

New ALT for Application Timers

and Synchronisation Point Scheduling

(Two excerpts from a small channel based scheduler)

 Øyvind TEIG and Per Johan VANNEBO

Autronica Fire and Security
1
, Trondheim, Norway

{oyvind.teig, per.vannebo}@autronicafire.no

Abstract. During the design of a small channel-based concurrency runtime system
(ChanSched, written in ANSI C), we saw that application timers (which we call

egg and repeat timers) could be part of its supported ALT construct, even if their

states live through several ALTs. There are no side effects into the ALT semantics,

which enable waiting for channels, channel timeout and, now, the new application

timers. Application timers are no longer busy polled for timeout by the process. We

show how the classical occam language may benefit from a spin-off of this same

idea. Secondly, we wanted application programmers to be freed from their earlier

practice of explicitly coding communication states at channel synchronisation

points, which was needed by a layered in-house scheduler. This led us to develop an
alternative to the non-ANSI C “computed goto” (found in gcc). Instead, we use a

switch/case with goto line-number-tags in a synch-point-table for scheduling.

We call this table, one for each process, a proctor table. The programmer does not

need to manage this table, which is generated with a script, and hidden within an
#include file.

Keywords. application timers, alternative, synch-point scheduling

Introduction

This paper describes two ideas that have been implemented as part of a small runtime
system (ChanSched), to be used in a forthcoming new product. ChanSched relates to
processes, synchronous, zero-buffered, rendezvous-type, one-way data channels and
asynchronous signal / timeout data-free channels.

It started with the first author showing the second author a private “designer’s note”
[1], where the problem of mixing communication states and application states is discussed.
Channel state machines are visible in the code, on par with application states. This state mix
had been incurred by an earlier runtime system, where synchronous channels were running
on top of an asynchronous runtime system. With ChanSched, we now wanted to make it
simpler for new programmers to understand and use these channels as a fundamental design
and implementation paradigm. Even if the earlier system, described in [2] and [3], has
worked fluently for years, the reasonable critique by readers was that the code was
somewhat difficult to understand.

1 A UTC Fire & Security Company.
 NO-7483 Trondheim, Norway. See http://www.autronicafire.no

So, the second author was inspired to build ChanSched from scratch, based on this
earlier experience. Added goals were to use it in systems with low power consumption and
high formal product “approval level”.

During this development, which ping-ponged between the two of us, we solved two
problems present with the previous system: how do we manage application timers without

busy-polling and how do we schedule to synchronisation points using only ANSI C ?

1. Application Timers in a New ALT

1.1 The Problem and our Problem

The problem was that with the earlier system we had “busy-polled” application timers to
trigger actions. The actions could be status checks once per hour or lights to blink in certain
patterns. On porting this to ChanSched, we wanted to avoid polling. We had written this
channel-based runtime system in C, where its ALT could either have channel components, or
a single2 timer that could timeout on silent channels and nothing more. We called the latter
an ALTTIMER, defined as non-application timer. We also wanted several timers and channel
handling to go on concurrently in the same ALT. Earlier experience with occam [4] was of
some help when designing this, but when going through the referees’ comments to this
paper, we understood that knowledge had withered. We were asked to show examples in
occam-like syntax. Obeying this, we surprisingly (and problematically for the paper, we
thought) saw that occam in fact does not need to build application timers by polling – its
designers had included them in the ALT! Something had been lost in our translation to C.
However, the surprise persisted when we saw that this exercise showed that even classical
occam could benefit from our thoughts. Looking over our shoulders, maybe there was a
reason why the occam timers had timed out for us.

1.2 Our ANSI C based ChanSched System and the New Flora of Timers

We start by showing a ChanSched process. Then, we proceed with a classic occam example
and finally to a suggestion for a new timer mechanism for occam. Then, we will come back
and do a more thorough discussion of our implementation.

The code (Listing 1) is an “extended” version of the Prefix process in Commstime3
([5] and Figure 1). Our cooperative, non-preemptive scheduler runs processes by calling the
process by name, via its resolved for once address. So, on every scheduling and
rescheduling, line 3 is entered. There, the process’s context pointer is restored from the
parameter g_CP (pointing to a place in the heap), filled by the scheduler. In the second half
of this paper we shall see how the PROCTOR_PREFIX causes cooperative synchronisation (or

blocking) points in the code to be reached, by jumping over lines, even into the while
loop.

