
Toward Process Architectures
for Behavioural Robotics

Jon Simpson
J.Simpson@kent.ac.uk
School of Computing, University of Kent.

mailto:j.simpson@kent.ac.uk
mailto:j.simpson@kent.ac.uk


How should we structure process-oriented 
behavioural control programs?



Architectures for behavioural robotics in the 
context of process-oriented programming.



Distil design principles and components for 
behavioural control via process architectures.



Behavioural robotics.
Behaviour-based AI uses a modular decomposition of the 
system’s intelligence into, generally, a three-layer system.



Three-layer systems.
Deliberative & reactive components, co-ordinated by and

co-existing with a support layer.



Behavioural robotics requires concurrency.
Use a concurrent language for implementation.



occam-pi
Process-oriented programming language.

Runtime support for small robotics platforms.
Surveyor SRV-1, Mindstorms RCX, IPRE Scribbler, Pioneer 3-DX.



Process-oriented programming.
Networks of concurrent processes communicating 
synchronously via channels.





Architectures
Principles and methodologies for complexity management in 
system development.



Previous Work
- Subsumption Architecture in occam-pi (2006)

- Visual Process-oriented Programming for Robotics (2008)



Subsumption Architecture
Brooks (1984, 1986)



Subsumption Architecture
Communicating modules form ‘levels of competence.’

Suppression of inputs and inhibition of outputs.



Detect objects, turn away from them.

Move into space, stop if a collision will occur.

min.distance prevent.collision

object.detect pivot

motor.control
S
10



Detect objects, turn away from them.

Move into space, stop if a collision will occur.

min.distance prevent.collision

object.detect pivot

motor.control
S
10



Move forward if there is an obstruction behind.

Detect objects, turn away from them.

Move into space, stop if a collision will occur.

min.distance prevent.collision

object.detect pivot

space.behind

laser.scanner

sonar.ring

motor.control
S
10

I
1



Benefits
Inhibitor and suppressor primitives.

Structural layers of behaviour modules.



Problems
Tight layer interactions negatively effect scalability.

Modules spy on lower modules, creating hidden 
dependencies.

Rich process implementation versus state machines.



Colony Architecture
Connell (1987)



Colony Architecture
Refinement of the subsumption architecture.

Layers not strictly hierarchical.

No inhibition, only suppression at behaviour edges.



Colony Architecture
Improves scalability, allowing only behaviour interactions.

Changes fed back into a later revision of Subsumption.



Action-Selection
Maes (1989)



Action Selection
Modules controlled via activation levels.

Primed depending on action and the environment.



Drive forward

Is there space in front?

Turn left

Goal: Navigate space 

activation

activation



Drive forward

Is there space in front?

Turn left

Goal: Navigate space 

activation

activation



Drive forward

Is there space in front?

Turn left

Goal: Navigate space 

activation

activation



Action Selection
Interesting, but leads to highly connected networks.

Simplest implementation uses a separate decision network.



Motor Schema
Arkin (1987)



Motor Schema
Perceptual schemata identify features and conditions in the 
environment, providing data to motor schema.

Motor schemata control the motion or activity of the robot.

Groupings of the two are known as assemblages.



Planner State

detect.tilt balance

! 
motor.sum

detect.obstacles avoid.obstacle

detect.lateral.motion

detect.approach

Planner

Active planner task: Move toward moving object on lateral motion.

motion.track move.toward

Inactive planner task: Back away from something approaching

motion.track back.off

Key

perpetual schema

motor schema

active schema



Planner
Perceptual schemas build a state machine planner.

Planner can load assemblages based on conditions. 



Wait for 
motion

Back off

Move 
toward

Start

when approach = 0

approached

lateral motion

when lateral motion = 0



Motor Schemas
Design rules plus a ‘vector.sum’ primitive.

Separation between planning and sensing/acting.

State machines produce simple reasoning.



Distributed Architecture for Mobile Navigation
Rosenblatt (1995)



DAMN
Arbiters using voting to perform command fusion.

Weighting of votes can be fixed or altered using a mode 
manager for sequential action.



Modules

Seek lateral 
motion

Back off when 
approached Balance

Avoid
obstacles

DAMN Arbiter
Robot 

Controller

Move awayMove toward

Detect lateral 
motion

Detect 
approach

votes votes
commands



DAMN
Re-use from Motor Schemas of sensing and activity.

Connected between behaviours and arbiter.

Arbiter and control process take advantage of expressive 
processes.



Quantitative Evaluation
- Code metrics for solving specific tasks.

- Processes or LOC

- Good measures of complexity?



The Road Ahead
More behavioural architectures.
ATLANTIS (Gatt 1992), SSS (Connell 1992).

From process-orientation toward robot architectures.

Structures & tooling for visual programming.



Thank you.
Questions welcome.


