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Abstract.  During the design of a small channel-based concurrency runtime system 
(ChanSched, written in ANSI C), we saw that application timers (which we call  

egg and repeat timers) could be part of its supported ALT construct, even if their 

states live through several ALTs. There are no side effects into the ALT semantics, 

which enable waiting for channels, channel timeout and, now, the new application 

timers. Application timers are no longer busy polled for timeout by the process. We 

show how the classical occam language may benefit from a spin-off of this same 

idea. Secondly, we wanted application programmers to be freed from their earlier 

practice of explicitly coding communication states at channel synchronisation 

points, which was needed by a layered in-house scheduler. This led us to develop an 
alternative to the non-ANSI C “computed goto” (found in gcc).  Instead, we use a 

switch/case with goto line-number-tags in a synch-point-table for scheduling. 

We call this table, one for each process, a proctor table. The programmer does not 

need to manage this table, which is generated with a script, and hidden within an 
#include file. 

 

Keywords.  application timers, alternative, synch-point scheduling 

Introduction 

This paper describes two ideas that have been implemented as part of a small runtime 
system (ChanSched), to be used in a forthcoming new product. ChanSched relates to 
processes, synchronous, zero-buffered, rendezvous-type, one-way data channels and 
asynchronous signal / timeout data-free channels. 

It started with the first author showing the second author a private “designer’s note” 
[1], where the problem of mixing communication states and application states is discussed. 
Channel state machines are visible in the code, on par with application states. This state mix 
had been incurred by an earlier runtime system, where synchronous channels were running 
on top of an asynchronous runtime system. With ChanSched, we now wanted to make it 
simpler for new programmers to understand and use these channels as a fundamental design 
and implementation paradigm. Even if the earlier system, described in [2] and [3], has 
worked fluently for years, the reasonable critique by readers was that the code was 
somewhat difficult to understand.  

                                                           
1 A UTC Fire & Security Company.  
   NO-7483 Trondheim, Norway. See http://www.autronicafire.no 



So, the second author was inspired to build ChanSched from scratch, based on this 
earlier experience. Added goals were to use it in systems with low power consumption and 
high formal product “approval level”.  

During this development, which ping-ponged between the two of us, we solved two 
problems present with the previous system: how do we manage application timers without 

busy-polling and how do we schedule to synchronisation points using only ANSI C ? 

1. Application Timers in a New ALT 

1.1 The Problem and our Problem 

The problem was that with the earlier system we had “busy-polled” application timers to 
trigger actions. The actions could be status checks once per hour or lights to blink in certain 
patterns. On porting this to ChanSched, we wanted to avoid polling. We had written this 
channel-based runtime system in C, where its ALT could either have channel components, or 
a single2 timer that could timeout on silent channels and nothing more. We called the latter 
an ALTTIMER, defined as non-application timer.  We also wanted several timers and channel 
handling to go on concurrently in the same ALT.  Earlier experience with occam [4] was of 
some help when designing this, but when going through the referees’ comments to this 
paper, we understood that knowledge had withered. We were asked to show examples in 
occam-like syntax. Obeying this, we surprisingly (and problematically for the paper, we 
thought) saw that occam in fact does not need to build application timers by polling – its 
designers had included them in the ALT!  Something had been lost in our translation to C. 
However, the surprise persisted when we saw that this exercise showed that even classical 
occam could benefit from our thoughts. Looking over our shoulders, maybe there was a 
reason why the occam timers had timed out for us.  

1.2 Our ANSI C based ChanSched System and the New Flora of Timers 

We start by showing a ChanSched process. Then, we proceed with a classic occam example 
and finally to a suggestion for a new timer mechanism for occam. Then, we will come back 
and do a more thorough discussion of our implementation. 

