
OpenComRTOS:
A Runtime Environment for

Interacting Entities
Bernhard H.C. SPUTH a, Oliver FAUST a, Eric VERHULST a and Vitaliy MEZHUYEV a

a Altreonic; Gemeentestraat 61A bus 1; 3210 Linden. Belgium.

{bernhard.sputh, oliver.faust, eric.verhulst, vitaliy.mezhuyev}@altreonic.com

Abstract. OpenComRTOS is one of the few Real-Time Operating Systems for em-
bedded systems that was developed using formal modelling techniques. The goal was
to obtain a proven dependable component with a clean architecture that delivers high
performance on a wide variety of networked embedded systems, ranging from a single
processor to distributed systems. The result is a scalable relibable communication sys-
tem with real-time capabilities. Besides, a rigorous formal verification of the kernel
algorithms led to an architecture which has several properties that enhance safety and
real-time properties of the RTOS. The code size in particular is very small, typically
10 times less than a typical equivalent single processor RTOS. The small code size
allows a much better use of the on-chip memory resources, which increases the speed
of execution due to the reduction of wait states caused by the use of external memory.
To this point we ported OpenComRTOS to the MicroBlaze processor from Xilinx, the
Leon3 from ESA, the ARM Cortex-M3, the Melexis MLX16, and the XMOS. In this
paper we concentrate on the Microblaze port, which is an environment where Open-
ComRTOS competes with a number of different operating systems, including the stan-
dard operating system Xilinx Micro Kernel. This paper reports code size figures of the
OpenComRTOS on a MicroBlaze target. We found that this code size is considerably
smaller compared with published code sizes of other operating systems.

Keywords. OpenComRTOS, embedded systems, system engineering, RTOS

Introduction

Real-Time Operating Systems (RTOSs) are a key software module for embedded systems,
often requiring properties of high reliability and safety. Unfortunately, most commercial,
as well as open source implementations cannot be verified or even certified, e.g. according
to the DoD 178B [1] or IEC61508 [2] standards. Similarly, software engineering is often
done in a non-systematic way, although well defined and established Systems Engineering
Processes exist [3,4]. The software is rarely proven to be correct even though this is possible
with formal model checkers [5]. In the context of a unified systems engineering approach
[6] we undertook a research project where we followed a stricter methodology, including
formal model checking, to obtain a network-centric RTOS which can be used as a trusted
component.

The history of this project goes back to the early 1990’s when a distributed real-time
RTOS called Virtuoso (Eonic Systems) [7] was developed for the INMOS transputer [8].
This processor had built-in support for concurrency as well as interprocess communication
and was enabled for parallel processing by way of 4 communication links. Virtuoso allowed
such a network of processors to be programmed in a topology transparent way. Later, the
software evolved and was ported from single chip micro-controllers to systems with over

a thousand Digital Signal Processors until the technology was acquired by Wind River and
after a few years removed it from the market. The OpenComRTOS project was motivated by
the lessons learned from developing three Virtuoso generations. These lessons became part
of the requirements. We list the most important ones:

• Scalability: The RTOS should support very small single processor systems, as well
as widely distributed processing systems interconnected through external networks
like the internet. To achieve that, the software components must be independent of
the execution environment. In other words, it must be possible to map the software
components onto the network topology.

• Heterogeneous: The RTOS should support systems which consist of multiple nodes,
with different CPU architectures. Naturally, different link technologies should be us-
able as well, ranging from low speed links such as RS232 up to high speed Ethernet
links.

• Efficiency: The essence of multi-processor systems is communication. The challenge,
from an RTOS point of view, is keeping the latency to a minimum while at the same
time maximizing the performance. This is achieved when most of the critical code
resides in the limited amount of on-chip memory.

• Small code size: This has a double benefit: a) performance and b) less complexity.
Less complex systems have fewer potential sources of errors and side-effects.

