
Translating ETC to LLVM Assembly

Carl G. RITSON

School of Computing, University of Kent, Canterbury, Kent, CT2 7NF, England.

c.g.ritson@kent.ac.uk

Abstract. The LLVM compiler infrastructure project provides a machine indepen-
dent virtual instruction set, along with tools for its optimisation and compilation to
a wide range of machine architectures. Compiler writers can use the LLVM’s tools
and instruction set to simplify the task of supporting multiple hardware/software plat-
forms. In this paper we present an exploration of translation from stack-based Ex-
tended Transputer Code (ETC) to SSA-based LLVM assembly language. This work
is intended to be a stepping stone towards direct compilation of occam-π and similar
languages to LLVM’s instruction set.

Keywords. concurrency, ETC, LLVM, occam-pi, occ21, tranx86

Introduction and Motivation

The original occam language toolchain supported a single processor architecture, that of the
INMOS Transputer [1,2]. Following INMOS’s decision to end development of the occam
language, the sources for the compiler were released to the occam For All (oFA) project [3].
The oFA project modified the INMOS compiler (occ21), adding support for processor ar-
chitectures other than the Transputer, and developed the basis for today’s Kent Retargetable
occam Compiler (KRoC) [4].

Figure 1 shows the various compilation steps for an occam or occam-π program. The
occ21 compiler generates Extended Tranputer Code (ETC) [5], which targets a virtual Trans-
puter processor. Another tool, tranx86 [6], generates a machine object from the ETC for a
target architecture. This is in turn linked with the runtime kernel CCSP [7] and other system
libraries.

Tools such as tranx86, octran and tranpc [8], have in the past provided support for IA-
32, MIPS, PowerPC and Sparc architectures; however, with the progressive development of
new features in the occam-π language, only IA-32 support is well maintained at the time of
writing. This is a consequence of the development time required to maintain support for a
large number of hardware/software architectures. In recent years the Transterpreter Virtual
Machine (TVM), which executes linked ETC bytecode directly, has provided an environment
for executing occam-π programs on architectures other than IA-32 [9,10]. This has been
possible due to the small size of the TVM codebase, and its implementation in architecture
independent ANSI C. Portability and maintainability are gained at the sacrifice of execution
speed, a program executed in the TVM runs around 100 times slower its equivalent tranx86
generated object code.

In this paper we present a new translation for ETC bytecode, from the virtual Transputer
instruction set, to the LLVM virtual instruction set [11,12]. The LLVM compiler infrastruc-
ture project provides a machine independent virtual instruction set, along with tools for its
optimisation and compilation to a wide range of machine architectures. By targeting a vir-
tual instruction set that has a well developed set of platform backends, we aim to increase

ExecutionLLVM
Converter

occ21 tranx86

System
Linker

ETC
object

CCSP
kernel

Native
Libraries

Executable

Native
Object Code

plinker/slinker TVM
Bytecode TVM

ETC Libraries

LLVM
Assembly

llc

Source

Figure 1. Flow through the KRoC and Transterpreter toolchains, from source to program execution. This paper
covers developments in the grey box.

the number of platforms the existing occam-π compiler framework can target. LLVM also
provides a pass based framework for optimisation at the assembly level, with a large number
of pre-written optimisation passes (e.g. deadcode removal, constant folding, etc). Translating
to the LLVM instruction set provides us with access to these ready-made optimisations as
opposed to writing our own, as has been done in the past [6].

The virtual instructions sets of the Java Virtual Machine (JVM) or the .NET’s Common
Language Runtime (CLR) have also been used as portable compilation targets [13,14]. Unlike
LLVM these instruction sets rely on a virtual machine implementation and do not provide
a clear path for linking with our efficient multicore language runtime [7]. This was a key
motivating factor in choosing LLVM over the JVM or CLR.

An additional concern regarding the JVM and CLR is that large parts of their code bases
are concerned with language features not relevant for occam-π, e.g. class loading or garbage
collection. Given our desire to support small embedded devices (section 3.7), it seems appro-
priate not to encumber ourselves with a large virtual machine. LLVM’s increasing support
for embedded architectures, XMOS’s XCore processor in particular [15], provided a further
motivation to choose it over the JVM or CLR.

In section 1 we briefly outline the LLVM instruction set and toolchain. We describe
the steps of our translation from ETC bytecode to LLVM assembly in section 2. Section 3
contains initial benchmark results comparing our translator’s output via LLVM to that from
tranx86. Finally, in section 4 we conclude and comment on directions for future work.

1. LLVM

In this section we briefly describe the LLVM project’s infrastructure and its origins. Addi-
tionally, we give an introduction to LLVM assembly language as an aid to understanding the
translation examples in section 2.

