The SCOOP Concurrency Model in
Java-like Languages

Faraz TORSHIZI?, Jonathan S. OSTROFFP, Richard F. PAIGES and Marsha CHECHIK?
@ University of Toronto, Canada

b York University, Canada

¢ University of York, UK

http://www.cs.toronto.edu/~faraz

Communicating Process Architectures (CPA’09)

Techniques for writing concurrent code are still low-level
= semaphores, locks, sync blocks, monitors etc.
= hard to test and maintain

There is a large gap between the above

mechanisms and the popular object- ’ﬁ
. concurrent
oriented concepts E“” ﬂﬂ E

sequential

The SCOOP model [Meyer97] is an

attempt to bridge this gap in OO context
Originally developed for Eiffel language

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 2

What is SCOOP?

Simple Concurrent Object Oriented Programming

= Basic concept of OO computation: routine call x.f(a)

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto

What is SCOOP?

Simple Concurrent Object Oriented Programming

= Basic concept of OO computation: routine call x.f(a)

= SCOOQOP adds the notion of a processor (handler)

= Processor is an abstract concept used to define behavior

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 4

The “separate” keyword
x.f (a) — execute routine f on the object attached to x.

In a sequential context fis synchronous

In a concurrent context, if x denotes an object handled by
another processor, fis asynchronous

This semantic difference (synchronous vs. asynchronous)
has a syntactic marker: separate

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 5

Separate call

X: separate X

x.f(a)

“—E S

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto

SCOOP requirements

Handling: All calls on an object are executed by its
associated processor (no object sharing)

Mutual exclusion: At most one method may execute on
an object at a time

Separateness:
= Calls on non-separate objects are synchronous
= Calls on separate objects are asynchronous

SCOOP programs are free of data races and atomicity
violations by construction

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 7

class PHILOSOPHER class FORK

create feature
make inuse: BOOLEAN
feature pickup 1is
left, right: separate FORK do
inuse
make (1, r: separate FORK) end
do
left := 1; right := r putdown is
end do
inuse
act end
do end
from until False loop
eat (left, right)
end
end

eat (1, r: separate FORK)

require not (Il.inuse Or r.inuse)

do
l.pickup; r.pickup
—-— local activity —-
1l.putdown; r.putdown

end

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto

True

False

class PHILOSOPHER class FORK

create Using sequential library : feature
make in concurrent context inuse: BOOLEAN
feature pickup 1is
left, right: separate FORK do
lnuse
make (1, r: separate FORK) end
do
left := 1; right := r putdown is
end do
inuse
act end
do end

from until False loop
eat (left, right)
end
end

eat (1, r: separate FORK)

require not (Il.inuse Or r.inuse)

do
l.pickup; r.pickup
—-— local activity —-
1l.putdown; r.putdown

end

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto

True

False

class PHILOSOPHER class FORK

create Using sequential library : feature
make in concurrent context inuse: BOOLEAN
feature pickup 1is
left, right: separate FORK do
lnuse
make (1, r: separate FORK) end
do
left := 1; right := r putdown is
end do
inuse
act end
do end

from until False loop

eat (left, right)
end ‘%======

end -

Automatic locking of
arguments

eat (1, r: separate FORK)

require not (Il.inuse Or r.inuse)

do
l.pickup; r.pickup
—-— local activity —-
1l.putdown; r.putdown

end

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto

True

False

10

class PHILOSOPHER class FORK

create Using sequential library : feature
make in concurrent context inuse: BOOLEAN
feature pickup 1is
left, right: separate FORK do
inuse := True
make (1, r: separate FORK) end
do
left := 1; right := r putdown is
end do
inuse := False
act end
do end

from until False loop

eat (left, right)
end ‘%======

end -

Automatic locking of
arguments

eat (1, r: separate FORK)

require not (Il.inuse Or r.inuse) g Wait condition

do
l.pickup; r.pickup
—-— local activity —-
1l.putdown; r.putdown

end

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 11

class PHILOSOPHER class FORK

create Using sequential library : feature
make in concurrent context inuse: BOOLEAN
feature pickup 1is
left, right: separate FORK do
lnuse :=
make (1, r: separate FORK) end
do
left := 1; right := r putdown is
end do
inuse :=
act end
do end

