
OpenComRTOS a Runtime Environment for
Interacting Entities

Bernhard H.C. Sputh, Oliver Faust, Eric Verhulst,
and Vitaliy Mezhuyev

Altreonic N.V.
Linden Labs

Email: bernhard.sputh@altreonic.com

03.11.2009

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 1 / 33



1 Introduction
History of Altreonic
OpenComRTOS Fact-sheet

2 OpenComRTOS Programming Model
Tasks
Hubs
From Idea to Implementation

3 Performance of OpenComRTOS
Code Size Figures
Context Switch Performance
Interrupt Latency of an ARM Cortex M3

4 Conclusions

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 2 / 33



Outline

1 Introduction
History of Altreonic
OpenComRTOS Fact-sheet

2 OpenComRTOS Programming Model
Tasks
Hubs
From Idea to Implementation

3 Performance of OpenComRTOS
Code Size Figures
Context Switch Performance
Interrupt Latency of an ARM Cortex M3

4 Conclusions



History of Altreonic

Eonic (Eric Verhulst): 1989 – 2001
I Developed Virtuoso a Parallel RTOS (sold to Wind River Systems);
I Communicating Sequential Processes as foundation of the “pragmatic

superset of CSP”;

Open Licence Societey: 2004 – now
I R&D on Systems and Software Engineering;
I Unified Semantics & Interacting Entities;
I Formally developed OpenComRTOS;

Altreonic: 2008 – now
I Commercialisation of Open Licence Society Results;
I Based in Linden (near Leuven) Belgium;
I “Push the button – high reliability”: http://www.altreonic.com

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 4 / 33

http://www.altreonic.com


History of Altreonic

Eonic (Eric Verhulst): 1989 – 2001
I Developed Virtuoso a Parallel RTOS (sold to Wind River Systems);
I Communicating Sequential Processes as foundation of the “pragmatic

superset of CSP”;

Open Licence Societey: 2004 – now
I R&D on Systems and Software Engineering;
I Unified Semantics & Interacting Entities;
I Formally developed OpenComRTOS;

Altreonic: 2008 – now
I Commercialisation of Open Licence Society Results;
I Based in Linden (near Leuven) Belgium;
I “Push the button – high reliability”: http://www.altreonic.com

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 4 / 33

http://www.altreonic.com


History of Altreonic

Eonic (Eric Verhulst): 1989 – 2001
I Developed Virtuoso a Parallel RTOS (sold to Wind River Systems);
I Communicating Sequential Processes as foundation of the “pragmatic

superset of CSP”;

Open Licence Societey: 2004 – now
I R&D on Systems and Software Engineering;
I Unified Semantics & Interacting Entities;
I Formally developed OpenComRTOS;

Altreonic: 2008 – now
I Commercialisation of Open Licence Society Results;
I Based in Linden (near Leuven) Belgium;
I “Push the button – high reliability”: http://www.altreonic.com

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 4 / 33

http://www.altreonic.com


Interesting Facts about OpenComRTOS

CSP inspired Real-time Operating System;

Formally designed and developed;

Small code size (typically 5 – 10KiB);

Support for Systems composed out of different CPU Architectures;

Currently available Ports:
I Posix32/64
I Win32
I ARM Cortex M3
I Leon3
I Microblaze
I MLX-16
I XMOS (experimental under development)

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 5 / 33



Interesting Facts about OpenComRTOS

CSP inspired Real-time Operating System;

Formally designed and developed;

Small code size (typically 5 – 10KiB);

Support for Systems composed out of different CPU Architectures;

Currently available Ports:
I Posix32/64
I Win32
I ARM Cortex M3
I Leon3
I Microblaze
I MLX-16
I XMOS (experimental under development)

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 5 / 33



Outline

1 Introduction
History of Altreonic
OpenComRTOS Fact-sheet

2 OpenComRTOS Programming Model
Tasks
Hubs
From Idea to Implementation

3 Performance of OpenComRTOS
Code Size Figures
Context Switch Performance
Interrupt Latency of an ARM Cortex M3

4 Conclusions



OpenComRTOS Programming Model

Axioms:

Every Node / Processor has its own private memory;

Each OpenComRTOS Application is composed out of Interacting
Entities: Tasks (Threads) and Hubs (Generic Synchronisation
Primitive of OpenComRTOS).