Lattner proposed the LLVM infrastructure as a means of allowing optimisation of a
program not just at compile time, but throughout its lifetime [11]. This includes optimisation
at compile time, link time, runtime and offline optimisation. Where offline optimisations may
tailor a program for a specific system, or perhaps apply profiling data collected from previous
executions.

define i32 @cube (i32 %x) {
%sq = mul i32 %x, %x ; multiply x by x
%cu = mul i32 %sq, %x ; multiply sq by x
ret i32 %cu ; return cu

}

Figure 2. Example LLVM function which raises a value to the power of three.

The LLVM infrastructure consists of a virtual instruction set, a bytecode format for the
instruction set, front-ends which generate bytecode from sources (including assembly), a
virtual machine and native code generators for the bytecode. Having compiled a program
to LLVM bytecode it is then optimised before being compiled to native object code or JIT
compiled in the virtual machine interpreter. Optimisation passes take bytecode (or its in-
memory representation) as input, and produce bytecode as output. Each pass may modify the
code or simply insert annotations to influence other passes, e.g. usage information.

In this paper we discuss the generation of LLVM assembly language from ETC for use
with LLVM’s native code generators. The LLVM assembly language is strongly typed, and
uses static single-assignment (SSA) form. It has neither machine registers nor an operand
stack, rather identifiers are defined when assigned to, and this assignment may occur only
once. Identifiers have global or local scope; the scope of an identifier is indicated by its initial
character. The example in Figure 1, shows a global function @cube which takes a 32-bit
integer (given the local identifier %x), and returns it raise to the power of three. This example
also highlights LLVM’s type system, which requires all identifiers and expressions to have
explicitly specified types.

LLVM supports the separate declaration and definition of functions: header files declare
functions, which have a definition at link time. The use of explicit functions, as opposed to
labels and jump instructions, frees the programmer from defining a calling convention. This
in turn allows LLVM code to transparently function with the calling conventions of multiple
hardware and software ABIs.

In addition to functions LLVM provides a restricted form of traditional labels. It is not
possible to derive the address of an LLVM label or assign a label to an identifier. Furthermore
the last statement of a labelled block must be a branching instruction, either to another label
or a return statement. These restrictions give LLVM optimisations a well-defined view of
program control flow, but do present some interesting challenges (see section 2.2).

In our examples we have, where appropriate, commented LLVM syntax; however, for a
full definition of the LLVM assembly language we refer the reader to the project’s website
and reference manual [16].

2. ETC to LLVM Translation

This section describes the key steps in the translation of stack-based Extended Transputer
Code (ETC) to the SSA-form LLVM assembly language.

2.1. Stack to SSA

ETC bases its execution model on that of the Transputer, a processor with a three regis-
ter stack. A small set of instructions have coded operands, but the majority consume (pop)
operands from the stack and produce (push) results to it. A separate data stack called the
workspace provides the source or target for most load and store operations.

Blind translation from a stack machine to a register machine can be achieved by desig-
nating a register for each stack position and shuffling data between registers as operands are

LDC 0 ; load constant 0
LDL 0 ; load workspace location 0
LDC 64 ; load constant 64
CSUB0 ; assert stack 1 < stack 0, and pop stack
LDLP 3 ; load a pointer to workspace location 3
BSUB ; subscript stack 0 by stack 1
SB ; store byte in stack 1 to pointer stack 0

Figure 3. Example ETC code which stores a 0 byte to an array. The base of the array is workspace location 3,
and offset to be written is stored in workspace location 0.

LDC 0 ; () => (reg 1) STACK = <reg 1>
LDL 0 ; () => (reg 2) STACK = <reg 2, reg 1>
LDC 64 ; () => (reg 3) STACK = <reg 3, reg 2, reg 1>
CSUB0 ; (reg 3, reg 2) => (reg 2) STACK = <reg 2, reg 1>
LDLP 3 ; () => (reg 4) STACK = <reg 4, reg 2, reg 1>
BSUB ; (reg 4, reg 2) => (reg 5) STACK = <reg 5, reg 1>
SB ; (reg 5, reg 1) => () STACK = <>

Figure 4. Tracing the stack utilisation of the ETC in Figure 3, generating a register for each unique operand.

LDC 0 reg_1

LDL 0

LDC 64

CSUB

LDLP 3

SB

reg_2

reg_3 reg_4

reg_5BSUB

Figure 5. Data flow graph generated from the trace in Figure 4.
.

pushed and popped. The resulting translation is not particularly efficient as it has a large num-
ber of register-to-register copies. More importantly, this form of blind translation is not pos-
sible with LLVM’s assembly language as identifiers (registers) cannot be reassigned. Instead
we must trace the stack activity of instructions, creating a new identifier for each operand
pushed and associate it with each subsequent pop or reference of that operand. This is possi-
ble as all ETC instructions consume and produce constant numbers of operands.