The code (Listing 1) is an “extended” version of the Prefix process in Commstime3 
([5] and Figure 1). Our cooperative, non-preemptive scheduler runs processes by calling the 
process by name, via its resolved for once address. So, on every scheduling and 
rescheduling, line 3 is entered. There, the process’s context pointer is restored from the 
parameter g_CP (pointing to a place in the heap), filled by the scheduler. In the second half 
of this paper we shall see how the PROCTOR_PREFIX causes cooperative synchronisation (or 

blocking) points in the code to be reached, by jumping over lines, even into the while 
loop. 

The consequence of this is that lines 5-7 are initialisation code. Knowing this one 
could try to understand the code as one would occam: CHAN_OUT and gALT_END are 
synchronisation points, meaning that line 9 will run only when a communication has taken 
place, and line 18 when a communication or a timeout has happened. We will not go 
through every detail here, but concentrate on the timers. 

                                                           
2 Our implementation handled only a single timer in its ALT. 
3 When we developed ChanSched, we used Commstime as our natural test case. Since it has no ALT timer 

handling in any of its processes, we decided to insert our  timers in P_Prefix, for no concrete reason.  



  

01 Void P_Prefix (void)                  // extended “Prefix”  

02 { 

03   Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler 

04   PROCTOR_PREFIX()                    // jump table (see Section 2) 

05   ...  some initialisation 

06   SET_EGGTIMER (CHAN_EGGTIMER, CP->LED_Timeout_Tick); 

07   SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS); 

08   CHAN_OUT (CHAN_DATA_0, &CP->Data_0, sizeof(CP->Data_0));  // first output 

09   while (TRUE) 

10   { 

11     ALT();                            // this is the needed ”PRI_ALT” 

12       ALT_EGGREPTIMER_IN  (CHAN_EGGTIMER); 

13       ALT_EGGREPTIMER_IN  (CHAN_REPTIMER); 

14       gALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY); 

15       ALT_CHAN_IN         (CHAN_DATA_2, &CP->Data_2, sizeof (CP->Data_2)); 

16       ALT_ALTTIMER_IN     (CHAN_ALTTIMER, TIME_TICKS_100_MSECS); 

17     gALT_END(); 

18     switch (g_ThisChannelId) 

19     { 

20       ...  process the guard that has been taken, e.g. CHAN_DATA_2 

21       CHAN_OUT (CHAN_DATA_0, &CP->Data_0, sizeof (CP->Data_0)); 

22     }; 

23   } 

24 } 

Listing 1. EGGTIMER, REPTIMER and PROCTOR_PREFIX (ANSI C and macros). 

(See Figure 1 for process data-flow diagram) 

Note that ALT guard preconditions are hidden – they are controlled with SET and CLEAR 
macros (none shown). Only the input macros beginning with ‘g’ check preconditions; the 
others do not waste time testing a constant TRUE value. 

As one may understand from the above, timers are seen as channels – one channel per 
timer. Listing 1 is discussed in more detail throughout this paper. 

1.2.1 Flora of Timers: ALTTIMER 

Line 16 is our ALTTIMER. As mentioned, when neither channel CHAN_SIGNAL_AD_READY4 
nor CHAN_DATA_2 have communicated for the last 100 ms, the CHAN_ALTTIMER guard 
causes the ALT to be taken. (The ALT structure is said to be “taken” by the first ready guard.) 
When a channel guard is taken, the underlying timer associated with the ALTTIMER is 
stopped.  It is restarted again every time the ALT is entered.  

1.2.2 ALTTIMER and Very Long Application Timers 

The ALTTIMER was the only form of timer we had in our first port [2, 3]. Now we wanted to 
get further. On any scheduling from that timeout or any channel input, function calls had 
been made to handle application timers. An application timer is an object in local process 
context, used as parameter to a timer library. We needed to start, stop or poll for timeout, 
every so often. Since channels were often silent, the scheduling caused by ALTTIMERs 
bounded the resolution of our application timers. If a timeout were 100 ms, then a 10 
seconds timeout would be accurate to 100 ms.  