The consequence of this is that lines 5-7 are initialisation code. Knowing this one
could try to understand the code as one would occam: CHAN_OUT and gALT_END are
synchronisation points, meaning that line 9 will run only when a communication has taken
place, and line 18 when a communication or a timeout has happened. We will not go
through every detail here, but concentrate on the timers.

2 Our implementation handled only a single timer in its ALT.
3 When we developed ChanSched, we used Commstime as our natural test case. Since it has no ALT timer

handling in any of its processes, we decided to insert our timers in P_Prefix, for no concrete reason.

01 Void P_Prefix (void) // extended “Prefix”

02 {

03 Prefix_CP_a CP = (Prefix_CP_a)g_CP; // get process Context from Scheduler

04 PROCTOR_PREFIX() // jump table (see Section 2)

05 ... some initialisation

06 SET_EGGTIMER (CHAN_EGGTIMER, CP->LED_Timeout_Tick);

07 SET_REPTIMER (CHAN_REPTIMER, ADC_TIME_TICKS);

08 CHAN_OUT (CHAN_DATA_0, &CP->Data_0, sizeof(CP->Data_0)); // first output

09 while (TRUE)

10 {

11 ALT(); // this is the needed ”PRI_ALT”

12 ALT_EGGREPTIMER_IN (CHAN_EGGTIMER);

13 ALT_EGGREPTIMER_IN (CHAN_REPTIMER);

14 gALT_SIGNAL_CHAN_IN (CHAN_SIGNAL_AD_READY);

15 ALT_CHAN_IN (CHAN_DATA_2, &CP->Data_2, sizeof (CP->Data_2));

16 ALT_ALTTIMER_IN (CHAN_ALTTIMER, TIME_TICKS_100_MSECS);

17 gALT_END();

18 switch (g_ThisChannelId)

19 {

20 ... process the guard that has been taken, e.g. CHAN_DATA_2

21 CHAN_OUT (CHAN_DATA_0, &CP->Data_0, sizeof (CP->Data_0));

22 };

23 }

24 }

Listing 1. EGGTIMER, REPTIMER and PROCTOR_PREFIX (ANSI C and macros).

(See Figure 1 for process data-flow diagram)

Note that ALT guard preconditions are hidden – they are controlled with SET and CLEAR
macros (none shown). Only the input macros beginning with ‘g’ check preconditions; the
others do not waste time testing a constant TRUE value.

As one may understand from the above, timers are seen as channels – one channel per
timer. Listing 1 is discussed in more detail throughout this paper.

1.2.1 Flora of Timers: ALTTIMER

Line 16 is our ALTTIMER. As mentioned, when neither channel CHAN_SIGNAL_AD_READY4
nor CHAN_DATA_2 have communicated for the last 100 ms, the CHAN_ALTTIMER guard
causes the ALT to be taken. (The ALT structure is said to be “taken” by the first ready guard.)
When a channel guard is taken, the underlying timer associated with the ALTTIMER is
stopped. It is restarted again every time the ALT is entered.

1.2.2 ALTTIMER and Very Long Application Timers

The ALTTIMER was the only form of timer we had in our first port [2, 3]. Now we wanted to
get further. On any scheduling from that timeout or any channel input, function calls had
been made to handle application timers. An application timer is an object in local process
context, used as parameter to a timer library. We needed to start, stop or poll for timeout,
every so often. Since channels were often silent, the scheduling caused by ALTTIMERs
bounded the resolution of our application timers. If a timeout were 100 ms, then a 10
seconds timeout would be accurate to 100 ms.

By polling with a library call, we could handle timeouts longer that the global system
timer word. The 100 ms could easily build timeouts of days – out of reach of a shorter
system timer, which increments a 10 ms tick into a 16 bits integer. It is the system timer
that is the basic mechanism of the ALT timer; the same is true for occam. The main rationale
for application timer polling in smaller real-time systems may be this extended flexibility.

4 In order to also test non-timer interrupts, we included an analogue input ready channel. The potentiometer
value thus read was used to pulse control a blinking LED. This way our example became rather complete.