The process of tracing operands demonstrates one important property of SSA, its ob-
viation of data dependencies between instructions. Figures 3, 4 and 5 show respectively: a
sample ETC fragment, its traced form and a data flow graph derived from the trace. Each
generated identifier is a node in the data flow graph connected to nodes for its producer and
consumer nodes. From the example we can see that only the SB instruction depends on the
first LDC, therefore it can be reordered to any point before the SB, or in fact constant folded.
This direct mapping to the data flow graph representation, is what makes SSA form desirable
for pass-based optimisation.

We apply this tracing process to the standard operand stack and the floating point operand

; load workspace offset 1
%reg 1 = load i32∗ (getelementptr i32∗ %wptr 1, i32 1)
; add 1
%reg 2 = add i32 %reg 1, 1
; store result to workspace offset 2
store i32 %reg 2, (getelementptr i32∗ %wptr 1, i32 2)

; load workspace offset 3
%reg 3 = load i32∗ (getelementptr i32∗ %wptr 1, i32 3)
; synchronise barrier
call void kernel barrier sync (%reg 3)

; load workspace offset 1
%reg 4 = load i32∗ (getelementptr i32∗ %wptr 1, i32 1)
; add 2
%reg 5 = add i32 %reg 4, 2
; store result to workspace offset 2
store i32 %reg 5, (getelementptr i32∗ %wptr 1, i32 2)

Figure 6. LLVM code example which illustrates the dangers of optimisation across kernel calls.

stack. A data structure in our translator provides the number of input and output operands for
each instruction. Additionally, we trace modifications to the workspace register redefining it
as required.

Registers from the operand stack are typed as 32-bit integers (i32), and operands on
the floating point stack as 64-bit double precision floating point numbers (double). The
workspace pointer is an integer pointer (i32∗). When an operand is used as memory address
it is cast to the appropriate pointer type. In theory, these casts may hinder certain kinds of
optimisations, but we have not observed this in practice.

2.2. Process Representation

While the programmer’s view of occam is one of all processes executing in parallel, this
model is in practice simulated by one or more threads of execution moving through the con-
current processes. The execution flow may leave processes at defined instructions, reentering
at the next instruction. The state of the operand stack after these instructions is undefined. In-
structions which deschedule the process, such as channel communication or barrier synchro-
nisation, are implemented as calls to the runtime kernel (CCSP) [7]. In a low-level machine
code generator such as tranx86, the generator is aware of all registers in use and ensures that
their state is not assumed constant across a kernel call. Take the example in Figure 6, there
is a risk the code generator may choose to remove the second load of workspace offset 1,
and reuse the register from the first load. However the value of this register may have been
changed by another process which is scheduled by the kernel before execution returns to the
process in the example.

While the system ABI specifies which registers should be preserved by the callee if mod-
ified, the kernel does not know which registers will be used by other processes it schedules.
If the kernel is to preserve the registers then it must save all volatile registers when switching
processes. This requires space to be allocated for each process’s registers, something the oc-
cam compiler does not do as the instruction it generated was clearly specified as to undefine
the operand stack. More importantly, the code to store a process’s registers must be rewrit-
ten in the system assembly language for each platform to be supported. Given our goal of
minimal maintenance portability this is not acceptable.

Our solution is to breakdown monolithic processes into sequences of uninterruptable

f1 f2 fn

g1 g2 gm

Process A

Process B

Kernel

Figure 7. Execution of the component functions of processes A and B is interleaved by the runtime kernel.

functions which pass continuations [17]. Control flow is then restricted such that it may only
leave or enter a process at the junctures between its component functions. The functions of
the process are then mapped directly to LLVM function definitions, which gives LLVM an
identical view of the control flow to that of our internal representation. LLVM’s code gener-
ation backends will then serialise state at points where control flow may leave the process.
Figure 7 gives a graphical representation of this process, as the runtime kernel interleaves the
functions f1 to fn of process A with g1 to gm of process B.

In practice the continuation is the workspace (wptr), with the address of the next func-
tion to execute stored at wptr[−1]. This is very similar to the Transputer’s mechanism for
managing blocked processes, except the stored address is a function and thus the dispatch
mechanism is not a jump, but a call. Thus the dispatch of a continuation (wptr) is the tail
call: wptr[−1](wptr).

We implement the dispatch of continuations in the generated LLVM assembly. Kernel
calls return the next continuation as selected by the scheduler, which is then dispatched by
the caller. This removes the need for system specific assembly instructions in the kernel to
modify execution flow, and thus greatly simplifies the kernel implementation. The runtime
kernel can then be implemented as a standard system library.