By polling with a library call, we could handle timeouts longer that the global system 
timer word. The 100 ms could easily build timeouts of days – out of reach of a shorter 
system timer, which increments a 10 ms tick into a 16 bits integer. It is the system timer 
that is the basic mechanism of the ALT timer; the same is true for occam. The main rationale 
for application timer polling in smaller real-time systems may be this extended flexibility. 

                                                           
4 In order to also test non-timer interrupts, we included an analogue input ready channel. The potentiometer 
value thus read was used to pulse control a blinking LED.  This way our example became rather complete. 



1.2.3 Flora of Timers: EGGTIMER and REPTIMER 

In order to avoid application timers by polling, we decided to implement two new timer 
types and make them usable directly in the ALT.  An EGGTIMER times out once (at a pre-
defined time) and an REPTIMER times out repeatedly (at a pre-defined sequence of equally 

spaced times).  Generically, we will call them EGGREPTIMERs here. 
These timers are initialised in application code before the ALT. After initialisation, they 

will be started the first time they are seen in an ALT – the next time the ALT is reached, they 
will continue to run (discussed later). They are not stopped when their ALT is taken by some 
other guard, only when they have timed out. So long as their ALT remains on the process 
execution path (e.g. in a loop), sooner or later they will time out and be taken. Even then, 
the REPTIMER will already have continued, with no skew and low jitter handling. However, 

EGGREPTIMERs may be stopped by application code before they have timed out. In this 
respect, the semantics of ALTTIMER and EGGREPTIMER differ – since an ALTTIMER has no 

meaning outside an ALT. 

1.2.4 Arithmetic of Time 

Observe that no use of our timers makes reference to system time, or any derived value used 
to store some previous or future time. Therefore, no time arithmetic with values derived 
from system time may be done. We have in fact not yet seen any need for time arithmetic at 
process level5. If this for some reason is needed, we could easily add a function to read 
system time. 

1.3 Timers in Classical occam 

As we were forced to rediscover: occam is able to handle any timer, including our 
application timers. In listing 2, there is an example of an ALTTIMER and a REPTIMER6.  

 
25 PROC P_Listing2 (VAL INT n, CHAN INT InChan? OutChan!)  -- extended “Prefix” 

26   INT Timeout_ALTTIMER, Timeout_REPTIMER: 

27   TIMER Clock_ALTTIMER, Clock_REPTIMER: 

28   SEQ 

29     OutChan ! n 

30     Clock_REPTIMER ? Timeout_REPTIMER 

31     Timeout_REPTIMER := Timeout_REPTIMER PLUS half.an.hour 

32     WHILE TRUE 

33       Clock_ALTTIMER ? Timeout_ALTTIMER 

34       PRI ALT 

35         Clock_REPTIMER ? AFTER Timeout_REPTIMER 

36           ...  process every 30 minutes 

37           Timeout_REPTIMER := Timeout_REPTIMER PLUS half.an.hour 

38           -- no skew, only jitter 

39         INT Data: 

40         InChan ? Data 

41           ...  process Data 

42         Clock_ALTTIMER ? AFTER Timeout_ALTTIMER PLUS hundred.ms 

43           ...  MyChan pause do background task (starvation possible) 

44           -- skew and jitter 

45 : 

Listing 2. General timers in occam. 

                                                           
5 Note that the Consume process in a proper Commstime implementation in fact does use time arithmetic 

(for performance measurement).  We measured consumed time with the debugger. 
6 To free ourselves from the ChanSched ANSI C extended Commstime, the next two examples stand for 

themselves, reflecting only the additional timer aspects of P_Prefix. 



  

Scheduling is enabled AFTER the specified timeouts. Therefore both timer types will 
cause jitter, but REPTIMER will be without skew, provided a timeout is handled before the 
next one is due. This is the same as for the code in Listing 1. 