1.2.3 Flora of Timers: EGGTIMER and REPTIMER

In order to avoid application timers by polling, we decided to implement two new timer
types and make them usable directly in the ALT. An EGGTIMER times out once (at a pre-
defined time) and an REPTIMER times out repeatedly (at a pre-defined sequence of equally

spaced times). Generically, we will call them EGGREPTIMERs here.
These timers are initialised in application code before the ALT. After initialisation, they

will be started the first time they are seen in an ALT – the next time the ALT is reached, they
will continue to run (discussed later). They are not stopped when their ALT is taken by some
other guard, only when they have timed out. So long as their ALT remains on the process
execution path (e.g. in a loop), sooner or later they will time out and be taken. Even then,
the REPTIMER will already have continued, with no skew and low jitter handling. However,

EGGREPTIMERs may be stopped by application code before they have timed out. In this
respect, the semantics of ALTTIMER and EGGREPTIMER differ – since an ALTTIMER has no

meaning outside an ALT.

1.2.4 Arithmetic of Time

Observe that no use of our timers makes reference to system time, or any derived value used
to store some previous or future time. Therefore, no time arithmetic with values derived
from system time may be done. We have in fact not yet seen any need for time arithmetic at
process level5. If this for some reason is needed, we could easily add a function to read
system time.

1.3 Timers in Classical occam

As we were forced to rediscover: occam is able to handle any timer, including our
application timers. In listing 2, there is an example of an ALTTIMER and a REPTIMER6.

25 PROC P_Listing2 (VAL INT n, CHAN INT InChan? OutChan!) -- extended “Prefix”

26 INT Timeout_ALTTIMER, Timeout_REPTIMER:

27 TIMER Clock_ALTTIMER, Clock_REPTIMER:

28 SEQ

29 OutChan ! n

30 Clock_REPTIMER ? Timeout_REPTIMER

31 Timeout_REPTIMER := Timeout_REPTIMER PLUS half.an.hour

32 WHILE TRUE

33 Clock_ALTTIMER ? Timeout_ALTTIMER

34 PRI ALT

35 Clock_REPTIMER ? AFTER Timeout_REPTIMER

36 ... process every 30 minutes

37 Timeout_REPTIMER := Timeout_REPTIMER PLUS half.an.hour

38 -- no skew, only jitter

39 INT Data:

40 InChan ? Data

41 ... process Data

42 Clock_ALTTIMER ? AFTER Timeout_ALTTIMER PLUS hundred.ms

43 ... MyChan pause do background task (starvation possible)

44 -- skew and jitter

45 :

Listing 2. General timers in occam.

5 Note that the Consume process in a proper Commstime implementation in fact does use time arithmetic

(for performance measurement). We measured consumed time with the debugger.
6 To free ourselves from the ChanSched ANSI C extended Commstime, the next two examples stand for

themselves, reflecting only the additional timer aspects of P_Prefix.

Scheduling is enabled AFTER the specified timeouts. Therefore both timer types will
cause jitter, but REPTIMER will be without skew, provided a timeout is handled before the
next one is due. This is the same as for the code in Listing 1.

In occam, it is the process code that does the necessary time arithmetic. Inputting
system time from any timer into an INT (lines 30 and 33) happens immediately – no
synchronisation is involved that may cause blocking. These absolute time values are used
to calculate the next absolute timeout value (lines 31 and 42) and used by the ALT guards
(lines 35 and 42). The language requires the programmer to manage these values. We
remember working with occam code. Should the TIMER or the INT have clock or time in

its name (or neither)? And when reading other people’s code: is now a TIMER or an INT?
The INT holding those absolute time values obfuscated the thinking process.

1.4 New Timers for occam

46 PROC P_Listing3 (VAL INT n, CHAN INT InChan? OutChan!) -- extended “Prefix”

47 TIMER My_ALTTIMER, My_REPTIMER: -- only timers, no variables

48 SEQ

49 OutChan ! n

50 SET_TIMER (REPTIMER, My_REPTIMER, 30, MINUTE, 24H)

51 SET_TIMER (ALTTIMER, My_ALTTIMER, 0, MILLISEC, 32BIT)

52 WHILE TRUE

53 PRI ALT

54 My_REPTIMER ? AFTER ()

55 ... process every 30 minutes (no timeout value to compute)

56 -- no skew, only jitter

57 INT Data:

58 InChan ? Data

59 ... process Data

60 My_ALTTIMER ? AFTER (100)

61 ... MyChan pause do background task (starvation possible)

62 -- skew and jitter

63 :

Listing 3. Concrete configurable timers in a new occam.