Figure 8 shows the full code listing of a kernel call generated by our translation tool.
Two component functions of a process kroc.screen.process are shown (see section 2.5.1
for more details on function naming). The first constructs a continuation to the second, then
makes a kernel call for channel input and dispatches the returned continuation.

2.3. Calling Conventions

When calling a process as a subroutine, we split the present process function and make a
tail call to the callee passing a continuation to newly created function as the return address.
This process is essentially the same the Transputer instructions CALL and RET. There are are
however some special cases which we address in the remainder of this section.

The occam language has both processes (PROC) and functions (FUNCTIONS). Processes
may modify their writable (non-VAL) parameters, interact with their environment through
channels and synchronisation primitives, and go parallel creating concurrent subprocesses.
Functions on the other hand may not modify their parameters or perform any potentially
blocking operations or go parallel, but may return values (processes do not return values).

While it is possible to implement occam’s pure functions in LLVM using the normal
call stack, we have not yet done so for pragmatic reasons. Instead we treat function calls as
process calls. Function returns are then handled by rewriting the return values into parameters
to the continuation function.

The main obstacle to supporting pure functions is that the occ21 compiler lowers func-
tions to processes, this obscures functions in the resulting ETC output. It also allows some

; Component function of process "kroc.screen.process"
define private fastcc void @O kroc screen process L0.3 0

(i8∗ %sched, i32∗ %wptr 1) {
; ... code omitted ...

; Build continuation
; tmp 6 = pointer to workspace offset −1
%tmp 6 = getelementptr i32∗ %wptr 1, i32 −1
; tmp 7 = pointer to continuation function as byte pointer
%tmp 7 = bitcast void (i8∗, i32∗)∗ @O kroc screen process L0.3 1 to i8∗
; tmp 8 = tmp 7 cast to an 32−bit integer
%tmp 8 = ptrtoint i8∗ %tmp 7 to i32
; store tmp 8 (continuation function pointer) to workspace offset −1
store i32 %tmp 8, i32∗ %tmp 6

; Make kernel call
; The call parameters are reg 8, reg 7 and reg 6
; The next continuation is return by the call as tmp 9
%tmp 9 = call i32∗ @kernel Y in

(i8∗ %sched, i32∗ %wptr 1,
i32 %reg 8, i32 %reg 7, i32 %reg 6)

; Dispatch the next continuation
; tmp 10 = pointer to continuation offset −1
%tmp 10 = getelementptr i32∗ %tmp 9, i32 −1
; tmp 12 = pointer to continuation function cast as 32−bit integer
%tmp 12 = load i32∗ %tmp 10
; tmp 11 = pointer to continuation function
%tmp 11 = inttoptr i32 %tmp 12 to void (i8∗, i32∗)∗
; tail call tmp 11 passing the continuation (tmp 9) as its parameter
tail call fastcc void %tmp 11 (i8∗ %sched, i32∗ %tmp 9) noreturn
ret void

}

; Next function in the process "kroc.screen.process"
define private fastcc void @O kroc screen process L0.3 1

(i8∗ %sched, i32∗ %wptr 1) {
; ... code omitted ...

}

Figure 8. LLVM code example is actual output from our translation tool showing a kernel call for channel
input. This demonstrates continuation formation and dispatch.

kernel operations (e.g. memory allocation) within functions. Hence to provide pure function
support, the translation tool must reconstruct functions from processes, verify their purity,
and have separate code generation paths for process and functions. We considered such en-
gineering excessive for this initial exploration; however, as the LLVM optimiser is likely to
provide more effective inlining and fusion of pure functions we intend to explore it in future
work. In particular, the purity verification stage involved in such a translator should also be
able to lift processes to functions, further improving code generation.

Another area affected by LLVM translation is the Foreign Function Interface (FFI). FFI
allows occam programs to call functions implemented in other languages, such as C [18,19].
This facility is used to access the system libraries for file input and output, networking and
graphics. At present the code generator (tranx86) must generate not only hardware specific
assembly, but structure the call to conform to the operating system specific ABI. LLVM
greatly simplifies the FFI call process as it abstracts away any ABI specific logic. Hence

foreign functions are implemented as standard LLVM calls in our translator.

2.4. Branching and Labels

The Transputer instruction set has a relatively small number of control flow instructions:

• CALL call subroutine (and a general call variant - GCALL),
• CJ conditional jump,
• J unconditional jump,
• LEND loop end (form of CJ which uses a counting block in memory),
• RET return from subroutine.

In sections 2.2 and 2.3 we addressed the CALL and RET related elements of our translation, in
this section we address the other instructions.