• Dependability: As testing of distributed systems becomes very time consuming, it is
mandatory that the system software can be trusted from the start. As errors typically
occur in “corner cases”, the use of formal methods was deemed necessary.

• Maintainability and ease of development: The code needs to be clear and simple to
facilitate the development of e.g. drivers, the latter have often been the weak point in
system software.

OpenComRTOS provides a runtime environment which supports these requirements.
The remainder of this paper focuses on this runtime environment and the execution on a
MicroBlaze target. But, before we discuss the details of OpenComRTOS in greater detail, we
deduce two general points from the list of requirements.

The scalability requirement imposes that data-communication is central in the RTOS
architecture. The trustworthiness and maintainability aspects are addressed in the context of
a Systems Engineering methodology. The use of common semantics during all activities is
crucial, because only common semantics enable us to generate most of the implementation
code from the modelling and simulation phase. Generated code is more trustworthy compared
to handwritten code. To be able to use an “Interacting Entities” paradigm requires a runtime
environment that supports concurrency and synchronization/communication in a native way
between concurrent entities. OpenComRTOS is this runtime environment

1. OpenComRTOS Architecture

Even with the problems mentioned above, Virtuoso was a successful product. The goal was to
improve on its weaknesses. Its architecture had a high performance, but very hard to port and
to maintain. Hence, for OpenComRTOS we adopted a layered architecture which is based
on semantic layering. The lowest functionality level is limited to priority based preemptive
multitasking. On this level Tasks exchange standardized Packets using an intermediate entity
we call Port. Two tasks rendezvous by one task sending a ‘put’ request and the other task
sending a ‘get’ request to the Port. The Port behaves similar to the JCSP Any2AnyChannel
[9]. Hence, Tasks can synchronise and communicate using Packets and Ports. The Packets are
the essential workhorse of the system. They have header and data fields and are exclusively
used for all services, rather than performing function calls or using jump tables. Hence, it be-

Figure 1. Open License Society: the unified view.

comes straightforward to provide services that operate in a transparent way across processor
boundaries. In fact for a task it makes no difference in semantics whether a Port-Hub exists
locally or on another node, the kernel takes care of routing the packet to the node which holds
the Port-Hub. Furthermore, Packets are very efficient, because kernel operations often come
down to shuffling Packets around (using handlers) between system level data structures.

At the next semantic level we added more traditional RTOS services like events,
semaphores, etc (see Table 2 on Page 6 for the included RTOS services). Finally, the architec-
ture was kept simple and modular by developing kernel and drivers as Tasks. All these Tasks
have a ‘Task input Port’ for accepting Packets from other Tasks. This has some unusual con-
sequences like: a) the possibility to process interrupts received on one processor on another
processor, b) the kernel having a lower priority than the drivers or even c) having multiple
kernel Tasks on a single node.

1.1. Systems Engineering Approach

The Systems Engineering approach from the Open License Society [6], outlined in Figure 1,
is a classical one as defined in[3,4], but adapted to the needs of embedded software develop-
ment. It is first of all an evolutionary process using continuous iterations. In such a process,
much attention is paid to an incremental development requiring regular review meetings by
several of the stakeholders. On an architectural level, the system or product under develop-
ment is defined under the paradigm of “Interacting Entities”, which maps very well on an
RTOS based runtime system. Applied to the development of OpenComRTOS, the process
was started by elaborating an initial set of requirements and specifications. Next, an initial
architecture was defined. From this point onwards, two groups started to work in parallel.
The first group worked out an architectural model, while a second group developed initial
formal models using TLA+/TLC [10]. These models were incrementally refined.

Note that no real attempt was made to model the complete system at once. This is not
possible in a generic way, because formal TLA models cannot be parametrised. For example,
one must model a specific set of tasks and services which leads very quickly to a state space
explosion which limits the achievable complexity of such models. Hence, we modelled only
specific parts, e.g. a model was built for each class of services (Ports, Events, Semaphores,
etc.). This was sufficient and has the benefit of having very clean, orthogonal models. Due to

the orthogonality of the models there is no need to model the complete system, which has the
big advantage that they can be developed by different teams.