Listing 3 shows a suggestion of how to rectify. Here, we don’t need to do time
arithmetic. No declaration like Line 26 is needed – we never see those INT values. We just
have TIMERs, which now behave more like abstract data types: SET_TIMER is parameterised
with unit (granularity) and length (max time). Line 50 sets a granularity of 1 minute and
orders a tick every 30 minutes – thus needs 60 x 24 = 1440 (i.e. INT16 is enough) to count
up to 24 hours. Line 51 enables timeouts up to 232 milliseconds – some 49 days (INT32).

Lines 50 and 51 also define the type of timer: ALTTIMER or REPTIMER.
So, we now have a set of configurable timers, mixable within the same ALT.

A restriction is that there may be only one ALTTIMER, since it defines the handling of
silent channels.

The semantics of EGGREPTIMERs are that they are treated like channels: associated
content is not touched when the ALT is taken. In this case it means that a stopped or running
timer will stay stopped or running.

Observe that we have not banned the possibility to read system time and do arithmetic
with time.

We are not concerned about precise language syntax here; enough to say that we are
uncertain about parameters to AFTER in Lines 54 and 60. Neither have usage rules and/or
runtime checks for these timers been considered.

Another point is that we suggest to initialise an EGGREPTIMER with the SET-command,
and start it in the ALT – as we do in ChanSched (see below). It may start to run straight

away. However, in any case it will timeout in the ALT. It is outside the scope of this paper
to discuss the precise semantics or semantic differences of these two possibilities, or the
enforcement of usage rules by a compiler. Our choice compares to calculating a new
timeout value (initialise) and then using (start) that timeout in a classical occam AFTER.

1.5 More on our ANSI C-based ChanSched System

1.5.1 Some Implementation Issues

Our implementation relies on a separate timer server process P_Timers_Handler, handling
any number of timeouts (Figure 1). It delivers timeouts through asynchronous send type
channels carrying no data, called TIMER channels, one per EGGREPTIMER.

Figure 1. Our test system, called “extended Commstime”.

(See Listing 1 for P_Prefix code)

An individual asynchronous non-blocking timer channel thus represents each timer, so

any number of these may be signalled simultaneously. When a new EGGREPTIMER is added,
the timer process is recompiled with a larger set of timers, controlled by a constant drawn
from a table. So, once written and tested, the timer process requires no further editing.

Initially, we did parameter handling of EGGREPTIMERs in the ALT, modeled by how the
ALTTIMER is handled, where AFTER has a parameter. However, we soon realised that this
was impractical, since start, restart and preemptive stop often would be easiest coded (and
consequently, understood) away from the ALT. However, the macros/functions used to
handle the start, restart and stop do fill the timer data structure, including the value for next
timeout. So, there should not be synchronising points between timer set and the ALT, as this

could cause a wanted timeout to have passed before the ALT was reached. Section 1.4
discusses this in more detail for the new occam.

We use a function call and no real channel communication to set the EGGREPTIMERs
parameters, used by the concurrent P_Timers_Handler. This does not violate shared value
exclusive usage, due to careful coding hidden from the user and the “run-to-completion”
semantics of our runtime system. Therefore, any buffer process is not needed.

P_Timers_Handler takes its "tick updated" signal from a signal channel, sent directly
from the system timer interrupt. Processor sleep continues until the next timeout, if there is
no other pending work.

1.6 Discussion and Conclusion

The EGGTIMER and REPTIMER do not seem to interfere with the ALTTIMER, even if their

states outlive the ALT. To outlive the ALT is not as unique as one may think: any channel
would in a way outlive the ALT, since it is possible for a process to be first on a channel

when the input ALT is not active. This is, in fact, a bearing paradigm.
We have not done any research to find existing uses of this concept in different

programming environments. We certainly suspect this could exist.
Raising timers from "link level" ALTTIMER to "application level" EGGREPTIMERs we

feel is a substantial move towards a more flexible programming paradigm for timers, in our
ANSI C based system. Now, none of the processes that need application timers need to do
any busy poll. It improves understanding, coding and battery life.

Configurability of the timers has been shown. A new occam may benefit from these
ideas as well. We have done no formal verification of EGG or REPTIMERs.