All interactions between Tasks is decoupled over a Hub.

Nodes communicate over Links (unidirectional or bidirectional);

Each Node executes an instance of OpenComRTOS;

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 7 / 33



Tasks

Each Task in OpenComRTOS is prioritised. The Kernel-Task has the
highest Priority (1), the Idle-Task the lowest Priority (255).

Each Task has one Packet which it can use to request services.

Tasks, like Processes do not share memory.

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 8 / 33



Hub

One of the results of formal modelling of OpenComRTOS;

Can be specialised to represent: Events, Semaphores, FIFOs, Ports,
Resources, Mailbox, Memory-pools, etc;

A Hub has 4 functional parts:
I Synchronisation point between Tasks
I Stores task’s waiting state if needed
I Predicate function: defines synchronisation conditions and lifts waiting

state of tasks
I Synchronisation function: functional behaviour after synchronisation:

can be anything, including passing data

All HUBs operate system-wide, but transparently: Virtual Single
Processor programming model

Possibility to create application specific hubs & services! =⇒ a new
concurrent programming model

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 9 / 33



Hub

One of the results of formal modelling of OpenComRTOS;

Can be specialised to represent: Events, Semaphores, FIFOs, Ports,
Resources, Mailbox, Memory-pools, etc;

A Hub has 4 functional parts:
I Synchronisation point between Tasks
I Stores task’s waiting state if needed
I Predicate function: defines synchronisation conditions and lifts waiting

state of tasks
I Synchronisation function: functional behaviour after synchronisation:

can be anything, including passing data

All HUBs operate system-wide, but transparently: Virtual Single
Processor programming model

Possibility to create application specific hubs & services! =⇒ a new
concurrent programming model

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 9 / 33



Hub

One of the results of formal modelling of OpenComRTOS;

Can be specialised to represent: Events, Semaphores, FIFOs, Ports,
Resources, Mailbox, Memory-pools, etc;

A Hub has 4 functional parts:
I Synchronisation point between Tasks
I Stores task’s waiting state if needed
I Predicate function: defines synchronisation conditions and lifts waiting

state of tasks
I Synchronisation function: functional behaviour after synchronisation:

can be anything, including passing data

All HUBs operate system-wide, but transparently: Virtual Single
Processor programming model

Possibility to create application specific hubs & services! =⇒ a new
concurrent programming model

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 9 / 33



Available Task - Hub Interactions

W — Waiting, blocking behaviour, the Task will not be scheduled
unless the synchronisation occured.

NW: — Non waiting, if the other side is not ready to synchronise, the
operation is aborted and the Task rescheduled.

WT: — Waiting with Timeout, blocking until a certain time has
expired, then behaving like NW.

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 10 / 33



Available Task - Hub Interactions

W — Waiting, blocking behaviour, the Task will not be scheduled
unless the synchronisation occured.

NW: — Non waiting, if the other side is not ready to synchronise, the
operation is aborted and the Task rescheduled.

WT: — Waiting with Timeout, blocking until a certain time has
expired, then behaving like NW.

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 10 / 33



Available Task - Hub Interactions

W — Waiting, blocking behaviour, the Task will not be scheduled
unless the synchronisation occured.

NW: — Non waiting, if the other side is not ready to synchronise, the
operation is aborted and the Task rescheduled.

WT: — Waiting with Timeout, blocking until a certain time has
expired, then behaving like NW.

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 10 / 33



Available Task - Hub Interactions

W — Waiting, blocking behaviour, the Task will not be scheduled
unless the synchronisation occured.

NW: — Non waiting, if the other side is not ready to synchronise, the
operation is aborted and the Task rescheduled.

WT: — Waiting with Timeout, blocking until a certain time has
expired, then behaving like NW.