from until False loop

eat (left, right)
end <%======

end -

Automatic locking of
arguments

eat (1, r: separate FORK)

require not (Il.inuse Or r.inuse) g Wait condition

do
l.pickup; r.pickup
—-— local activity —- g
1.putdown; r.putdown Async calls

end

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto

True

False

12

Our Goal

The SCOOP model is developed as an extension to Eiffel

language SCOOP
*High-level abstraction for concurrency
Eiffel eAutomatic synchronization
eclean, DbC, full OO ' ' *Data race freedom
*not popular as it should *Atomicity violation freedom

*Fair scheduling
*Using sequential libraries in concurrent context

A pattern for SCOOP that makes it feasible to apply the
SCOOP concurrency model to other OO languages

Java/C#
eused by many people = \’?

*no support for DbC :I

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 13

CPA 2009

Core library

Architecture

Input SCOOP program

Consistency checking

Translation rules

Multi-threaded output

Faraz Torshizi, Department of Computer Science, University of Toronto

14

Input SCOOP program

To write the SCOOP program we use the meta-data
facility of the supporting language

Annotations in Java and attributes in C#

One keyword in Eiffel (separate) vs. two annotations in
other languages (separate and await)

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto

15

\ 230 2

y ; - - . "ol =y = 4 Y
o e kol a¥ a =9 \ L W [] |

FUIIIIVEIEA LG JUOA VA e I WIS
public class Philosopher {

private (@separate Fork rightFork;

private (@separate Fork leftFork;

public Philosopher (@separate Fork 1, @separate Fork r)

}

leftFork =

1l; rightFork = r;

public void act () {

}

while (true)

{

eat (leftFork, rightFork); //non-separate call

}

public void eat (@separate Fork 1, (@separate Fork r) {

CPA 2009

1.pickUp();

r.pickUp(); // separate calls

if(l.isInUse() && r.isInUse()) {
1.putDown(); r.putDown();

}

Faraz Torshizi, Department of Computer Science, University of Toronto

16

Annotated C#: CSCOOP

public class Philosopher {
[separate] private Fork rightFork;
[separate] private Fork leftFork;

public Philosopher ([separate] Fork 1, [separate] Fork r) ({
leftFork = 1; rightFork = r;
}

public void act () {
while (true) {
eat (leftFork, rightFork); //non-separate call

}

await ("!1.isTnUse () &&!r.isInUse
public void eat ([separate] Fork 1, [separate] Fork r){
1.pickUp(); r.pickUp();
if(l.isInUse() && r.isInUse()) {
l.putDown(); r.putDown();
}
}

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 17

CPA 2009

Core library

Architecture

Input SCOOP program

Multi-threaded output

Faraz Torshizi, Department of Computer Science, University of Toronto

18

Consistency issues

@separate X x1; public class X {

A al; A az2;

public void r (@separate X x)|| }

Supplier

x1
client supplier

al laZ

Client

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 19

Consistency issues

@separate X x1;

A al;

A"

al = x.a2;

»

r(x1);
al....

CPA 2009

public void r (@separate X x)|| }

Client

public class X {

A az2;

Supplier

N

/

Faraz Torshizi, Department of Computer Science, University of Toronto

al
N

x1

>

supplier

N4

20

Consistency issues

@separate X x1;

A al; A az2;

public void r (@separate X x)|| }

A"

al = x.a2; Supplier

»

N

r(x1);
al—

Client

/

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto

public class X {

al
N

x1

>

supplier

N4

21

Consistency issues

@separate X x1; public class X {

A al; A az2;

public void r (@separate X x)|| }

LN .
al = x.a2; Supplier
} Not allowed -- Compile-time error

x1
W% supplier

: >
I (Xl)l ai\ -
al— S

/

Client

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 22

CPA 2009

Core library

Architecture

Input SCOOP program

Consistency checking

Translation rules

Multi-threaded output

Faraz Torshizi, Department of Computer Science, University of Toronto

23

The core library provides the essentials for modeling
SCOOP:

Processors

Separate and non-separate calls
Atomic locking of multiple resources
Wait semantics

Wait-by-necessity

Fair scheduling

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto

24

CPA 2009

Core library

Core Library

e

Processor

locked_by: Processor
local_call_stack
remote_call_queue
sleep_semaphore: Semaphore
lock_semaphore: Semaphore
scheduler

run()

lockProcessor (...)
unlockProcessor (...)
addLocalCall (...)
addRemoteCall (...)
invokeCall (...)