2. Cooperative Scheduling via the Proctor Table

2.1 The Scheduler is Not as Transparent to User Code as we Thought

This section only considers Listing 1. As described in the introduction, the non-preemptive
scheduler controlling an asynchronous message system with processes that have run-to-
completion semantics had never been designed to reschedule to synchronisation points,
since there are no synchronisation points in the paradigm. So we built a layer on top of it
([2] and [3]), looking heavily to the SPoC [6] occam to C translator.

We had learnt that the asynchronous scheduler worked like the synchronous scheduler
of SPoC, which indeed had a rich set of synchronisation points. However, that had occam
source code on top. The SPoC scheduler had unique states for channel communication (i.e.
synchronisation points) and the compiler flattened application states and communication
states. This is the model we had used, where we did flattening of the two state spaces (in
ANSI C) by hand.

Discovering the obvious – to make channel visibility be like many channel-based
libraries – has been a long way to go [1]. The goal described in that note was to “send and

send and then receive, including ALT” sequentially in code, with no visible communication
states in between.

So we decided to make a new cooperative scheduler from scratch, also motivated by
the Safety Integrity Level (SIL) requirements as defined by IEC 61508, where arguing
along the CSP line of thinking is appreciated [7].

Our main criterion for a new scheduler was that, in some way or another, it should be
able to reschedule a process to the code immediately following the synchronisation point.
This is when the process had been first on a channel (or set of input channels) and should
not proceed until the second contender arrived at the other end. This is the same
functionality as described in [2] and [3] – but with invisible synchronisation points.

2.2 The Proctor Scheduling Table

Our solution was the “proctor” jump table: a name invented by us, illustrating that it takes
care of scheduling and acts on behalf of the scheduler. It is generated by standard ANSI C
pre-processor constructs, by hand coding or by a script. Errors in the table would cause the
compiler either to issue an error about a missing label, or to warn about an unused label.
We raised that warning to become an error, to make the scheme bullet proof.

Listing 4 shows how the CHAN_OUT macro first stores the actual line number, then
makes a label like SYNCH_8_L, which is the rescheduling point (in Listing 1). Observe that a
C macro, no matter how many lines it may look, is laid out as a single line by the pre-

processor. Now, the system has a legal label to which it can reschedule; so a goto (if
automatically generated) is a viable mechanism to use.

64 #define SCHEDULE_AT goto

65

66 #define CAT(a,b,c,d,e) a##b##c##d##e // Concatenate to f.ex. “SYNCH_8_L”

67

68 #define SYNCH_LABEL(a,b,c,d,e) CAT(a,b,c,d,e) // Label for Proctor-table

69

70 #define PROC_DESCHEDULE_AND_LABEL() \

71 CP->LineNo = __LINE__; \

72 return; \

73 SYNCH_LABEL(SYNCH,_,__LINE__,_,L):

74

75 #define CHAN_OUT(chan,dataptr,len) \

76 if (ChanSched_ChanOut(chan,dataptr,len) == FALSE) \

77 { \

78 PROC_DESCHEDULE_AND_LABEL(); \

79 } \

80 g_ThisAltTaken = FALSE

Listing 4. Some macros used to build, and usage of line number labels.

The proctor table takes us there. A goto line number (SCHEDULE_AT) taking
CP->LineNo as parameter (which is not on the stack but in process context) has survived
the return:

81 #define PROCTOR_PREFIX()\

82 switch (CP->LineNo)\

83 {\

84 case 0: break;\

85 case 8: SCHEDULE_AT SYNCH_8_L;\

86 case 17: SCHEDULE_AT SYNCH_17_L;\

87 case 21: SCHEDULE_AT SYNCH_21_L;\

88 DEFAULT_EXIT\

89 }

Listing 5. The proctor-table.

This is standard ANSI C. We avoid the extension called “computed goto” (address) that
is available in gcc, a compiler we do not use for these applications [8].

We could call our solution “scripted goto” (label), just to differentiate. Listing 6 shows
the output of our script, which generates the proctor table file for us:

90 In P_Commstime.c there were 4 processes, and 10 synchronisation points

91 In P_Timers_Handler.c there was 1 process, and 1 synchronisation point

92 There were a total of 2 files, 5 processes and 11 syncronisation points

Listing 6. Log from the ProctorPreprocessor script.