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 10 / 33



From Idea to Implementation

1 Define a topology;

2 Define the Tasks and Hubs;

3 Write the code for the Tasks;
4 Compile the project.

1 Generate the code representing the topology;
2 Generate the corresponding build system;
3 Compile the code for the individual nodes.

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 11 / 33



From Idea to Implementation

1 Define a topology;

2 Define the Tasks and Hubs;

3 Write the code for the Tasks;
4 Compile the project.

1 Generate the code representing the topology;
2 Generate the corresponding build system;
3 Compile the code for the individual nodes.

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 11 / 33



OpenVE

Separates Topology and Functionality;

Generates of Source Code as much as possible;

Supports heterogeneous systems, i.e. systems composed of nodes
with different CPU architectures and link technologies.

Generates configuration files for the OpenComRTOS code generators.

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 12 / 33



Defining a Topology with OpenVE

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 13 / 33



Defining the Entities and the Interactions

The user now adds the desired functionality to the generated code.



Defining the Program Logic



Building the Application

From the system description provided by OpenVE, the complete
Application is built in two steps:

1 Project Generation Phase:
I Routing Table for the individual Nodes;
I Makefile based build system to build the complete System
I Derives individual Node descriptions, from the system description.

2 Node Generation Phase:
I Generates the source code which creates the Tasks and Hubs of a Node
I Generates the IDs for the entities of a Node.
I Node specific build system (at present CMake based).

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 16 / 33



Building the Application

From the system description provided by OpenVE, the complete
Application is built in two steps:

1 Project Generation Phase:
I Routing Table for the individual Nodes;
I Makefile based build system to build the complete System
I Derives individual Node descriptions, from the system description.

2 Node Generation Phase:
I Generates the source code which creates the Tasks and Hubs of a Node
I Generates the IDs for the entities of a Node.
I Node specific build system (at present CMake based).

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 16 / 33



Diagnosis using the Tracing Capability

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 17 / 33



Outline

1 Introduction
History of Altreonic
OpenComRTOS Fact-sheet

2 OpenComRTOS Programming Model
Tasks
Hubs
From Idea to Implementation

3 Performance of OpenComRTOS
Code Size Figures
Context Switch Performance
Interrupt Latency of an ARM Cortex M3

4 Conclusions



Code Figures (SP) in Byte

Service MLX16 MB1 Leon3 ARM XMOS

L1 Hub shared 400 4756 4904 2192 4854
L1 Port 4 8 8 4 4
L1 Event 70 88 72 36 54
L1 Semaphore 54 92 96 40 64
L1 Resource 104 96 76 40 50
L1 FIFO 232 356 332 140 222
L1 PacketPool NA 296 268 120 166

Total 1048 5692 5756 2572 5414

1Xilinx MicroBlaze
Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 19 / 33



Measurement Setup I

Every Interaction a Task performs with a Service requires two context
switches:

1 From the User-Task to the Kernel-Task;
2 From the Kernel-Task to the User-Task;

In this loop there are 4 Interactions, thus a total of 8 context swiches
are performed by it.

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 20 / 33



Measurement Setup I

Every Interaction a Task performs with a Service requires two context
switches:

1 From the User-Task to the Kernel-Task;
2 From the Kernel-Task to the User-Task;

In this loop there are 4 Interactions, thus a total of 8 context swiches
are performed by it.

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 20 / 33



Measurement Setup I

void T1 (L1 TaskArguments Arguments){
2 L1 UINT32 i=0, start=0, stop=0;

while(1) {
4 start = L1 getElapsedCycles();

for (i = 0; i < 1000; i++){
6 L1 SignalSemaphore W(S1);

L1 TestSemaphore W(S2);
8 }

stop = L1 getElapsedCycles();
10 }
}

12

void T2 (L1 TaskArguments Arguments){
14 while(1) {

L1 TestSemaphore W(S1);
16 L1 SignalSemaphore W(S2);