At each review meeting between the software engineers and the formal modelling engi-
neer, more details were added to the models, the models were checked for correctness and a
new iteration was started. This process was stopped when the formal models were deemed
close enough to the implementation architecture. Next, a simulation model was developed
on a PC (using Windows NT as a virtual target). This code was then ported to a real 16bit
micro controller in form of the MLX16 from Melexis, who at this time were sponsoring the
development of OpenComRTOS. The MLX16 a propriety micro controller used by Melexis
to develop application specific ICs, it has up to 2kiB RAM and 32kiB Flash. On this target
a few specific optimizations were performed during the implementation, while fully main-
taining the design and architecture. The software was written in ANSI C and verified for safe
coding practices with a MISRA rule checker [11].

1.2. Lessons Learnt from Using Formal Modelling

The goal of using formal techniques is the ability to prove that the software is correct. This
is an often heard statement from the formal techniques community. A first surprise was that
each model gave no errors when verified by the TLC model checker. This is actually due to
the iterative nature of the model development process and partly its strength. From an initially
rather abstract model, successive models are developed by checking them using the model
checker and hence each model is correct when the model checker finds no illegal states. As
such, model checkers can’t prove that the software is correct. They can only prove that the
formal model is correct. For a complete proof of the software the whole programming chain
as well as the target hardware should be modelled and verified. This is an unachievable goal
due to its complexity and the resulting state space explosion. Nevertheless, it was attempted
in the Verisoft project [12]. The model itself would be many times larger than the developed
software. This indicates that if we would make use of verified target processors and verified
programming language compilers, model checking becomes practical, because it is limited
to modelling the application.

Other issues, related to formal modelling, were also discovered. A first issue is that the
TLC model checker declares every action as a critical section, whereas e.g. in the case of a
RTOS, many components operate concurrently and real-time performance dictates that on a
real target the critical sections are kept as short as possible. This forced us to avoid shared
data structures. However, it would be helpful to have formal model assistance that indicates
the required critical sections.

1.3. Benefits Obtained from Using Formal Modelling

As was outlined above, the use of formal modelling was found to result in a much better
architecture. This benefit results from successive iteration and review of the model. Another
reason for the better architecture is the fact that formal model checkers provide a higher level
of abstraction compared to the implementation. In the project we found that the semantics
associated with specific programming terms involuntarily influence choices made by the ar-
chitecture engineer. An example was the use of both waiting lists and Port buffers, which is
one of the main concepts of OpenComRTOS. A waiting list is associated with just one wait-
ing action but one overlooks the fact that it also provides buffering behaviour. Hence, one
waiting list is sufficient resulting in a smaller and cleaner architecture.

Formal modelling and abstract levels have helped to introduce, define and maintain or-
thogonal architectural concepts. Orthogonality is key to small and safe, i.e. reliable, designs.
Similarly, even if there was a short learning curve to master the mathematical notation in
TLA, with hindsight this was an advantage vs. e.g. SPIN [13], which uses a C-like syn-

Figure 2. OpenComRTOS-L0 view.

tax. The latter leads automatically to thinking in terms of an implementation code with all
its details, whereas the abstraction of TLA helps to think in more abstract terms. This also
highlights the importance of specifying first before implementation is started.

A final observation is that using formal modelling techniques turned out to be a much
more creative process than the mathematical framework suggests. TLA/TLC as such was
primarily used as an architectural design tool, aiding the team in formulating ideas and testing
them in a rather abstract way. This proved to be teamwork with lots of human interaction
between the team members. The formal verification of the RTOS itself was basically a side-
effect of building and running the models. Hence, this project has shown how a combination
of teamwork with extensive peer-review, formal modelling support and a well defined goal
can result in a “correct-by-design” product.

1.4. Novelties in the Architecture

OpenComRTOS has a semantically layered architecture. Table 1 provides an overview over
the available services at the different levels. At the lowest: level the minimum set of Entities
provides everything that is needed to build a small networked real-time application.

