
Faraz TORSHIZIa, Jonathan S. OSTROFFb, Richard F. PAIGEc and Marsha CHECHIKa

a University of Toronto, Canada
b York University, Canada
c University of York, UK

Communicating Process Architectures (CPA’09)

http://www.cs.toronto.edu/~faraz

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 2

 Techniques for writing concurrent code are still low-level

 semaphores, locks, sync blocks, monitors etc.

 hard to test and maintain

 There is a large gap between the above
mechanisms and the popular object-
oriented concepts

 The SCOOP model [Meyer97] is an
attempt to bridge this gap in OO context
 Originally developed for Eiffel language

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 3

 Basic concept of OO computation: routine call x.f(a)

Action Object

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 4

 Basic concept of OO computation: routine call x.f(a)

Action Object

Processor

 SCOOP adds the notion of a processor (handler)

 Processor is an abstract concept used to define behavior

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 5

 x.f (a) – execute routine f on the object attached to x.

 In a sequential context f is synchronous

 In a concurrent context, if x denotes an object handled by
another processor, f is asynchronous

 This semantic difference (synchronous vs. asynchronous)

has a syntactic marker: separate

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 6

x: separate X

...

x.f (a)

P1

o1

P2

o2
x

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 7

 Handling: All calls on an object are executed by its
associated processor (no object sharing)

 Mutual exclusion: At most one method may execute on
an object at a time

 Separateness:

 Calls on non-separate objects are synchronous

 Calls on separate objects are asynchronous

SCOOP programs are free of data races and atomicity
violations by construction

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 8

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 9

Using sequential library
in concurrent context

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 10

Using sequential library
in concurrent context

Automatic locking of
arguments

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 11

Using sequential library
in concurrent context

Automatic locking of
arguments

Wait condition

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 12

Using sequential library
in concurrent context

Automatic locking of
arguments

Wait condition

Async calls

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 13

 The SCOOP model is developed as an extension to Eiffel
language

 A pattern for SCOOP that makes it feasible to apply the
SCOOP concurrency model to other OO languages

Eiffel
•clean, DbC, full OO
•not popular as it should

SCOOP
•High-level abstraction for concurrency
•Automatic synchronization
•Data race freedom
•Atomicity violation freedom
•Fair scheduling
•Using sequential libraries in concurrent context

Java/C#
•used by many people
•no support for DbC

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 14

Input SCOOP program

Consistency checking

Core library

Multi-threaded output

Translation rules

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 15

 To write the SCOOP program we use the meta-data
facility of the supporting language

 Annotations in Java and attributes in C#

 One keyword in Eiffel (separate) vs. two annotations in
other languages (separate and await)

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 16

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 17

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 18

Input SCOOP program

Consistency checking

Core library

Multi-threaded output

Translation rules

Supplier

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 19

public class X {

A a2;

…

}

@separate X x1;

A a1;

…

public void r (@separate X x)

{

a1 = x.a2;

}

…

r (x1);

a1....

client supplier
x1

a2

Client

a1

Supplier

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 20

public class X {

A a2;

…

}

@separate X x1;

A a1;

…

public void r (@separate X x)

{

a1 = x.a2;

}

…

r (x1);

a1....

client supplier
x1

a2

Client

a1

Supplier

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 21

public class X {

A a2;

…

}

@separate X x1;

A a1;

…

public void r (@separate X x)

{

a1 = x.a2;

}

…

r (x1);

a1.... Datarace on a1

client supplier
x1

a2

Client

a1

Supplier

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 22

public class X {

A a2;

…

}

@separate X x1;

A a1;

…

public void r (@separate X x)

{

a1 = x.a2;

}

…

r (x1);

a1.... Datarace on a1

Not allowed -- Compile-time error

client supplier
x1

a2

Client

a1

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 23

Input SCOOP program

Consistency checking

Core library

Multi-threaded output

Translation rules

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 24

 The core library provides the essentials for modeling
SCOOP:

 Processors
 Separate and non-separate calls
 Atomic locking of multiple resources
 Wait semantics
 Wait-by-necessity
 Fair scheduling

CPA 2009 25

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 26

 Processors are instances of the Processor class.

 Every processor has a
 Local call stack for local calls
 Remote call queue for remote calls

 Processor repeatedly performs the following:
1. Pops an item off the stack and executes it
2. If the stack is empty, dequeues an item from the remote call

queue and pushes it onto the local call stack
3. If both the stack and the queue are empty, waits for new

requests to be enqueued

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 27

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 28

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 29

Send request

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 30

Send request

(1) Acquire locks

(2) Check wait condition

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 31

Send request

(1) Acquire locks

(2) Check wait condition

Send the “go ahead” signal

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 32

Send request

(1) Acquire locks

(2) Check wait condition

Send the “go ahead” signal

Enqueue call on proc-B and release the lock

Same for call on proc-C

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 33

Send request

(1) Acquire locks

(2) Check wait condition

Send the “go ahead” signal

Enqueue call on proc-B and release the lock

Continue with local activity

Same for call on proc-C

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 34

Input SCOOP program

Consistency checking

Core library

Multi-threaded output

Translation rules

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 35

Input: annotated code

Output: multi-threaded using core library

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 36

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 37

Violation of
consistency rules

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 38

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 39

 Not shown the correctness of translation
 develop more examples in JSCOOP
 check the bi-similar behavior to programs written in Java

 Need for empirical studies
 access the efficiency and effectiveness of the tool

 Add full support for inheritance and genercity

 SCOOP is still prone to deadlocks
 Apply model-checking techniques to detect deadlocks at

compile-time

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 40

 Design pattern for SCOOP that makes it feasible to apply
the SCOOP concurrency model to other OO languages

 Annotation processing and consistency checking
 Core library
 Translation rules

 A prototype implementation for Java based on an
Eclipse plug-in called JSCOOP

 http://code.google.com/p/jscoop

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 41

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 42

1. Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.
2. Piotr Nienaltowski. Practical framework for contract-based concurrent object-

oriented programming, PhD thesis 17031. PhD thesis, Department of
Computer Science, ETH Zurich, 2007.

3. Jonathan S. Ostroff, Faraz Torshizi, Hai Feng Huang, and Bernd Schoeller.
Beyond contracts for concurrency. Formal Aspects of Computing, 21(4):319–
346, 2009.

4. Piotr Nienaltowski. Flexible access control policy for SCOOP. Formal Aspects of
Computing, 21(4):347–362, 2009.

5. Phillip J. Brooke, Richard F. Paige, and Jeremy L. Jacob. A CSP model of Eiffel’s
SCOOP. Formal Aspects of Computing, 19(4):487–512, 2007.

