain with minimal modification.
We developed a simple way to generate Java source code and rewrite Java bytecode to support
resumability and ultimately process mobility for the ProcessJ language.

We described the Java source code generated by the ProcessJ compiler, and also demon-
strated how to rewrite the Java bytecode to save and restore local state in between resump-
tions of code executions as well as how to assure that execution continues with the same
local state (but with possibly new parameter values) at the instruction following the previous
suspension point.

7. Future Work

A number of interesting issues remain to be addressed. For ProcessJ, where we have chan-
nels, an interesting problem arise when assigning a parameter of channel end type to a local
variable. If a local variable holds a reference to a channel end, and the process is suspended
and sent to a different machine, the end of the channel now lives on a different physical ma-
chine. This is not a simple problem to solve; for occam-7, the pony [14] system addresses
this problem. One way to approach this problem is to include a channel server, much like the
one found in JCSP.net [18], that keeps track of where channel ends are located; this is the
approach we are working with for the MPI/C code generator. Mobile channels can be handled
in the same way, but are outside the scope of this paper.

Other issues that need to be addressed include how resource management is to be han-
dled; if a mobile process contains references to (for example) open files that are not available
on the JVM to which the process is sent, accessing this file becomes impossible. We may
wish to enforce certain kinds of I/O restrictions on mobile processes in order to more clearly
define their behavior under mobility.

With a little effort, the saving and restoration could be gathered at the beginning and the
end of the method saving some code/instructions, but for clarity reasons we used a different
approach (as presented in this paper).

8. Acknowledgments
This work was supported by the UNLV President’s Research Award 2008/2009. We would

like to thank the reviewers who did a wonderful job in reviewing this paper. Their comments
and suggestions have been valuable in producing a much stronger paper.

References

[1] Sara Bouchenak. Techniques for Implementing Efficient Java Thread Serialization. In ACS/IEEE Interna-
tional Conference on Computer Systems and Applications (AICCSA03), pages 14—18, 2003.

[2] Sara Bouchenak and Daniel Hagimont. Pickling Threads State in the Java System. In Third European
Research Seminar on Advances in Distributed Systems, 2000.

[3] Kevin Chalmers and John Kerridge. jcsp.mobile: A Package Enabling Mobile Processes and Channels.
In Jan Broenink and Herman Roebbers and Johan Sunter and Peter Welch and and David Wood, editor,
Communicating Process Architectures 2005, pages 109-127, 2005.

[4] Kevin Chalmers, John Kerridge, and Imed Romdhani. Mobility in JCSP: New Mobile Channel and Mo-
bile Process Models. In Alistair McEwan and Steve Schneider and Wilson Ifill and Peter Welch, editor,
Communicating Process Architectures 2007, pages 163-182, 2007.

[5] Jack Dongarra. MPI: A Message Passing Interface Standard. The International Journal of Supercomputers
and High Performance Computing, 8:165-184, 1994.

[6] Stefan Fiinfrocken. Transparent Migration of Java-based Mobile Agents - Capturing and Reestablishing
the State of Java Programs. In Mobile Agents, pages 26-37. Springer Verlag, 1998.

[7]1 R. Hieb and R.K. Dybvig. Continuations and Concurrency. ACM Sigplan Notices, 25:128136, 1990.

[8] C. A. R. Hoare. Communicating Sequential Processes. Communications of the ACM, 21(8):666—677,
August 1978.

[9] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification, 2nd Edition. Prentice Hall PTR,
1999.

[10] Robin Milner. Communicating and Mobile Systems: the m-Calculus. Cambridge University Press, 1999.

[11] Ana Licia De Moura and Roberto Ierusalimschy. Revisiting coroutines. ACM Transactions on Program-
ming Languages and Systems, 31:1-31, 2009.

[12] D.A. Nicole, M. Debbage, M. Hill, and S. Wykes. Southampton’s Portable Occam Compiler (SPOC).
In A.G. Chalmers and R. Miles, editors, Proceedings of WoTUG 17: Progress in Transputer and Occam
Research, volume 38 of Concurrent Systems Engineering, pages 40-55, Amsterdam, The Netherlands,
April 1994. 10S Press. ISBN: 90-5199-163-0.

[13] Samuele Pedroni and Noel Rappin. Jython Essentials. O’Reilly Media, Inc., 2002.

[14] Mario Schweigler and Adam T. Sampson. pony - The occam-7 Network Environment. In Peter Welch, Jon
Kerridge, and Fred Barnes, editors, Communicating Process Architectures 2006, volume 64 of Concurrent
Systems Engineering Series, pages 77-108, Amsterdam, The Netherlands, September 2006. IOS Press.

[15] S. Srinivasan and A. Mycroft. Kilim: Isolation-typed actors for java. In Procedings of the European
Conference on Object Oriented Programming (ECOOP), pages 104—128. Springer, 2008.

[16] Eddy Truyen, Bert Robben, Bart Vanhaute, Tim Coninx, Wouter Joosen, and Pierre Verbaeten. Portable
Support for Transparent Thread Migration in Java. In ASA/MA, pages 29—43. Springer Verlag, 2000.

[17] Peter H. Welch. Process Oriented Design for Java: Concurrency for All. In Hamid R. Arabnia, editor,
Proceedings of the International Conference on Parallel and Distributed Process Techniques and Appli-
cations, volume 1, pages 51-57, Las Vegas, Nevada, USA, June 2000. CSREA, CSREA Press. ISBN:
1-892512-52-1.

[18] Peter H. Welch, Jo R. Aldous, and Jon Foster. CSP Networking for Java (JCSP.net). Lecture Notes in
Computer Science, 2330:695-708, 2002.

[19] Peter H. Welch and Paul D. Austin. Communicating Sequential Processes for Java (JCSP) Home Page.
Systems Research Group, University of Kent, http://www.cs.kent.ac.uk/projects/ofa/jcsp.

[20] Peter H. Welch and Frederick R.M. Barnes. Communicating Mobile Processes: introducing occam-7. In
Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors, 25 Years of CSP, volume 3525 of Lecture
Notes in Computer Science, pages 175-210. Springer Verlag, April 2005.

[21] Peter H. Welch, Jim Moores, Frederick R. M. Barnes, and David C. Wood. The KRoC Home Page.
http://www.cs.kent.ac.uk/projects/ofa/kroc/.

[22] Peter H. Welch and Jan B. Pedersen. Santa Claus - with Mobile Reindeer and Elves. In Proceedings of
Communicating Process Architectures, 2008.

[23] Peter H. Welch and David C. Wood. The Kent Retargetable occam Compiler. In Brian O’Neill, edi-
tor, Parallel Processing Developments, volume 47 of Concurrent Systems Engineering, pages 143—-166,
Amsterdam, The Netherlands, March 1996. World occam and Transputer User Group, IOS Press.

