
occam on the Arduino

Adam T. Sampson
School of Computing, University of Kent

Matt C. Jadud
Department of Computer Science, Allegheny College

Christian L. Jacobsen
Department of Computer Science, University of Copenhagen

also featuring photos by:
Maja Sweeny

Finding a platform

● We merged the Transterpreter into the KRoC
tree a while ago, but we've only worked on one
port recently – the Surveyor robot

● The Surveyor costs $400, and is cute but not
terribly robust

● Other ports we've done in the past (the Pioneer,
the Lego Mindstorms, and various one-off robots)
have been similarly expensive

The Arduino

● Family of AVR-based development boards
● Costs $25

– Cheaper in bulk

● Open-source hardware and software
– Anyone can build their own Arduino variants – and

lots of people have done

– Simple bootloader

– Simple IDE

● Huge community – http://www.arduino.cc/

The plan

● Port the Transterpreter to the Arduino
– ... which is really “port it to the AVR processor”

● Provide a toolkit of processes for people to build
interesting things with
– The Arduino's C++ library is called Wiring...

– ... so our occam library is called Plumbing

● Write a book that introduces students to
embedded programing with Plumbing
– Primarily aimed at non-techies – lots of artists and

musicians use Arduinos

Squeezing occam into not much space

● The ATmega328P on the Arduino is a reasonably
typical low-cost microcontroller
– 32KiB flash, 2KiB RAM

– 16MHz, 16-bit (effectively) CPU

– Lots of IO facilities: ports, timers, interrupts, UARTs,
ADCs...

– Just the chip costs $4

● We use the normal occam-on-a-small-machine
tricks: use 16-bit mode, disable most -pi features

Nonetheless, we have the will!

● The AVR is a Harvard-architecture design
– Separate address spaces for instructions and data

● By default, the AVR C compiler copies data from
flash into RAM on startup

● We implemented a virtual memory backend for
the Transterpreter so we can keep TVM
bytecode in flash
– ... and a trimmed-down bytecode loader to support it

– Room for ~14KiB of bytecode at the moment

Loading programs

● The Arduino comes with a bootloader that lets
you upload chunks of data into flash over the
USB port – that's what makes it an Arduino!

● The USB interface is quite slow, so it's a pain
having to upload the Transterpreter every time
you change your program...

● ... so we've fixed it so you don't have to
● We use the existing bootloader; the Arduino is

still an Arduino

And just about that time she calls me up

● Handling interrupts in occam is an interesting
problem – but we have to do it!

● Carl and Jon had come up with a scheme to map
interrupts to channels on the Surveyor that
worked, but was too memory-hungry for our
purposes
– The AVR has lots of interrupts and very little RAM

● Came up with an approach that only needs two
words per interrupt – works nicely
– ... after some subtle debugging

Success!

● The traditional Arduino demo is to blink the built-
in LED on and off
– Easy to do in occam, of course...

● Of course, since this is occam, we can blink all
the IO lines on and off in parallel, at different
rates
– This is extremely hard to do in C++!

● We’ve also done: buttons, serial
communications, ADC, pin change interrupts...

64 LEDs (well, 128, actually...)

A real application

● 8x8 LED matrix
– 8 rows and 8 columns, with an LED at each vertex

– The AVR isn't really designed to drive that many
LEDs directly off its IO pins, but it does work...

● Need to scan reasonably fast to draw graphics
● Need to buffer data as it's passed along the

display

One

How does that work?

buffer buffer buffer buffer...

How does that work?

buffer buffer buffer buffer...

column column column column...

How does that work?

buffer buffer buffer buffer...

column column column column...

source black.
hole

Distributed embedded system

buffer buffer buffer buffer...

column column column column...

source black.
hole

First node

buffer buffer buffer buffer...

column column column column...

source serial.txserial.tx

Other nodes

buffer buffer buffer buffer...

column column column column...

serial.rx serial.txserial.tx

The RepRap

● Homebrew 3D printer
– Builds up 3D models layer by layer in ABS plastic

● Controlled by an Arduino board
● The existing firmware is complete rubbish
● Matt plans to get a student to reimplement it in

occam using the Transterpreter...

Any questions?

PARPAR

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