}
18 }

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 21 / 33



Measurement Results

MLX16 MB Leon3

Clock speed 6MHz 100MHz 40MHz
Context size 4× 16bit 32× 32bit 32× 32bit
Memory loca-
tion

internal internal external

Loop time 100.8µs 33.6µs 136.1µs

ARM XMOS

Clock speed 50MHz 100MHz
Context size 16× 32bit 14× 32bit
Memory loca-
tion

internal internal

Loop time 52.7µs 26.8µs

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 22 / 33



Interrupt Latency of an ARM Cortex M3

Properties of the Development board used to measure the Interrupt
Latency:

CPU: LM3s6965 ARM
Cortex-MX 50MHz

64kiBi RAM

256 kiBi Flash

Timer / Counter counting clock
ticks;

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 23 / 33



What did we measure

1 IRQ to ISR Latency: The measured time indicates, how long it took
until the first useful instruction inside the ISR can be executed. This
means all OS specific work has been carried out already.

2 IRQ to Task Latency: The measured time indicates, how long it took
after an IRQ to occur until the the task designated to handle the IRQ
could execute the first useful instruction.

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 24 / 33



Latency Demo

Demo Time



How do we measure it?

1 Interrupt to measure is the Timer / Counter (auto reloading)
Interrupt, which is clocked with 50MHz, and fires every 1ms.

2 The ISR stores a copy of the counter value when it can perform the
first useful statement. I.e. the point in the execution of the ISR when
normal ISR thing can happen to make the hardware happy.

3 The ISR signals an Event-Hub, using non-waiting semantics, upon
which a Task waits.

4 ISR terminates and schedules the Kernel Loop.

5 Kernel Loop processes request to signal the Event, and then schedules
the Task waiting for this event.

6 Once running the Task reads in the counter value. Then it sends both
the IRQ to ISR Latency and the IRQ to Task Latency to the Port-Hub
located on the Windows Node.

7 The Task on the Windows Node retrieves the data from the Port-Hub
and then passes it on to a Display Application.



How do we measure it?

1 Interrupt to measure is the Timer / Counter (auto reloading)
Interrupt, which is clocked with 50MHz, and fires every 1ms.

2 The ISR stores a copy of the counter value when it can perform the
first useful statement. I.e. the point in the execution of the ISR when
normal ISR thing can happen to make the hardware happy.

3 The ISR signals an Event-Hub, using non-waiting semantics, upon
which a Task waits.

4 ISR terminates and schedules the Kernel Loop.

5 Kernel Loop processes request to signal the Event, and then schedules
the Task waiting for this event.

6 Once running the Task reads in the counter value. Then it sends both
the IRQ to ISR Latency and the IRQ to Task Latency to the Port-Hub
located on the Windows Node.

7 The Task on the Windows Node retrieves the data from the Port-Hub
and then passes it on to a Display Application.



How do we measure it?

1 Interrupt to measure is the Timer / Counter (auto reloading)
Interrupt, which is clocked with 50MHz, and fires every 1ms.

2 The ISR stores a copy of the counter value when it can perform the
first useful statement. I.e. the point in the execution of the ISR when
normal ISR thing can happen to make the hardware happy.

3 The ISR signals an Event-Hub, using non-waiting semantics, upon
which a Task waits.

4 ISR terminates and schedules the Kernel Loop.

5 Kernel Loop processes request to signal the Event, and then schedules
the Task waiting for this event.

6 Once running the Task reads in the counter value. Then it sends both
the IRQ to ISR Latency and the IRQ to Task Latency to the Port-Hub
located on the Windows Node.

7 The Task on the Windows Node retrieves the data from the Port-Hub
and then passes it on to a Display Application.



How do we measure it?

1 Interrupt to measure is the Timer / Counter (auto reloading)
Interrupt, which is clocked with 50MHz, and fires every 1ms.

2 The ISR stores a copy of the counter value when it can perform the
first useful statement. I.e. the point in the execution of the ISR when
normal ISR thing can happen to make the hardware happy.

3 The ISR signals an Event-Hub, using non-waiting semantics, upon
which a Task waits.

4 ISR terminates and schedules the Kernel Loop.

5 Kernel Loop processes request to signal the Event, and then schedules
the Task waiting for this event.

6 Once running the Task reads in the counter value. Then it sends both
the IRQ to ISR Latency and the IRQ to Task Latency to the Port-Hub
located on the Windows Node.