The Entities needed are Tasks (having a private function and workspace), and Interacting
Entities, called Ports, to synchronize and communicate between the Tasks (see Figure 2).
Ports act like channels in the tradition of Hoare’s CSP [14], but they allow multiple waiters
and asynchronous communication.

One of the Tasks is a Kernel Task which schedules the other Tasks in order of priority and
manages Port-based services. Driver Tasks handle inter-node communication. Pre-allocated
as well as dynamically allocated Packets are used as carriers for all activities in the RTOS,
such as: service requests to the kernel, Port synchronization, data-communication, etc. Each
Packet has a fixed size header and data payload with a user defined but global data size. This
significantly simplifies the Packet management, particularly at the communication layer. A
router function also transparently forwards Packets in order of priority between the network
nodes. The priority of a Packet is the same as the priority of the Task from which the Packet
originates.

In the next semantic level services and Entities were added, similar to those which can
be found in most RTOSs: Boolean events, counting semaphores, FIFO queues, resources,

memory pools, etc. The formal modelling leads to the definition of all these Entities as se-
mantic variants of a common and generic entity type. We called this generic entity a “Hub”.
In addition, the formal modelling also helped to define “clean” semantics for such services,
whereas ad-hoc implementations often have side-effects. Table 2 summarises the semantics.

Table 1. Overview of the available Entities on the different Layers.

Layer Available Entities
L0 Task, Port
L1 Task, Hub based implementations of: Port, Boolean Event, Counting Semaphore, FIFO

Queue, Resource, Memory Pool
L2 Mobile Entities: all L1 entities moveable between Nodes.

Table 2. Semantics of L1 Entities.

L1 Entity Semantics
Event Synchronisation on a Boolean value.
Counting
Semaphore

Synchronisation with counter allowing asynchronous signalling.

Port Synchronisation with exchange of a Packet.
FIFO queue Buffered communication of Packets. Synchronisation when queue is full or empty.
Resource Event used to create a logical critical section. Resources have an owner Task when

locked.
Memory Pool Linked list of memory blocks protected with a resource.

Table 3. Service synchronization variant.

Services
variants

Synchronising Behavior

“Single-phase” services
NW Non Waiting: when the matching filter fails the Task returns with a RC Failed.
W Waiting: when the matching filter fails the Task waits until such events happens.
WT Waiting with a time-out. Waiting is limited in time defined by the time-out value.

“Two-phase” services
Async Asynchronous: when the entity is compatible with it, the Task continues independently

of success or failure and will resynchronize later on. This class of services is called
“two-phase” services.

The services are offered in a non-blocking variant (NW), a blocking variant (W), a
blocking with time out variant (WT), and an asynchronous variant (A) for services where
this is applicable (currently in development). All services are topology transparent and there
is no restriction in the mapping of Task and kernel Entities onto this network. See Tables 2
and 3 for details on the semantics.

Using a single generic entity leads to more code reuse, therefore the resulting code size
is at least 10 times less than for an RTOS with a more traditional architecture. One could
of course remove all such application-oriented services and just use Hub based services.
Unfortunately, this has the drawback that services loose their specific semantic richness, e.g.
resource locking clearly expresses that the Task enters a critical section in competition with
other Tasks. Also erroneous runtime conditions, like raising an event twice (with loss of the
previous event), are easier to detect at application level compared with the case when only a
generic Hub is used.

During the formal modelling process, we also discovered weaknesses in the traditional
way priority inheritance is implemented in most RTOSs. Fortunately, we found a way to re-

duce the total blocking time. In single processor RTOS systems this is less of an issue, but
in multi-processor systems, all nodes can originate service requests and resource locking is
a distributed service. Hence, the waiting lists can grow longer and lower priority Tasks can
block higher priority ones while waiting for the resource. This was solved by postponing the
resource assignment until the rescheduling moment. Finally, by generalization, also mem-
ory allocation has been approached like a resource locking service. In combination with the
Packet Pool, this opens new possibilities for safe and secure memory management, e.g. the
OpenComRTOS architecture is free from buffer overflow by design.