In occam, it is the process code that does the necessary time arithmetic. Inputting 
system time from any timer into an INT (lines 30 and 33) happens immediately – no 
synchronisation is involved that may cause blocking. These absolute time values are used 
to calculate the next absolute timeout value (lines 31 and 42) and used by the ALT guards 
(lines 35 and 42). The language requires the programmer to manage these values. We 
remember working with occam code.  Should the TIMER or the INT have clock or time in 

its name (or neither)? And when reading other people’s code: is now a TIMER or an INT?  
The INT holding those absolute time values obfuscated the thinking process. 

1.4 New Timers for occam 

 
46 PROC P_Listing3 (VAL INT n, CHAN INT InChan? OutChan!)  -- extended “Prefix” 

47   TIMER My_ALTTIMER, My_REPTIMER:   -- only timers, no variables 

48   SEQ 

49     OutChan ! n 

50     SET_TIMER (REPTIMER, My_REPTIMER, 30, MINUTE, 24H) 

51     SET_TIMER (ALTTIMER, My_ALTTIMER, 0, MILLISEC, 32BIT) 

52     WHILE TRUE 

53       PRI ALT 

54         My_REPTIMER ? AFTER () 

55           ...  process every 30 minutes (no timeout value to compute) 

56           -- no skew, only jitter 

57         INT Data: 

58         InChan ? Data 

59           ...  process Data 

60         My_ALTTIMER ? AFTER (100) 

61           ...  MyChan pause do background task (starvation possible) 

62           -- skew and jitter 

63 : 

Listing 3.  Concrete configurable timers in a new occam. 

Listing 3 shows a suggestion of how to rectify. Here, we don’t need to do time 
arithmetic. No declaration like Line 26 is needed – we never see those INT values. We just 
have TIMERs, which now behave more like abstract data types: SET_TIMER is parameterised 
with unit (granularity) and length (max time). Line 50 sets a granularity of 1 minute and 
orders a tick every 30 minutes – thus needs 60 x 24 = 1440 (i.e. INT16 is enough) to count 
up to 24 hours. Line 51 enables timeouts up to 232 milliseconds – some 49 days (INT32).  

Lines 50 and 51 also define the type of timer: ALTTIMER or REPTIMER. 
So, we now have a set of configurable timers, mixable within the same ALT.  

A restriction is that there may be only one ALTTIMER, since it defines the handling of 
silent channels.  

The semantics of EGGREPTIMERs are that they are treated like channels: associated 
content is not touched when the ALT is taken. In this case it means that a stopped or running 
timer will stay stopped or running. 

Observe that we have not banned the possibility to read system time and do arithmetic 
with time. 

We are not concerned about precise language syntax here; enough to say that we are 
uncertain about parameters to AFTER in Lines 54 and 60. Neither have usage rules and/or 
runtime checks for these timers been considered.  

Another point is that we suggest to initialise an EGGREPTIMER with the SET-command, 
and start it in the ALT – as we do in ChanSched (see below). It may start to run straight 



away. However, in any case it will timeout in the ALT.  It is outside the scope of this paper 
to discuss the precise semantics or semantic differences of these two possibilities, or the 
enforcement of usage rules by a compiler. Our choice compares to calculating a new 
timeout value (initialise) and then using (start) that timeout in a classical occam AFTER. 

1.5 More on our ANSI C-based ChanSched System 

1.5.1 Some Implementation Issues 

Our implementation relies on a separate timer server process P_Timers_Handler, handling 
any number of timeouts (Figure 1). It delivers timeouts through asynchronous send type 
channels carrying no data, called TIMER channels, one per EGGREPTIMER. 

Figure 1.  Our test system, called “extended Commstime”. 

(See Listing 1 for P_Prefix code) 

 
An individual asynchronous non-blocking timer channel thus represents each timer, so 

any number of these may be signalled simultaneously. When a new EGGREPTIMER is added, 
the timer process is recompiled with a larger set of timers, controlled by a constant drawn 
from a table. So, once written and tested, the timer process requires no further editing. 

