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Abstract. Building robot control programs which function as intended is a challenging
task. Roboticists have developed architectures to provide principles, constraints and
primitives which simplify the building of these correct, well structured systems. A
number of established and prevalent behavioural architectures for robot control make
use of explicit parallelism with message passing. Expressing these architectures in
terms of a process-oriented programming language, such as occam-, allows us to
distil design rules, structures and primitives for use in the development of process
architectures for robot control.
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Introduction

Robotics is inherently a concurrent problem: watching many sensors, and driving many ef-
fectors to sense and interact with the world. The ability to write control programs using par-
allelism is desirable, as it allows us to maintain the concurrent aspects of robot behaviour,
without having to serialise the tasks required. It is natural to think about control tasks in the
real world in parallel, and in unwinding these thoughts to a sequential control loop, mental
overhead is added.

Control tasks within robot systems fall into one of two categories: reactive and deliber-
ative. Reactive control involves the tight coupling of sensing and action to provide fast re-
sponses where action is critical and is somewhat analogous to the reflexes present in humans.
Deliberative control involves tasks which require more extensive computation or sensing be-
fore action can take place, generally involving plans and state e.g. generating and maintaining
a path to a given way-point, or feature identification of the world using camera data.

Most robot control programs are ‘hybrid’ systems, with reactive and deliberative be-
haviour layers along with a third layer performing arbitration and co-ordination [1]. This
combination of reactive and deliberative components allows for both high-level planning
and fast reaction to important stimuli from the environment. For example, a robot might be
equipped with a deliberative path planner, which uses a pre-supplied map of its environment
to calculate a safe path to the destination. This planner would work alongside a reactive com-
ponent which works to avoid obstacles encountered trying to follow way points generated
by the path planner. The third layer would act to ensure that both the path planner and the
obstacle avoidance behaviour can influence the motion of the robot. Hybrid robot control
systems employ parallel computation to allow both the deliberative and reactive components
to be active at the same time. In addition, the reactive component may be internally parallel,
as the objective of reactive systems is keeping sensing and action close together, a model that
relies on critical information in the world not being missed.



Behavioural robotic control applies behaviour-based Al to robot control; using modu-
lar decomposition of the system’s intelligence to structure the behaviours which compose its
controls. Behaviour-based Al is heavily inspired by the agent-based decomposition of human
intelligence presented in Minsky’s Society of Mind [2]. Architectures for behavioural con-
trol act to support the development of the third, interfacing layer of systems, often providing
support for parallelism and communication between components. When writing a control
program using a language with explicit parallelism and message passing, these evolved and
widely used behavioural architectures provide a natural source of ideas for process architec-
tures.

We are specifically interested in the development of scalable process architectures for
robot control using the occam-7 programming language [3]. Using occam-7 allows us to har-
ness the Transterpreter, a portable virtual-machine developed expressly for running occam-7
programs on small embedded platforms [4]. We have used occam-7 for robot control suc-
cessfully on a variety of mobile robot platforms in the past, including the LEGO MindStorms
RCX [5], Surveyor SRV-1 [6] and Pioneer 3-DX [7], with additional support now added for
the LynxMotion AH3-R ‘Hexapod’ walking robot [8]. In light of this growing availability of
process-orientation on robotics platforms, we consider it valuable to explore traditional be-
havioural architectures in this context. The techniques developed for use in occam-7 may also
be applicable to robotic control in other process-oriented languages or language extensions
such as JCSP [9], PyCSP [10] and gCSP [11].

In this paper we will elucidate, implement primitives for and compare a number of sem-
inal behavioural control architectures in the context of their application in process archi-
tectures for robot control. Section 2 examines Brooks’ Subsumption Architecture, with fol-
lowing sections 3, 4 and 5 dealing with the Connell’s Colony Architecture, Maes’ Action-
Selection and Arkin’s Motor Schemas respectively. Finally, in section 6 we will examine
Rosenblatt’s Distributed Architecture for Mobile Control (DAMN). After looking at each
architecture in turn we conclude in section 7 and identify future extensions to this work in
section 8.