For the third semantic layer (L2), we plan to add dynamic support like mobility of code
and of kernel Entities. A potential candidate is a light-weight virtual machine supporting
capabilities as modelled in pi-calculus [15]. This is the subject of further investigations and
will be reported in subsequent papers.

1.5. Inherent Safety Support

By its architecture the L1 semantic layers are all statically linked, hence an application spe-
cific image will be generated by the tool-chain during the compilation process. As we don’t
consider security risks for the moment, our concern is limited to verifying whether or not the
code is inherently safe.

A first level of safety is provided by the formal modelling approach. Each service is
intensely modelled and verified with most “corner cases” detected during design time prior
to writing code. A second level is provided by the kernel services themselves. All services
have well defined semantics. Even when they are asynchronously used, the services become
synchronous when resources become depleted. At such moments, a Task is forced to wait,
which allows other Tasks to proceed and free up resources (like Packets, buffer space, etc.);
Hence, the systems becomes “self-throttling”. A third level is provided by the data structures,
mostly based on Packets. All single-phase services use statically allocated Packets which are
part of the Task context. These Packets are used for service requests, even when going across
processor boundaries. They also carry return values. For two phase services Packets must be
allocated from a Packet Pool. When the Pool is empty, the system will start to throttle un-
til Packets are released. Another specific architectural feature is the fact that the system can
never run out of space to store requests because there is a strict limit of how many requests
there can be in the system (the number of packets). All queues are represented by linked
list, and each packet contains the necessary header information, therefore no buffers are re-
quired to handle requests, which therefore cannot overflow. In the worst case, the application
programmer defined insufficient Packets in the Pool and the buffers will stop growing when
all Packets are in use. A last level is the programming environment. All Entities are defined
statically, so they are generated together with all other system level data structures by a tool,
hence no Entities can be created at runtime. Of course, dynamic support at L2 will require
extra support. However, this can only be achieved reliably with hardware support, e.g. to pro-
vide protected memory spaces. The same applies to using stack spaces. In OpenComRTOS
interrupts are handled on a private and separate stack, so that the Task’s stack spaces are not
affected. On the MLX16 such a space can be protected, but it is clear that such an inexpensive
mechanism should become the norm for all embedded processors. A full MMU is not only
too complex and too large, it is also simply not necessary. The kernel has various threshold
detectors and provides support for profiling, but the details are outside the scope of this paper.

2. OpenComRTOS on Embedded Targets

Porting OpenComRTOS to the Microblaze soft processor was the first major work done by
Altreonic. One reason for choosing the Microblaze CPU as a first target was the prior expe-

Figure 3. Hardware setup of the test system.

rience of the new team with the Microblaze environment [16,17]. This section compares the
Microblaze port with the port of OpenComRTOS to the MLX16. It also gives performance
and code size figures for other available ports of OpenComRTOS.

The Microblaze soft processor is realised in a Field Programmable Gate Array (FPGA).
FPGAs are emerging as an interesting design alternative for system prototyping and imple-
mentation for critical applications when the production volume is low [18]. We realised the
target architecture with the Xilinx Embedded Developer Kit 9.2 and synthesized with Xilinx
ISE version 9.2 on an ML403 board with a Virtex-4 XC4VFX12 FPGA clocked at 100 MHz.
Our architecture, shown in Figure 3, is composed of one MicroBlaze processor connected to
a Processor Local Bus (PLB). The PLB enables accessing TIMER and GPIO. The TIMER is
used to measure the time it takes to execute context switches. The GPIO was used for basic
debugging. The processor uses local memory to store code and data of the Task it runs. This
memory is implemented through Block RAMs (BRAMs). The MicroBlaze Debug Module
(MDM) enables remote debugging of the MicroBlaze processor.