Initially, we did parameter handling of EGGREPTIMERs in the ALT, modeled by how the 
ALTTIMER is handled, where AFTER has a parameter. However, we soon realised that this 
was impractical, since start, restart and preemptive stop often would be easiest coded (and 
consequently, understood) away from the ALT. However, the macros/functions used to 
handle the start, restart and stop do fill the timer data structure, including the value for next 
timeout. So, there should not be synchronising points between timer set and the ALT, as this 

could cause a wanted timeout to have passed before the ALT was reached. Section 1.4 
discusses this in more detail for the new occam. 



  

We use a function call and no real channel communication to set the EGGREPTIMERs 
parameters, used by the concurrent P_Timers_Handler. This does not violate shared value 
exclusive usage, due to careful coding hidden from the user and the “run-to-completion” 
semantics of our runtime system. Therefore, any buffer process is not needed. 

P_Timers_Handler takes its "tick updated" signal from a signal channel, sent directly 
from the system timer interrupt. Processor sleep continues until the next timeout, if there is 
no other pending work.  

1.6 Discussion and Conclusion 

The EGGTIMER and REPTIMER do not seem to interfere with the ALTTIMER, even if their 

states outlive the ALT. To outlive the ALT is not as unique as one may think: any channel 
would in a way outlive the ALT, since it is possible for a process to be first on a channel 

when the input ALT is not active. This is, in fact, a bearing paradigm. 
We have not done any research to find existing uses of this concept in different 

programming environments. We certainly suspect this could exist. 
Raising timers from "link level" ALTTIMER to "application level" EGGREPTIMERs we 

feel is a substantial move towards a more flexible programming paradigm for timers, in our 
ANSI C based system. Now, none of the processes that need application timers need to do 
any busy poll. It improves understanding, coding and battery life. 

Configurability of the timers has been shown. A new occam may benefit from these 
ideas as well. We have done no formal verification of EGG or REPTIMERs. 

2. Cooperative Scheduling via the Proctor Table 

2.1 The Scheduler is Not as Transparent to User Code as we Thought 

This section only considers Listing 1. As described in the introduction, the non-preemptive 
scheduler controlling an asynchronous message system with processes that have run-to-
completion semantics had never been designed to reschedule to synchronisation points, 
since there are no synchronisation points in the paradigm. So we built a layer on top of it  
([2] and [3]), looking heavily to the SPoC [6] occam to C translator. 

We had learnt that the asynchronous scheduler worked like the synchronous scheduler 
of SPoC, which indeed had a rich set of synchronisation points. However, that had occam 
source code on top. The SPoC scheduler had unique states for channel communication (i.e. 
synchronisation points) and the compiler flattened application states and communication 
states. This is the model we had used, where we did flattening of the two state spaces (in 
ANSI C) by hand. 

Discovering the obvious – to make channel visibility be like many channel-based 
libraries – has been a long way to go [1].  The goal described in that note was to “send and 

send and then receive, including ALT” sequentially in code, with no visible communication 
states in between.  

So we decided to make a new cooperative scheduler from scratch, also motivated by 
the Safety Integrity Level (SIL) requirements as defined by IEC 61508, where arguing 
along the CSP line of thinking is appreciated [7].  

Our main criterion for a new scheduler was that, in some way or another, it should be 
able to reschedule a process to the code immediately following the synchronisation point. 
This is when the process had been first on a channel (or set of input channels) and should 
not proceed until the second contender arrived at the other end. This is the same 
functionality as described in [2] and [3] – but with invisible synchronisation points. 



2.2 The Proctor Scheduling Table 

Our solution was the “proctor” jump table: a name invented by us, illustrating that it takes 
care of scheduling and acts on behalf of the scheduler. It is generated by standard ANSI C  
pre-processor constructs, by hand coding or by a script. Errors in the table would cause the 
compiler either to issue an error about a missing label, or to warn about an unused label. 
We raised that warning to become an error, to make the scheme bullet proof. 