When the scheduler always schedules the process to the function start in Listing 1, the
proctor table macro causes the process to re-schedule to the correct line. The code is truly
invisible but available, since the macro body is contained in a separate #included file.

Initially, a dummy CP->LineNo, set up by the run-time system, is set to zero. This
takes the process through its initialising code: from the proctor table to the first
synchronisation point, Line 8 of Listing 1.

2.3 Discussion and Conclusion

The complexities of a preemptive scheduler – and the fact that we do not need one – makes
this solution quite usable. It is safe and invisible to the user, who do not need to relate to
link level states (also called communication states or synchronisation points). So, the user
needs to relate only to application states. The code is portable, standard ANSI C. Local
process variables that reside on the stack will not survive a synchronisation point, so the
programmer has to place these in process context. The overhead of the proctor jump table
also includes storing the next line number at run-time, but this is small and acceptable for
us. These points are less frequent than function calls, but are comparable in cycle count.

3. Conclusions

Section 1 shows that differentiating configurable types of timers in the ALT may raise timers
to a higher and more portable level.

Section 2 displays the use of a standard ANSI C feature wrapped into a jump (proctor)
table, in service for a cooperative scheduler.

Making ANSI C process scheduling with invisible channel communication and
synchronisation states is a step forward for us. With EGGTIMERs and REPTIMERs, process
application code is now easier to write, read and understand.

We have also noted that there may be a need to show timer handling into an “extended
Commstime”, so that implementors could have a common platform also for this.

Acknowledgement

We thank the management at the Autronica Fire and Security’s development department in
Trondheim for allowing us to publish this work.

[Øyvind Teig is Senior Development Engineer at Autronica Fire and Security. He has worked with embedded

systems for more than 30 years, and is especially interested in real-time language issues (see

http://www.teigfam.net/oyvind/pub for publications and contact information). Per Johan Vannebo

is Technical Expert at Autronica Fire and Security. He has worked with embedded systems for 13 years.]

References

[1] Ø. Teig, A scheduler is not as transparent as I thought (Why CSP-type blocking channel state machines

were visible, and how to make them disappear), in ‘Designer's Notes’ #18, at author’s home page,

http://www.teigfam.net/oyvind/pub/notes/18_A_scheduler_is_not_so_transparent.html

[2] Ø. Teig, From message queue to ready queue (Case study of a small, dependable synchronous blocking

channels API – Ship & forget rather than send & forget), in ‘ERCIM Workshop on Dependable

Software Intensive Embedded Systems’, in cooperation with 31
st
. EUROMICRO Conference on

Software Engineering and Advanced Applications (SEAA), Porto, Portugal, 2005. IEEE Computer Press,

ISBN 2-912335-15-9. Also at http://www.teigfam.net/oyvind/pub/pub_details.html#Ercim05

[3] Ø. Teig, No Blocking on Yesterday’s Embedded CSP Implementation (The Rubber Band of Getting it

Right and Simple), in ‘Communicating Process Architectures 2006’, P.H. Welch, J. Kerridge, and

F.R.M. Barnes (Eds.), pp. 331-338, IOS Press, 2006.

Also at http://www.teigfam.net/oyvind/pub/pub_details.html#NoBlocking

[4] Inmos Limited, The occam programming language. Prentice Hall, 1984.

Also see http://en.wikipedia.org/wiki/occam_(programming_language)

[5] P.H. Welch and F.R.M. Barnes, Prioritised Dynamic Communicating Processes - Part I.

In ‘Communicating Process Architectures 2002’, J. Pascoe, R. Loader and V. Sunderam (Eds.),

pp. 321–352, IOS Press, 2002.
[6] M. Debbage, M. Hill, S. Wykes, D. Nicole, Southampton's Portable occam Compiler (SPoC).

In: R. Miles, A. Chalmers (eds.), in ‘Progress in Transputer and occam Research’, WoTUG 17,

pp. 40-55. IOS Press, Amsterdam, 1994.

[7] IEC 61508, SIL: Safety Integrity Level (SIL level), a safety-related metric used to quantify a system's

safety level. See http://en.wikipedia.org/wiki/Safety_Integrity_Level

[8] Wikipedia, Computed goto. See http://en.wikipedia.org/wiki/Goto_(command)#Computed_GOTO