2.1. Code Size Figures

This section reports the code size figures of OpenComRTOS on the MicroBlaze target. To
put these figures into perspective we did two things. First the OpenComRTOS code size fig-
ures on the MicroBlaze target are compared with the ones on the other targets. To this point
we have ported OpenComRTOS to the MicroBlaze processor from Xilinx [19], the Leon3 as
used by ESA[20], the ARM Cortex-M3[21], and the XMOS XS1-G4[22]. The second com-
parison is concerned with the code size figures for a simple semaphore example. This ex-
ample has been implemented using a) Xilinx Micro-Kernel (XMK) and b) OpenComRTOS.
The later example is more important, because we can show that the OpenComRTOS version
uses only 75% code size (.text segment) compared to the XMK version, to achieve the same
functionality.

Table 4 reports the code size figures for individual L1 Services for all different targets
we support. The total code size of ‘Total L1 Services’ is just the sum of the individual code
sizes. The Service ‘L1 Hub shared’ represents the code necessary to achieve the functionality
of the Hub, upon which all other L1 Services depend. This explains why adding the Port
functionality requires only 4-8 Bytes more code.

In general the code size figures are lower for the MLX16, ARM-Cortex-M3 and XMOS
due to their 16bit instruction set. Both Microblaze and Leon3 in contrast use a 32bit instruc-
tion set. Even among the targets with 16bit instruction sets we can see vast differences in the
code size. One reason for this is the number of registers these targets have. The MLX16 has
only four registers which need to be saved during a context switch. In contrast the XMOS port
has to save 13 registers during a context switch. This has also an impact on the performance
figures, which are shown in Table 6 on page 10

2.1.1. Comparing OpenComRTOS Against the Xilinx Micro-Kernel

The Xilinx Micro-Kernel (XMK) is an embedded operating system from Xilinx for its Mi-
croblaze and PPC405 cores. In this section we compare the size of a comparable application
example between OpenComRTOS and XMK for the Microblaze target. A complete compar-
ison of code size figures between XMK and OpenComRTOS is not possible, because these

Table 4. OpenComRTOS L1 code size figures (in Bytes) obtained for our different ports.

Service MLX16 MicroBlaze Leon3 ARM XMOS
L1 Hub shared 400 4756 4904 2192 4854
L1 Port 4 8 8 4 4
L1 Event 70 88 72 36 54
L1 Semaphore 54 92 96 40 64
L1 Resource 104 96 76 40 50
L1 FIFO 232 356 332 140 222
L1 PacketPool NA 296 268 120 166
Total L1 Services 1048 5692 5756 2572 5414

Figure 4. Semaphore loop example project.

operating systems offer different services. However, to give an indication of the code size ef-
ficiency, we implemented a simple application based on two services both OS offer. Figure 4
shows two tasks (T1 T2), which exchange messages and synchronise on two semaphores (S1,
S2), in both cases 1KiB stacks were defined, which is default size for XMK. In case of the
OpenComRTOS implemenation 512Byte would have been more than enough. Table 5 shows
that the complete OpenComRTOS program requires about 15% less memory when compared
with the memory usage of XMK. This is an important result, because with OpenComRTOS
there is more RAM available for user applications. This is particularly important when, either
for speed reasons or for PCB size constraints, the complete application has to run in internal
(BRAM) memory.

Table 5. XMK vs. OpenComRTOS code size in bytes.

OS .text .data .bss total
XMK 12496 348 7304 20148
OpenComRTOS 9400 1092 6624 17116

2.2. Performance Figures

The performance figures were evaluated by measuring the loop time. We define this loop time
as the time a particular target takes to complete one loop in the semaphore loop example. The
resulting measurement values allow us to compare the performance of OpenComRTOS on
different target platforms.

OpenComRTOS abstracts the hardware from the application programmer, therefore the
application source code, which is executed by the individual targets, stays the same. To show
how compact OpenComRTOS application code is, Listings 1 and 2 show the source code for
the Semaphore loop example which was used to measure the loop time figures.