7 The Task on the Windows Node retrieves the data from the Port-Hub
and then passes it on to a Display Application.



How do we measure it?

1 Interrupt to measure is the Timer / Counter (auto reloading)
Interrupt, which is clocked with 50MHz, and fires every 1ms.

2 The ISR stores a copy of the counter value when it can perform the
first useful statement. I.e. the point in the execution of the ISR when
normal ISR thing can happen to make the hardware happy.

3 The ISR signals an Event-Hub, using non-waiting semantics, upon
which a Task waits.

4 ISR terminates and schedules the Kernel Loop.

5 Kernel Loop processes request to signal the Event, and then schedules
the Task waiting for this event.

6 Once running the Task reads in the counter value. Then it sends both
the IRQ to ISR Latency and the IRQ to Task Latency to the Port-Hub
located on the Windows Node.

7 The Task on the Windows Node retrieves the data from the Port-Hub
and then passes it on to a Display Application.



How do we measure it?

1 Interrupt to measure is the Timer / Counter (auto reloading)
Interrupt, which is clocked with 50MHz, and fires every 1ms.

2 The ISR stores a copy of the counter value when it can perform the
first useful statement. I.e. the point in the execution of the ISR when
normal ISR thing can happen to make the hardware happy.

3 The ISR signals an Event-Hub, using non-waiting semantics, upon
which a Task waits.

4 ISR terminates and schedules the Kernel Loop.

5 Kernel Loop processes request to signal the Event, and then schedules
the Task waiting for this event.

6 Once running the Task reads in the counter value. Then it sends both
the IRQ to ISR Latency and the IRQ to Task Latency to the Port-Hub
located on the Windows Node.

7 The Task on the Windows Node retrieves the data from the Port-Hub
and then passes it on to a Display Application.



How do we measure it?

1 Interrupt to measure is the Timer / Counter (auto reloading)
Interrupt, which is clocked with 50MHz, and fires every 1ms.

2 The ISR stores a copy of the counter value when it can perform the
first useful statement. I.e. the point in the execution of the ISR when
normal ISR thing can happen to make the hardware happy.

3 The ISR signals an Event-Hub, using non-waiting semantics, upon
which a Task waits.

4 ISR terminates and schedules the Kernel Loop.

5 Kernel Loop processes request to signal the Event, and then schedules
the Task waiting for this event.

6 Once running the Task reads in the counter value. Then it sends both
the IRQ to ISR Latency and the IRQ to Task Latency to the Port-Hub
located on the Windows Node.

7 The Task on the Windows Node retrieves the data from the Port-Hub
and then passes it on to a Display Application.



Application Diagram



Measurement Results 1: IRQ to ISR Latency



Measurement Results 2: IRQ to Task Latency



Outline

1 Introduction
History of Altreonic
OpenComRTOS Fact-sheet

2 OpenComRTOS Programming Model
Tasks
Hubs
From Idea to Implementation

3 Performance of OpenComRTOS
Code Size Figures
Context Switch Performance
Interrupt Latency of an ARM Cortex M3

4 Conclusions



Conclusions

The formal development of OpenComRTOS resulted in:
I small code size (∼ 10× smaller than Virtuoso from Eonic).
I which results in higher performance, due to less code to be executed.
I easily portable code base.

OpenComRTOS Interacting Entities can be used to represent CSP
style constructs.

The separation of topology and application results in a Virtual Single
Processor (VSP) programming model.

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 31 / 33



Questions?

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 32 / 33



Thank You!

Bernhard Sputh (Altreonic) OpenComRTOS — Interacting Entities 03.11.2009 33 / 33


	Introduction
	History of Altreonic
	OpenComRTOS Fact-sheet

	OpenComRTOS Programming Model
	Tasks
	Hubs
	From Idea to Implementation

	Performance of OpenComRTOS
	Code Size Figures
	Context Switch Performance
	Interrupt Latency of an ARM Cortex M3

	Conclusions