The interesting aspect of the branching instructions J and CJ are their impact on the
operand stack. An unconditional jump undefines the operand stack, this allows a process to
be descheduled on certain jumps, which provided a preemption mechanism for long running
process on the Transputer. The conditional jump instruction branches if the first element of
the operand stack is zero, in doing so it preserves the stack. If it does not branch then it
instead pops the first element of the operand stack.

As part of operand tracing during the conversion to SSA-form (see section 2.1), each
encountered label within a process is tagged with the present stack operands. For the purposes
of tracing, unconditional jumps undefine the stack and conditional jumps consume the entire
stack outputting stackdepth−1 new operands. Having traced the stack we compare the inputs
of each label with inferred inputs from the branch instructions which reference it, adjusting
instruction behaviour as required. These adjustments can occur, for example, when the target
of a conditional jump does not require the entire operand stack. While the compiler outputs
additional stack depth information this is not always sufficient, hence our the introduction of
an additional verification stage.

The SSA syntax of LLVM’s assembly language adds some complication to branching
code. When a label is the target of more than one branching instruction, φ nodes (phi nodes)
must be introduced for each identifier which is dependent on the control flow. Figure 9 il-
lustrates the use of φ nodes in a contrived code snippet generating 1/n, where the result is 1
when n = 0. The φ node selects a value for %fraction from the appropriate label’s names-
pace, acting as a merge of values in the data flow graph. In our translation tool we use the
operand stack information generated for each label to build appropriate φ nodes for labels
which are branch targets. Unconditional branch instructions are then added to connect these
labels together, as LLVM’s control flow does not automatically transition between labels.

Transputer bytecode is by design position independent, the arguments passed to start
process instructions, loop ends and jumps are offsets from the present instruction. To support
these offsets the occam compiler specifies the instruction arguments as label differences,
such that Lt − Li where Lt is the arguments target label and Li is a label placed before the
instruction consuming the jump offset. While we can revert these differences to absolute label
reference by removing the subtraction of Li, LLVM assembly does not permit the derivation
of label addresses. This prevents us passing labels as arguments to kernel calls such as start
process (STARTP). We overcome this by lifting labels, for which the address is required, to
function definitions. This is achieved by splitting the process in the same way as is done for
kernel calls (see section 2.2). Adjacent labels are then connected by tail calls with the operand
stack passed as parameters. There is no need to build continuations for these calls as control
flow will not leave the process. Additionally, φ nodes are not required as the passing of the
operand stack as parameters provides the required renaming.

; Compare n to 0.0
%is zero = fcmp oeq double %n, 0.0
; Branch to the correct label
; zero if is zero = 1, otherwise not zero
br i1 %is zero, label %zero, label %not zero

zero:
; Unconditionally branch to continue label
br label %continue

not zero:
; Divide 1 by n
%nz fraction = fdiv double 1.0, %n
; Unconditionally branch to continue label
br label %continue

continue:
; fraction depends on the source label:
; 1.0 if the source is zero
; nz fraction if the source is not zero
%fraction = phi double [1.0, %zero, %nz fraction, %not zero]

Figure 9. Example LLVM code showing the use of a phi node to select the value of the fraction identifier.

As an aside, earlier versions of our translation tool lifted all labels to function definition
to avoid the complexity of generating φ nodes, and avoid tracking the use of labels as argu-
ments. While it appeared that LLVM’s optimiser was able to fuse many of these processes
back together, it was felt that a layer of control flow was being obscured. In particular this
created output which was often hard to debug. Hence, we redesigned our translator to only
lift labels when required.

2.5. Odds and Ends

This section contains some brief notes on other interesting areas of our translation tool.

2.5.1. Symbol Naming

While LLVM allows a wide range of characters in symbol names, the generation of symbol
names for processes is consistent with that used in tranx86 [6]. Characters not valid for a C
function are converted to underscores, and a O prefix added. This allows ANSI C code to
manipulate occam process symbols by name.

Only processes marked as global by the compiler are exported, and internally generated
symbols are marked as private and tagged with the label name to prevent internal collisions.
Declaration declare statements are added to the beginning of the assembly output for all
processes referenced within the body. These declarations may include processes not defined
in the assembly output; however, these will have been validated by the compiler as existing in
another ETC source. The resulting output can then be compiled to LLVM bytecode or system
assembly and the symbols resolved by the LLVM linker or the system linker as appropriate.