1. Platforms

The implementation examples in this paper make reference to two robot platforms, the Pi-
oneer 3-DX from Mobile Robots, Inc [12] and the AH-3R ‘Hexapod’ walking robot from
LynxMotion [8].

The Pioneer 3-DX is a two wheeled robot mobile platform fitted with a ring of 16 sonar
sensors covering its circumference. A SICK laser range-finder is also fitted, covering a for-
ward 180 degree arc with a scan distance of eight meters. On-board computation is provided
by a 700MHz PC104 board running Debian GNU/Linux.

The LynxMotion AH3-R ‘Hexapod’ is, as its name would suggest, a six legged walking
robot. Each leg is roughly 60 degrees apart and driven by three servos, giving it three degrees
of freedom: swinging forward or backward, raising or lowering, and extending or contracting.
The Hexapod is fitted with ultrasound range finders on a rotating turret covering 360 degrees
around the robot, controlled by an Arduino based micro-controller. There are also two tilt
sensors, mounted at 90 degrees on the robot’s body and pressure sensors on each of the
robot’s feet. The robot is controlled via a serial link to a host PC.

2. Subsumption Architecture

Brooks’ Subsumption Architecture [13] was one of the first behavioural control systems, al-
lowing robot programs to be expressed as a hierarchy of levels of competence which interact



with each other to control the robot. Subsumption uses a network of finite state machines
known as “behaviours”, along with asynchronous message passing over ‘wires’ between in-
put and output “ports”. Behaviours output values to a port and the most recent value output
to that port is available for input to the receiver constantly, essentially providing a memory
cell located in front of the port into which values are written. Behaviours are grouped into
increasing levels of competence, with each level able to tap into wires in lower levels and
suppress inputs and inhibit outputs as required.
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Figure 1. A behaviour module for a Subsumption Architecture, with a suppressor on an input line and an
inhibitor on an output line.

Two key primitives are used in Subsumption to allow other behaviours making up differ-
ent levels of competence to interact: suppression of inputs and inhibition of outputs. Higher
levels of competence replace the input to lower level modules or inhibit their output to pro-
duce the desired result. If a suppressor is placed at the input to a module, values from a sec-
ondary “suppression’” input may replace other input for a pre-defined period. If an inhibitor
is placed at the output of a module, a secondary “inhibitory” input can send a signal to block
all output from the module for a period of time. The diagrammatic representation of these
two Subsumption primitives is shown in Figure 1, with an I or S indicating inhibition or sup-
pression at the top of the circle and the activity period indicated by the number at the bottom.
A more comprehensive explanation of these primitives, including code listings is available
in [7].

2.1. Implementation

In Brooks’ original implementation, these communicating state machines are compiled along
with a scheduler which supports behaviours running concurrently on a single processor and
in parallel across multiple processors. The ability to mix both simulated and real parallelism
via a software scheduler was exploited in Brooks’ six-legged walking robot “Genghis,” which
had a control system consisting of 57 finite state machines running on just four proces-
sors [14].

Process-oriented programming provides an advantage when implementing control pro-
grams using the Subsumption Architecture, as it gives us independent, parallel processes with
message passing from which to build the Subsumption primitives. The authors have previ-
ously implemented these primitives in occam-7 and used them successfully to construct a
basic program to ‘bump and wander’; navigating safely within an enclosed space [7].

The process network for a simple robot control program written using the Subsumption
Architecture in occam-7 is shown in Figure 2. This program is written to run on the the
Pioneer 3-DX robot platform, as previously described in section 1. Our example program has
three levels of competence, the first of which is to move into space and execute an emergency
stop if it gets too close to any object, providing a degree of safety to the robot’s motion.
The second level of competence detects objects in the centre of the laser scanners’ field
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Figure 2. A Subsumption Architecture-based bump and wander program for a robot with three levels of com-
petence.

