Toward Process Architectures for Behavioural Robotics

Jon Simpson
J.Simpson@kent.ac.uk
School of Computing, University of Kent.
How should we structure process-oriented behavioural control programs?
Architectures for behavioural robotics in the context of process-oriented programming.
Distil **design principles and components** for behavioural control via process architectures.
Behavioural robotics.

Behaviour-based AI uses a modular decomposition of the system’s intelligence into, generally, a three-layer system.
Three-layer systems.

Deliberative & reactive components, co-ordinated by and co-existing with a support layer.
Behavioural robotics requires concurrency.
Use a concurrent language for implementation.
occam-pi

Process-oriented programming language.
Runtime support for small robotics platforms.
Surveyor SRV-1, Mindstorms RCX, IPRE Scribbler, Pioneer 3-DX.
Process-oriented programming.

Networks of concurrent processes communicating synchronously via channels.
Architectures
Principles and methodologies for complexity management in system development.
Previous Work

Subsumption Architecture
Brooks (1984, 1986)
Subsumption Architecture

Communicating modules form ‘levels of competence.’

Suppression of inputs and inhibition of outputs.
Move into space, stop if a collision will occur.

- min.distance
- prevent.collision
- motor.control

Detect objects, turn away from them.

- object.detect
- pivot
Move into space, stop if a collision will occur.

- min.distance
- prevent.collision

Detect objects, turn away from them.

- object.detect
- pivot

motor.control
Move forward if there is an obstruction behind.

Detect objects, turn away from them.

Move into space, stop if a collision will occur.

laser.scanner

min.distance → prevent.collision

object.detect → pivot

space.behind

motor.control

S

10

I

1
Benefits

Inhibitor and suppressor primitives.

Structural layers of behaviour modules.
Problems

Tight layer interactions negatively effect scalability. Modules *spy* on lower modules, creating *hidden* dependencies.

Rich process implementation versus state machines.
Colony Architecture
Connell (1987)
Colony Architecture

Refinement of the subsumption architecture.
Layers not strictly hierarchical.
No inhibition, only suppression at behaviour edges.
Colony Architecture

Improves scalability, allowing only *behaviour* interactions. Changes fed back into a later revision of Subsumption.
Action-Selection
Maes (1989)
Action Selection

Modules controlled via activation levels.

Primed depending on action and the environment.
Drive forward

Is there space in front?

Turn left

Drive forward

activation

Goal: Navigate space
Is there space in front?

Goal: Navigate space

Turn left

Drive forward
Drive forward

Is there space in front?

Turn left

activation

Drive forward

activation

Goal: Navigate space
Action Selection

Interesting, but leads to highly connected networks. Simplest implementation uses a separate decision network.
Motor Schema

Arkin (1987)
Motor Schema

Perceptual schemata identify features and conditions in the environment, providing data to motor schema. Motor schemata control the motion or activity of the robot. Groupings of the two are known as assemblages.
Active planner task: Move toward moving object on lateral motion.

Inactive planner task: Back away from something approaching.
Planner

Perceptual schemas build a state machine planner. Planner can load assemblages based on conditions.
Wait for motion

- Start
- Wait for motion
 - when approach = 0 → Back off
 - approached → Wait for motion
 - when lateral motion = 0 → Move toward
Motor Schemas

Design rules plus a ‘vector.sum’ primitive.
Separation between planning and sensing/acting.
State machines produce simple reasoning.
Distributed Architecture for Mobile Navigation

Rosenblatt (1995)
Arbiters using voting to perform command fusion. Weighting of votes can be fixed or altered using a mode manager for sequential action.
DAMN Arbiter

- Seek lateral motion
 - Move toward
 - Detect lateral motion
- Back off when approached
 - Move away
 - Detect approach
- Balance
- Avoid obstacles

 Commands flow to Robot Controller.
DAMN
Re-use from Motor Schemas of sensing and activity.
Connected between behaviours and arbiter.
Arbiter and control process take advantage of expressive processes.
Quantitative Evaluation

- Code metrics for solving specific tasks.
 - Processes or LOC
 - Good measures of complexity?
The Road Ahead

More behavioural architectures.

From process-orientation toward robot architectures.

Structures & tooling for visual programming.
Thank you.

Questions welcome.