2.5.2. Arithmetic Overflow

An interesting feature of the occam language is that its standard arithmetic operations
check for overflow and trigger an error when it is detected. In the ANSI C TVM emulat-
ing these arithmetic instructions requires a number of additional logic steps and calcula-
tions [10]. This is inefficient on CPU architectures which provide flags for detecting over-

flow. The LLVM assembly language does not provide access to the CPU flags, but instead
provides intrinsics for addition, subtraction and multiplication with overflow detection. We
have used these intrinsics (@llvm.sadd.with.overflow, @llvm.ssub.with.overflow and
@llvm.smul.with.overflow) to efficiently implement the instructions ADD, SUB and MUL.

2.5.3. Floating Point

occam supports a wide range of IEEE floating-point arithmetic and provides the ability to
set the rounding mode in number space conversions. While an emulation library exists for
this arithmetic, a more efficient hardware implementation was present in later Transputers
and we seek to mirror this in our translator. However, we found that LLVM lacks support for
setting the rounding mode of the FPU (this is still the case at the end of writing, with LLVM
version 2.5). The LLVM assembly language specification defines all the relevant instructions
to truncate their results. While not ideal, we use this fact by adding or subtracting 0.5, before
converting a value in order to simulate nearest rounding. We do not support plus and minus
rounding modes as the compiler never generates the relevant instructions.

We observed that the occ21 compiler only ever generates a rounding mode change in-
struction directly prior to a conversion instruction. Thus instead of generating LLVM code
for the mode change instruction we tag the proceeding instruction with the new mode. Hence
mode changes become static at the point of translation and can be optimised by LLVM, al-
though this was not done for the purposes of optimisation.

3. Benchmarks

In this section we discuss preliminary benchmark results comparing the output of the existing
tranx86 ETC converter, to the output of our translation tool passed through LLVM’s optimiser
(opt) and native code generator (llc). These benchmarks were performed using source code
as-is from the KRoC subversion repository revision 6002 1, with the except of the mandelbrot
benchmark from which we removed the frame rate limiter.

Table 1 shows the wall-clock execution times of the various benchmarks we will now
discuss. All our benchmarks were performed on an eight core Intel Xeon workstation com-
posed of two E5320 quad-core processors running at 1.86GHz. Pairs of cores share 4MiB of
L2 cache, giving a total of 16MiB L2 cache across eight cores.

Table 1. Benchmark execution times, comparing tranx86 and LLVM based compilations.

Benchmark tranx86 (s) LLVM (s) Difference (tranx86→ LLVM)
agents 8 32 29.6 27.6 -7%
agents 8 64 91.8 86.5 -6%
fannkuch 1.29 1.33 +3%
fasta 6.78 6.90 +2%
mandelbrot 27.0 8.74 -68%
ring 250000 3.84 4.28 +12%
spectralnorm 23.1 14.3 -38%

3.1. agents

The agents benchmark was developed to compare the performance of the CCSP runtime [7]
to that of other language runtimes. It is based on the occoids simulation developed as part of

1http://projects.cs.kent.ac.uk/projects/kroc/trac/log/kroc/trunk?rev=6002

the CoSMoS project [20]. A number of agent processes move over a two-dimensional torus
avoiding each other, with their behaviour influenced by the agents they encounter. Each agent
calculates forces between itself and other agents it can see using only integer arithmetic. The
amount of computation increases greatly with the density of agents and hence we ran two
variants for comparison. One with 32 initial agents per grid tile on an eight by eight grid,
giving 2048 agents, and the other with double the density at 4096 agents on the same size
grid. We see a marginal performance improvement in the LLVM version of this benchmark,
we attribute this to LLVMs aggressive optimisation of the computation loops.

3.2. fannkuch

The fannkuch benchmark is based on a version from The Computer Language Benchmarks
Game [21,22]. The source code involves a large numbers of reads and writes to relatively
small arrays of integers. We notice a very small decrease in performance in the LLVM version
of this benchmark. This may be the result of tranx86 generating a more efficient instruction
sequence for array bounds checking.

3.3. fasta

The fasta benchmark is also taken from The Computer Language Benchmarks Game. A set
of random DNA sequences is generated and output, this involves array accesses and floating-
point arithmetic. Again, like fannkuch, we notice a negligible decrease in performance and
attribute this to array bounds checks.

3.4. mandelbrot

We modified the occam-π implementation of the mandelbrot set generator in the ttygames

source directory to remove the frame rate limiter and used this as a benchmark. The imple-
mentation farms lines of the mandelbrot set image to 32 worker processes for generation,
and buffers allow up to eight frames to be concurrently calculated. The complex number
calculations for the mandelbrot set involve large numbers of floating point operations, and
this benchmark demonstrates a vast improvement in LLVM’s floating-point code generator
over tranx86. FPU instructions are generated by tranx86, whereas LLVM generates SSE in-
structions, the latter appear to be more efficient on modern x86 processors. Additionally, as
we track the rounding mode at the source level (see section 2.5.3) we do not need to gen-
erate FPU mode change instructions, which may be disrupting FPU pipelining of tranx86
generated code.