(i.e. directly in front of it) and backs the robot up while turning, to avoid them. This level
upgrades the control system from simply driving into an area until it stops due to proximity
to actually being able to navigate around the space. However, as the robot’s emergency stop
behaviour uses the laser range-finder at the front, the robot might back into walls while trying
to avoid obstacles in tight spaces. Our third level uses the sonar sensors at the back of the
robot to determine if there is space for the robot to back up. If there is no room, it inhibits the
outputs from the module attempting to back the robot up and allows the lower-level forward
driving behaviour to take over. This three competence network allows the robot to perform
multi-point turns simply by engaging its “back up and turn” and lower level “go forward”
behaviours alternately, with no explicit statement of the composite action.

Scaling this early model of Subsumption to larger systems poses difficulties. Increasingly
complex interdependencies form as higher levels of competence intercept values being passed
between individual modules in lower levels, replacing their input or inhibiting output. In his
specification of the Colony Architecture (see Section 3), Connell identifies that Subsumption
requires a holistic view and correct behavioural decomposition from the very beginning of
design so as to offer the correct inputs and outputs for higher layers to interact with. A later
revision to the Subsumption Architecture incorporates a number of changes which attempt
to resolve these problems, changing the functioning of inhibition and suppression to require
frequent communication and short delay periods [14]. These changes have been implemented
in our versions of the Subsumptive primitives and further enhance the suitability of these
primitives when using a paradigm that supports message passing.

3. Colony Architecture

Connell’s Colony Architecture is a refinement on the early Subsumption Architecture which
removes explicit inhibition and replaces it with predicates inside the behaviour modules,
allowing only suppression of outputs in lower level behaviours [15]. The Colony Architecture
uses a “soup” of modules which are related to one another by the actuator they control,
rather than a layered ordering across the system. Unlike Subsumption, additional layers do
not necessarily increase in competence; we might introduce modules in a higher layer which
provide more general solutions to lower-level control problems for cases where more specific
lower-level modules cannot establish the correct action to take. The Colony Architecture
removes the Subsumption’s ability to “spy” on inputs and replace outputs of internal modules



in lower layers, enhancing the system’s modularity by only allowing the input and output of
entire layers of behaviour to interact.

The Colony Architecture was used on a multi-processor robot which could also run pro-
grams written for the Subsumption Architecture. This multiprocessor robot used 24 loosely-
coupled processors to run a system with over 41 behaviours, with software scheduling like
that of Brooks’ to run multiple behaviours per processor. Both Brooks and Connell identified
that the explicit parallelism of behaviours allowed the control system to scale through the ad-
dition of more processors, maintaining reactivity and performance even with the introduction
of more behaviours.

3.1. Implementation

The Colony Architecture uses very similar primitives to the Subsumption Architecture by
virtue of being based on it. A retriggerable monostable primitive is added, which is used
when an event (defined as a single point of activity which does not persist in the environment)
should trigger a behaviour. The detection of these events is performed using initiation and
satisfaction predicates, which set the monostable true or false depending on the condition of
the event. The monostable itself maintains a true value for a period of time, but eventually
resets itself if not reset by the satisfaction predicate, acting much like a piece of memory
with a watchdog timer. The monostable is used to persist the point state from the environ-
ment, allowing it to have time to influence the system even if the state ceases to exist in the
environment.

Modifications to the Subsumption primitives involve both inhibition and suppression re-
quiring continued sending of messages over the control channels. Early Subsumption tended
to use a single message and long delays, whereas the Colony Architecture and Brooks’ later
Subsumption both use short delays with regular messaging along the control channel.