Listing 1 shows the code for task T1 which represents T1. The Arguments of the func-
tion call are not used. Line 2 defines 3 variables of type 32 bit unsigned int. All the work
is done wihtin the infinite loop, starting from Line 3. In Line 4 the number of elapsed pro-
cessor cycles is stored in the start variable. The code block from Line 8 to 8 signals
semaphore 1 (S1) 1000 times and tests semaphore 2 (S1) also 1000 times; for the semantics of
L1_SignalSemaphore and L1_TestSemaphore see Table 2. In Line 9 the elapsed processor
cycles are stored in the stop variable.

1 void T1 (L1_TaskArguments Arguments){

2 L1_UINT32 i=0, start=0, stop =0;

3 while (1) {

4 start = L1_getElapsedCycles ();

5 for (i = 0; i < 1000; i++){

6 L1_SignalSemaphore_W(S1);

7 L1_TestSemaphore_W(S2);

8 }

9 stop = L1_getElapsedCycles ();

10 }

11 }

Listing 1. Souce code for task T1.

1 void T2 (L1_TaskArguments Arguments){

2 while (1) {

3 L1_TestSemaphore_W(S1);

4 L1_SignalSemaphore_W(S2);

5 }

6 }

Listing 2. Souce code for task T2.

For completeness, Listing 2 shows the source code for T2 which represents T2. Similarly
to T1 the task is represented by a function whose parameters are not used. Within the while-
loop, from Line 2 to 5, semaphore S1 is tested before semaphore S2 is signaled. Both calls
are blocking, as indicated by the postfix ‘_W’, see Table 3.

After having obtained the start and stop values for all the targets we use the following
Equation to calculate the loop time.

Loop time =
stop− start

Clock speed× 1000
(1)

This equation does not take into account the overhead from getting the elapsed clock cycles
and from the loop implementation. This overhead is negligible compared with the processing
time for signalling and testing the semaphores. Table 6 reports the measured loop times for
the different targets. Each run of the loop requires eight context switches, this is caused by
the fact that the Semaphores are accessed in the kernel context. Therefore, any access to a
Semaphore requires to switch into the kernel context and afterwards to switch back to the
requesting task.

Table 6. OpenComRTOS loop times obtained for our different ports.

MLX16 MicroBlaze Leon3 ARM XMOS
Clock speed 6MHz 100MHz 40MHz 50MHz 100MHz
Context size 4× 16bit 32× 32bit 32× 32bit 16× 32bit 14× 32bit
Memory location internal internal external internal internal
Loop time 100.8µs 33.6µs 136.1µs 52.7µs 26.8µs

The loop times expose the differences between the individual architectures. What sticks
out is the performance of the MLX161, which despite its low Clock speed of only 6MHz is
faster than the Leon3 running at more than 6 times the Clock frequency. One of the main
reasons for this is that the MLX16 has only to save and restore 4 16bit registers during a
context switch compared to 32 32bit registers in case of the Leon3. Furthermore, the Leon3
uses only external memory, whereas all other targets use internal memory.

3. Conclusions

The OpenComRTOS project has shown that even for software domains which are often asso-
ciated with ‘black art’ programming, formal modelling works very well. The resulting soft-
ware is not only very robust and maintainable but also respectably compact and fast. It is
also inherently safer than standard implementation architectures. Its use however must be
integrated with a global systems engineering approach, because the process of incremental
development and modelling is as important as using the formal model checker itself. The use
of formal modelling has resulted in many improvements of the RTOS properties. The previ-
ous section analysed two distinct RTOS properties. Namely, code size and speed measure-
ments. With a code size as low as 1kiB a stripped down version of OpenComRTOS fits in the
memory of most embedded targets. When more memory is available, the full kernel fits in
less than 10kiB on many targets. Compared with the Xilinx Micro-Kernel OpenComRTOS
has about 75% of the code size. The loop time measurements brought out the differences
between individual target architectures. In general however, the measured loop times confirm
that OpenComRTOS performs well on a wide verity of possible targets.