3.5. ring

Another CCSP comparison benchmark, this sets up a ring of 256 processes. Ring processes
receive a token, increment it, and then forward it on to the next ring node. We time 250,000
iterations of the ring, giving 64,000,000 independent communications. This allows us to cal-
culate the communication times of tranx86 and our LLVM implementation at 60ns and 67ns
respectively. We attributed the increase in communication time to the additional instructions
required to unwind the stack when returning from kernel calls in our implementation. The
tranx86 version of CCSP does not return from kernel calls (it dispatches the next process
internally).

3.6. spectralnorm

The final benchmark from The Computer Language Benchmarks Game. This benchmark
calculates the spectral norm of an infinite matrix. Matrix values are generated using floating-

Table 2. Binary text section sizes, comparing tranx86 and LLVM based compilations.

Benchmark tranx86 (bytes) LLVM (bytes) Difference (tranx86→ LLVM)
agents 16410 36715 +124%
fannkuch 3702 5522 +49%
fasta 5134 10494 +104%
mandelbrot 6098 12865 +111%
ring 3453 6716 +94%
spectralnorm 4065 6318 +55%

point arithmetic by a function which is called from a set of nested loops. The significant
performance improvement with LLVM can be attributed to its inlining and more efficient
floating-point code generation.

3.7. Code Size

Table 2 shows the size of the text section of the benchmark binaries. We can see that the
LLVM output is typically twice the size of the equivalent tranx86 output. It is surprising that
this increase in binary size does not adversely affect performance, as it increases the cache
pressure. As an experiment we passed a −code−model=small option to LLVM’s native code
generator; however, this made no difference to binary size. Some of the increase in binary
size may be attributed to the continuation dispatch code which is inlined within the resulting
binary, rather than as part of the runtime kernel as with tranx86. The fannkuch and spectral-
norm benchmarks make almost no kernel calls, therefore contain very few continuation dis-
patches, and accordingly show the least growth. Another possibility is LLVM aggressively
aligning instructions to increase performance. Further investigation is required to establish
whether binary size can be reduced, as it is of particular concern for memory constrained
embedded devices.

4. Conclusions and Future Work

In this preliminary work we have demonstrated the feasibility of translating the ETC output
of the present occam-π compiler into the LLVM project’s assembly language. With associ-
ated changes to our runtime kernel this work provides a means of compiling occam-π code
for platforms other than X86. We see this work as a stepping stone on the path to direct com-
pilation of occam-π using LLVM assembly as part of a new compiler, Tock [23]. In particular,
we have established viable representations of processes and a kernel calling convention, both
fundamental details of any compiled representation of occam-π.

The performance of our translations compares favourably with that of previous work (see
section 3). While our kernel call mechanism is approximately 10% slower, loop unrolling en-
hancements and dramatically improved float-point performance offset this overhead. Typical
applications are a mix of communication and computation, which should help preserve this
balance. The occ21 compiler’s memory bound model of compilation presents an underlying
performance bottleneck to translation based optimisation such as the one presented in this
paper. This is a legacy of the Transputer’s limited number of stack registers, and it is our in-
tention to overcome this in the new Tock compiler. The ultimate aim of our work is to directly
compile occam-π to LLVM assembly using Tock, bypassing ETC entirely.

Aside from the portability aspects of this work, access to an LLVM representation of
occam-π programs opens the door to exploring concurrency specific optimisations within an
established optimisation framework. Interesting optimisations, such as fusing parallel pro-

cesses using vector instructions and removing channel communications in linear pipelines,
could be implemented as LLVM passes. LLVM’s bytecode has also been used for various
forms of static verification, a similar approach many be able to verify aspects of a compiled
occam-π program such as the safety of its access to mobile data. Going further, it is likely that
LLVM’s assembly language may benefit from a representation of concurrency, particularly
for providing information to concurrency related optimisations.

Acknowledgements

This work was funded by EPSRC grant EP/D061822/1. We also thank the anonymous re-
viewers for comments which helped us improve the presentation of this paper.

References

[1] David A. P. Mitchell, Jonathan A. Thompson, Gordon A. Manson, and Graham R. Brookes. Inside The
Transputer. Blackwell Scientific Publications, Ltd., Oxford, UK, 1990.

[2] INMOS Limited. The T9000 Transputer Instruction Set Manual. SGS-Thompson Microelectronics, 1993.
Document number: 72 TRN 240 01.