4. Action-Selection

Maes’ Action-Selection architecture relies on a network of independent competence modules
and the use of activation levels to control which modules are executed [16,17]. Activation
levels in the network are propagated such that an executable module primes modules which
can run after it in a task, while a non-executable module will prime those which run before
it, causing activation to pool in the first behaviour in a task which is suitable for execution.
Inhibition, or “conflictor” lines are connected between modules that oppose each other’s
behaviour, when a module with such a connection becomes active it inhibits the activation of
the other modules which would impede completion of its task.
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Figure 3. A set of Action-Selection competence modules to move within a space. Activation spread is accom-
plished via bi-directional connections between modules, as shown.



A simple example of Action-Selection is shown in Figure 3 on the previous page, a robot
control program which has a goal to navigate into space. The competence modules for this
program are “drive forward” and “turn left”, the “drive forward” module is preconditioned
on there being space in front of the robot. The goal “navigate space” raises the activation of
the “drive forward” module and it will become active, moving the robot forward. Once the
robot runs out of space in front of it, the “drive forward” module will become inactive, as
the “has space in front” precondition will become false. The “drive forward” behaviour will
then pass its activation on to the “turn left” module, causing a turn until the precondition for
“drive forward” becomes true once more (i.e. there is free space in front of the robot).

4.1. Implementation

Use of the Action-Selection mechanism in occam-7 is most easily achieved through the cre-
ation of a second decision-making network consisting of a number of ‘cells’ which propa-
gate the activation levels for each behaviour to calculate activation values for each cell. Cells
which have an activation level over their threshold can be activated if they are ‘executable’.
To be ‘executable’ all of a cell’s preconditions must be met, and the decision-making network
will therefore capture all of the preconditions to allow it to arbitrate between behaviours and
activate those that should be activated. These activated cells in the decision layer trigger the
execution of behaviours in the robot control system itself, and free those control behaviours
from having to incorporate the propagation of activation or management of preconditions.
Goals are connected into the decision layer after the last module in a behaviour that completes
them, and feed activation back through the modules responsible for completing the task until
it pools in the first task, raising it above the activation threshold.

Partly due to its inspiration from neural networks, the process architectures that result
from the implementation of Action-Selection are complex and require a second decision
network to make their implementation relatively neutral to behaviours.

5. Motor Schema

Arkin’s Motor Schema approach to control uses multiple concurrent schemas (behaviours)
active during the completion of a high level task [18]. Two types of schema are employed
in the architecture: motor and perceptual. Motor schemas are behaviours that control the
motion or activity of the robot, such as ‘stay on path’ or ‘avoid obstacles’. Perceptual schemas
identify features and conditions in the environment that provide data necessary for a given
motor schema to function, for example “find terrain” might supply a clear path vector to “stay
on path”. In Arkin’s system, multiple schemas may effect action at the same time, and these
actions are merged through vector addition of potential fields.

Groupings of perceptual and motor schemas which achieve a given task are known as
assemblages. Some assemblages may be present throughout the entire runtime of the con-
trol program, such as those that provide emergency stop or hazard avoidance facilities. Ad-
ditionally, a planner module may load and unload different assemblages based on the input
from the perceptual schemas connected to it. This mechanism provides effective re-use of
components, as we can re-use parameterised perceptual and motor schemas across multiple
assemblages.

To illustrate the Motor Schema approach, an example program is presented in Figure 4,
written for the LynxMotion AH3-R Hexapod robot [8] as described in section 1. The sample
program shown in Figure 4 has two assemblages which are loaded constantly: one to detect
body tilt (detect.tilt) and keep the robot level and another to detect obstacles in the path
of the robot (detect.obstacles) and generate a vector away from them. The planner is able
to load additional assemblages based on perceptual schemas which are connected to it. In this
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Figure 4. A motor-schema based control program to navigate a robot to investigate motion and run away if
approached.
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Figure 5. State machine of the planner for an example control program using Motor Schemas which investi-
gates motion and runs away if approached.

case we have two perceptual schemas connected to the planner: one to detect lateral motion
(detect.lateral.motion) which loads an assemblage to move towards (investigate) the
source of the motion, and another which loads an assemblage which backs away from the
source of the approach (detect.approach). The state machine for the planner is shown in
Figure 5.