Acknowledgments

The OpenComRTOS project is partly funded under an IWT project for the Flemish Govern-
ment in Belgium. The formal modelling activities were provided by the University of Gent.

References

[1] RTCA. DO-178B Software Considerations in Airborne Systems and Equipment Certification, January
1992.

[2] ISO/IEC. TR 61508 Functional Safety of electrical / electronic / programmable electronic safety-related
systems, January 2005.

[3] The International Council on Systems Engineering (INCOSE) aims to advance the state of the art and
practice of systems engineering. www.incose.org.

[4] Andreas Gerstlauer, Haobo Yu, and Daniel D. Gajski. RTOS Modeling for System Level Design. In
DATE03, page 10130, Washington, DC, USA, 2003. IEEE Computer Society.

[5] Formal Systems (Europe) Ltd. Failures-Divergence Refinement: FDR Manual.
http://www.fsel.com/fdr2 manual.html.

[6] The Open License Sociaty researches and develops a systematic systems engineering methodology based
on interacting entities and thrustworthy components. www.openlicensesociety.org.

[7] Eonic Systems. Virtuoso The Virtual Single Processor Programming System User Manual. Available at:
http://www.classiccmp.org/transputer/microkernels.htm.

[8] M. D. May, P. W. Thompson, and P. H. Welch, editors. Networks, Routers and Transputers: Function,
Performance and Applications. IOS Press, Amsterdam Netherlands, 1993.

[9] P.H.Welch. Process Oriented Design for Java: Concurrency for All. In H.R.Arabnia, editor, Proceed-
ings of the International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA2000), volume 1, pages 51–57. CSREA, CSREA Press, jun 2000.

1Stripped down version of OpenComRTOS

[10] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engi-
neers. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

[11] The MISRA Guidelines provide important advice to the automotive industry for the creation and applica-
tion of safe, reliable software within vehicles. http://www.misra.org.

[12] Eyad Alkassar, Mark A. Hillebrand, Dirk Leinenbach, Norbert W. Schirmer, and Artem Starostin. The
Verisoft Approach to Systems Verification. In Jim Woodcock and Natarajan Shankar, editors, VSTTE
2008, Lecture Notes in Computer Science, Toronto, Canada, October 2008. Springer.

[13] Gerard J. Holzmann. The SPIN Model Checker : Primer and Reference Manual. Addison-Wesley Profes-
sional, September 2003.

[14] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, 1978.
[15] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University Press, June

1999.
[16] Bernhard Sputh, Oliver Faust, and Alastair R. Allen. Portable csp based design for embedded multi-core

systems. In Communicating Process Architectures 2006, sep 2006.
[17] Bernhard Sputh, Oliver Faust, and Alastair R. Allen. A Versatile Hardware-Software Platform for In-Situ

Monitoring Systems. In Alistair A. McEwan, Wilson Ifill, and Peter H. Welch, editors, Communicating
Process Architectures 2007, pages 299–312, jul 2007.

[18] Antonino Tumeo, Marco Branca, Lorenzo Camerini, Marco Ceriani, Matteo Monchiero, Gianluca
Palermo, Fabrizio Ferrandi, and Donatella Sciuto. A dual-priority real-time multiprocessor system on fpga
for automotive applications. In DATE08, pages 1039–1044. IEEE, 2008.

[19] Xilinx. MicroBlaze Processor Reference Guide. http://www.xilinx.com.
[20] Gaisler Research AB. SPARC V8 32-bit Processor LEON3 / LEON3-FT CompanionCore Data Sheet.

http://www.gaisler.com/cms/.
[21] ARM. An Introduction to the ARM Cortex-M3 Processor. http://www.arm.com/.
[22] XMOS. XS1-G4 Datasheet 512BGA. http://www.xmos.com/.