[3] Michael D. Poole. occam-for-all – Two Approaches to Retargeting the INMOS occam Compiler. In
Brian O’Neill, editor, Parallel Processing Developments – Proceedings of WoTUG 19, pages 167–178,
Nottingham-Trent University, UK, March 1996. World occam and Transputer User Group, IOS Press,
Netherlands.

[4] Kent Retargetable occam Compiler. (http://projects.cs.kent.ac.uk/projects/kroc/trac/).
[5] Michael D. Poole. Extended Transputer Code - a Target-Independent Representation of Parallel Programs.

In Peter H. Welch and A.W.P.Bakkers, editors, Architectures, Languages and Patterns for Parallel and
Distributed Applications, volume 52 of Concurrent Systems Engineering, Address, April 1998. WoTUG,
IOS Press.

[6] Frederick R.M. Barnes. tranx86 – an Optimising ETC to IA32 Translator. In Alan Chalmers, Majid
Mirmehdi, and Henk Muller, editors, Communicating Process Architectures 2001, number 59 in Concur-
rent Systems Engineering Series, pages 265–282. IOS Press, Amsterdam, The Netherlands, September
2001.

[7] Carl G. Ritson, Adam T. Sampson, and Frederick R. M. Barnes. Multicore Scheduling for Lightweight
Communicating Processes. In John Field and Vasco Thudichum Vasconcelos, editors, Coordination Mod-
els and Languages, 11th International Conference, COORDINATION 2009, Lisboa, Portugal, June 9-12,
2009. Proceedings, volume 5521 of Lecture Notes in Computer Science, pages 163–183. Springer, June
2009.

[8] Peter H. Welch and David C. Wood. The Kent Retargetable occam Compiler. In Brian O’Neill, edi-
tor, Parallel Processing Developments – Proceedings of WoTUG 19, pages 143–166, Nottingham-Trent
University, UK, March 1996. World occam and Transputer User Group, IOS Press, Netherlands.

[9] Christian L. Jacobsen and Matthew C. Jadud. The Transterpreter: A Transputer Interpreter. In Dr. Ian R.
East, Prof David Duce, Dr Mark Green, Jeremy M. R. Martin, and Prof. Peter H. Welch, editors, Commu-
nicating Process Architectures 2004, volume 62 of Concurrent Systems Engineering Series, pages 99–106.
IOS Press, September 2004.

[10] Christian L. Jacobsen. A Portable Runtime for Concurrency Research and Application. PhD thesis,
Computing Laboratory, University of Kent, April 2008.

[11] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Optimization. Master’s thesis, Computer Science
Dept., University of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002.

[12] LLVM Project. (http://llvm.org).
[13] Rich Hickey. The Clojure Programming Language. In DLS ’08: Proceedings of the 2008 Symposium on

Dynamic Languages, pages 1–1, New York, NY, USA, 2008. ACM.
[14] Michel Schinz. Compiling Scala for the Java Virtual Machine. PhD thesis, Institut d’Informatique Fon-

damentale, 2005.
[15] David May. Communicating Process Architecture for Multicores. In Alistair A. McEwan, Wilson Ifill,

and Peter H. Welch, editors, Communicating Process Architectures 2007, pages 21–32, jul 2007.
[16] LLVM Language Reference Manual. (http://www.llvm.org/docs/LangRef.html).

[17] John C. Reynolds. The discoveries of continuations. Lisp and Symbolic Computation, 6(3-4):233–248,
1993.

[18] David C. Wood. KRoC – Calling C Functions from occam. Technical report, Computing Laboratory,
University of Kent at Canterbury, August 1998.

[19] Damian J. Dimmich and Christan L. Jacobsen. A Foreign Function Interface Generator for occam-pi. In
J. Broenink, H. Roebbers, J. Sunter, P. Welch, and D. Wood, editors, Communicating Process Architectures
2005, pages 235–248, Amsterdam, The Netherlands, September 2005. IOS Press.

[20] Paul Andrews, Adam T. Sampson, John Markus Bjørndalen, Susan Stepney, Jon Timmis, Douglas Warren,
and Peter H. Welch. Investigating patterns for process-oriented modelling and simulation of space in
complex systems. In S. Bullock, J. Noble, R. A. Watson, and M. A. Bedau, editors, Proceedings of the
Eleventh International Conference on Artificial Life, Cambridge, MA, USA, August 2008. MIT Press.

[21] The Computer Language Benchmarks Game. (http://shootout.alioth.debian.org/).
[22] Kenneth R. Anderson and Duane Rettig. Performing lisp analysis of the fannkuch benchmark. SIGPLAN

Lisp Pointers, VII(4):2–12, 1994.
[23] Tock Compiler. (http://projects.cs.kent.ac.uk/projects/tock/trac/).