Motor Schemas provide the reactive component of Arkin’s Autonomous Robot Architec-
ture (AuRA), which combines the aforementioned planner with a spatial reasoner and other



deliberative levels of function [19].
5.1. Implementation

The key primitive for the implementation of Motor Schemas is the vector sum, an imple-
mentation of which is shown in Listing 1. The example provided is suitable for controlling
motion in a 2D plane, it is straightforward to add more components to allow control in a 3D
space (x,y,z), allowing the system’s behaviours to influence height or tilt. The planner in a
Motor Schema based system is a custom-built state machine which uses perceptual schemas
to determine when to change between states.

PROTOCOL VECTOR IS REAL32; REAL32:

PROC motors (VAL []REAL32 gain, CHAN []VECTOR in?)
MOBILE []REAL32 x, y:

SEQ
x := MOBILE [SIZE in]REAL32
y := MOBILE [SIZE in]REAL32
SEQ i = 0 FOR SIZE in
x[1i], y[i] := 0.0, 0.0
WHILE TRUE

INITIAL REAL32 x.v IS 0.0:
INITIAL REAL32 y.v IS 0.0:
SEQ
ALT i = 0 FOR SIZE in
in[i] ? x[1]; yl[i]
SEQ
x[1] := x[1] * gain[i]
y[i] := y[i] * gain[i]
SEQ i
SEQ
X.V 1= X.v + x[1]
y. y.v + y[i]

0 FOR SIZE in

<
]

— drive motors

Listing 1. An occam-7 implementation of the vector sum primitive which allows for the control of motion in a
2D plane.

6. Distributed Architecture for Mobile Navigation (DAMN)

Rosenblatt’s Distributed Architecture for Mobile Navigation (DAMN) combines indepen-
dent, asynchronous modules with arbiters performing command fusion via a voting mecha-
nism [20]. The overall goals of the system are prioritised via the weighting of votes placed by
each module. Arbiters make a decision on the set of votes which have been received within
their time step. This provides asynchronous operation of system components and allows the
behaviours to be a mix of deliberative and reactive modules, emitting decisions at their natu-
ral rates. Arbiters in DAMN offer a set of commands to behaviours; a steering arbiter might
offer varying degrees of turn and the behaviour modules would then be able to vote on each
possibility. Votes made by behaviours are normalised, and the choice which has the highest
vote amount is chosen to occur.
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Figure 6. A DAMN based control program to navigate a robot to investigate motion and run away if ap-
proached. The arbiter sends commands to the robot itself based on the votes made by behaviours.

Arbiters may be connected to an adaptive mode manager, allowing the weighting of
different behaviours to be changed while the system is running. A mode manager such as
SAUSAGES altering the vote weightings allows for sequential action [21]. For example,
a robot might have a primary stage of operation where it locates all target objects (soda
cans, red balls etc.) and a secondary stage where it retrieves all of those target objects. A
mode manager would first weight highly all of those behaviours responsible for the target
finding abilities, then reduce those weights and increase those to the behaviours responsible
for retrieving the objects.

A sample program implemented using DAMN is shown in Figure 6. It performs the
same task as the earlier example implemented using a Motor Schema approach, using the
six-legged walker to approach moving objects and back away from objects that approach it.

6.1. Implementation

The development of DAMN-based robot control systems in occam-7 requires the implemen-
tation of ‘arbiter’ processes for each actuator to be controlled by the system. Each of these
arbiters will offer appropriate choices for actions to take with the actuator that they control
to the behaviour modules of the system.

7. Conclusions

Whilst examining a number of behavioural architectures in the light of process-orientation,
we have found a number of design strategies and primitives which “fit” well with our pro-
gramming model.