Listing 4 shows how the CHAN_OUT macro first stores the actual line number, then 
makes a label like SYNCH_8_L, which is the rescheduling point (in Listing 1). Observe that a 
C macro, no matter how many lines it may look, is laid out as a single line by the pre-

processor. Now, the system has a legal label to which it can reschedule; so a goto (if 
automatically generated) is a viable mechanism to use. 

 
64 #define SCHEDULE_AT goto 

65  

66 #define CAT(a,b,c,d,e) a##b##c##d##e // Concatenate to f.ex. “SYNCH_8_L” 

67  

68 #define SYNCH_LABEL(a,b,c,d,e) CAT(a,b,c,d,e) // Label for Proctor-table 

69  

70 #define PROC_DESCHEDULE_AND_LABEL() \ 

71         CP->LineNo = __LINE__; \ 

72         return; \ 

73         SYNCH_LABEL(SYNCH,_,__LINE__,_,L): 

74  

75 #define CHAN_OUT(chan,dataptr,len) \ 

76         if (ChanSched_ChanOut(chan,dataptr,len) == FALSE) \ 

77         { \ 

78             PROC_DESCHEDULE_AND_LABEL(); \ 

79         } \ 

80         g_ThisAltTaken = FALSE  

Listing 4.  Some macros used to build, and usage of line number labels. 

The proctor table takes us there. A goto line number (SCHEDULE_AT) taking 
CP->LineNo as parameter (which is not on the stack but in process context) has survived 
the return: 

81 #define PROCTOR_PREFIX()\ 

82         switch (CP->LineNo)\ 

83         {\ 

84             case 0: break;\ 

85             case 8: SCHEDULE_AT SYNCH_8_L;\ 

86             case 17: SCHEDULE_AT SYNCH_17_L;\ 

87             case 21: SCHEDULE_AT SYNCH_21_L;\ 

88             DEFAULT_EXIT\ 

89         } 

Listing 5.  The proctor-table. 

This is standard ANSI C. We avoid the extension called “computed goto” (address) that 
is available in gcc, a compiler we do not use for these applications [8]. 

We could call our solution “scripted goto” (label), just to differentiate. Listing 6 shows 
the output of our script, which generates the proctor table file for us: 
 
90 In P_Commstime.c there were 4 processes, and 10 synchronisation points 

91 In P_Timers_Handler.c there was 1 process, and 1 synchronisation point 

92 There were a total of 2 files, 5 processes and 11 syncronisation points 

Listing 6. Log from the ProctorPreprocessor script. 



  

When the scheduler always schedules the process to the function start in Listing 1, the 
proctor table macro causes the process to re-schedule to the correct line. The code is truly 
invisible but available, since the macro body is contained in a separate #included file. 

Initially, a dummy CP->LineNo, set up by the run-time system, is set to zero. This 
takes the process through its initialising code: from the proctor table to the first 
synchronisation point, Line 8 of Listing 1. 

2.3 Discussion and Conclusion 

The complexities of a preemptive scheduler – and the fact that we do not need one – makes 
this solution quite usable. It is safe and invisible to the user, who do not need to relate to 
link level states (also called communication states or synchronisation points). So, the user 
needs to relate only to application states. The code is portable, standard ANSI C. Local 
process variables that reside on the stack will not survive a synchronisation point, so the 
programmer has to place these in process context. The overhead of the proctor jump table 
also includes storing the next line number at run-time, but this is small and acceptable for 
us. These points are less frequent than function calls, but are comparable in cycle count.   

3. Conclusions 

Section 1 shows that differentiating configurable types of timers in the ALT may raise timers 
to a higher and more portable level. 

Section 2 displays the use of a standard ANSI C feature wrapped into a jump (proctor) 
table, in service for a cooperative scheduler.  

Making ANSI C process scheduling with invisible channel communication and 
synchronisation states is a step forward for us. With EGGTIMERs and REPTIMERs, process 
application code is now easier to write, read and understand. 

We have also noted that there may be a need to show timer handling into an “extended 
Commstime”, so that implementors could have a common platform also for this. 
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