Brooks’ Subsumption Architecture has previously shown promise when used for
robotics in occam-7 [7], and the adaptations to rules introduced by Brooks’ later work involv-
ing the use of communication patterns to control inhibition and suppression further enhance
its suitability. A lack of modularity, identified by both the ourselves and authors of other re-
lated control systems mean that systems structured using the Subsumption architecture tend
to run into scaling problems. This is due to the tight bindings established between behaviours
inside the layers themselves.

Connell’s Colony Architecture deals with some of the scalability issues from Subsump-
tion, structuring behaviours around the effectors they control instead of into tight layers. This



structuring means that the suppressor becomes the main primitive, with priority hierarchies
of behaviour built up around the effectors. A major plus of the Colony Architecture is that
behaviours do not end up tightly bound to each other, allowing it to offer better scalability
than Subsumption.

Maes’ Action-Selection, being a neural network influenced approach is significantly dif-
ferent from the Subsumption and Colony architectures because it does not rely on message
passing or finite state machines in its definition. This architecture takes no advantage of the
communicating process model in the actual robot control code, which is not ideal for meshing
with other architectural components and process-oriented hardware interfaces. Additionally
the need to implement a separate neural network based decision layer from the actual robot
control processes and the highly connected nature of the decision layer makes implementa-
tion complex. In support of this view, Arkin notes in [22] that “no evidence exists of how
easily the current competence module formats would perform in real-world robotic tasks”,
due to lack of implementation on actual robot platforms.

Arkin’s Motor Schemas offer a method of command fusion which is simple and effec-
tive, matching with our typical use of process-orientation in robotic control and having flex-
ibility for the kinds of motion possible with different platforms. In the context of the wider
architecture AuRA, the finite-state machine based planner and re-use of perceptual schemas
make this approach to control modular and flexible, allowing both deliberative and reactive
behaviours to be expressed in the same way.

Where Motor Schemas offer a blending approach to resolving the action of many be-
haviours into one coherent choice, Rosenblatt’s DAMN allows the use of an arbitration-based
approach. Behaviours vote on potential actions and decide on the correct action to take via
a centralised arbiter, customised for the potential actions that can be taken for each effector.
DAMN provides a framework which can exploit message passing for decision making with-
out the implementation overhead and connection complexity of a neural network, whilst al-
lowing complete freedom to the internal structure of the voting behaviours. The asynchronous
nature of DAMN also allows a seamless combination of deliberative and reactive components
each working at their own frequency, with the relative proportion of their inputs able to be
counteracted through weighting. An AuRA-like planner or other mode manager could also
easily be used to provide sequential or adaptive behaviour, providing a coherent framework.

8. Future Work

This paper has reviewed and introduced a number of behavioural robotics architectures in
the context of process-oriented programming, specifically using occam-7. It would be highly
beneficial to implement a single control program using each architecture in turn, to provide
metrics for detailed comparison and evaluation of their process-oriented implementations.

The creation of a library and documentation providing primitives and development
methodologies for Subsumption, Colony, Motor Schema and DAMN architectures would
provide useful assistance in writing robotics programs using occam-7. Further exploration
of hybrid approaches, using multiple architectures in the homogenous process-oriented envi-
ronment may yield useful combinations for achieving particular goals.

The authors envisage that a unified library of components for building programs using
different architectures would be greatly beneficial in the context of a visual robotics program-
ming environment, such as that described in [23].

Architectures could be considered in the design of hardware interfaces to platforms for
use in process-oriented robotics. For example, effective use of DAMN could be achieved
via the provision of arbiters inside the hardware interface itself, building scalability and the
design paradigm in from the hardware up.



Having examined existing architectures for their suitability to process-oriented control,
it would be interesting to explore the development of systems that fully take advantage of
the language features present in occam-7 such as barriers and dynamic network creation.
Additionally, the development of architectures and design patterns which lend themselves to
modelling in CSP [24] and formal verification via tools such as Formal Methods” FDR [25]
may allow the creation of provably reliable control applications.
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