<<interface>>
ScoopThread
Scheduler
setProcessor () Q"i Icl\lck_requests
getProcessor () 1 ? _kprdocessors
checkPreconditions () : ocke _processors.
setCall() L dsleep_semaphore: Semaphore
getCall() run()
createProcessor (...)
1 removeProcessor (...)
* releaselLocks (...)
. addRequest(...)
1
0..*
Call

* 1
0.. 0..* | method_name
I arg_types
return_value
LockRequest SCOOp_processor
scoop_object
semaphore: Semaphore call_semaphore: Semaphore
requester lock_request
locks getMethodName ()
getObject()
getObjectProcessor ()
getLocks() getCallSemaphore ()
getSemaphore () getLockRequest ()
getRequester ()

25

Processor

Processors are instances of the Processor class.

Every processor has a
Local call stack for local calls
Remote call queue for remote calls

Processor repeatedly performs the following:
Pops an item off the stack and executes it
If the stack is empty, dequeues an item from the remote call
gueue and pushes it onto the local call stack
If both the stack and the queue are empty, waits for new
requests to be enqueued

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 26

SCOOP dynamic behavior

public class A

{
@separate B b;

@separate C c;

= this.m (b, c¢);

dawait ("condition () ")

public void m(@separate B bb, @separate C cc) {
bb.f () ;
cc.gl();

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto

27

proc-A scheduler I call-sem-A | lock-sem-B I lock-sem-C |‘ proc-B |‘ proc-C
proc-A scheduler I call-sem-A | lock-sem-B I lock-sem-C |‘ proc-B |‘ proc-C

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 28

proc-A scheduler I call-sem-A | lock-sem-B I lock-sem-C |‘ proc-B |‘ proc-C
i scheduler.addRequest(m, <lock-sem-B, Iock—sem—C>)>i i i i i i
| I | | | |
acquirey O€Nd request |) | | | |
| 1 1 1 | 1 1
proc-A scheduler I call-sem-A | lock-sem-B I lock-sem-C |‘ proc-B |‘ proc-C

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 29

proc-A scheduler I call-sem-A | lock-sem-B I lock-sem-C |‘ proc-B |‘ proc-C

Send request

acquire()

h, 4

I scheduler.addRequest(m, <lock-sem-B, lock-sem-C>))'
|
|
|
|

acquire()
(1) Acquire locks acquire()

—_— > __]
—_———_]

evaluate the await condition
(2) Check wait condition ’

proc-A scheduler call-sem-A lock-sem-B lock-sem-C ‘ proc-B |‘ proc-C |

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto

@

Dynamic behavior

proc-A scheduler

call-sem-A | lock-sem-B I lock-sem-C |‘ proc-B |‘ proc-C

Send request

acquire()

I scheduler.addRequest(m, <lock-sem-B, lock-sem-C>))'
|
|
|
|

acquire()
(1) Acquire locks acquire()

evaluate the await condition
(2) Check wait condition ’

Send the “go ahead” signal i.u'ease)

A NV N (SR——
—————

———————]

proc-A scheduler call-sem-A lock-sem-B lock-sem-C ‘ proc-B |‘ proc-C |

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto

proc-A scheduler

call-sem-A | lock-sem-B I lock-sem-C |‘ proc-B |‘ proc-C

Send request

acquire()

I scheduler.addRequest(m, <lock-sem-B, lock-sem-C>) V
|
|
|
|

! ! ! ! !
I | | | |

I | | | |

: : : : :

. g : l : :
! acquire() | ’: | | :
| .] | | |]
i (1) AchIre locks acquire() i i h: i i
i evaluate the await condition i i i i i
i (2) Check wait condition ’ : : i : i
| | I | | | |
I “ ” et I release I | I I I
i Send the “go ahead” signal HL’: i i i i
| proc-B.addRemoteCall(f, <lock-sem-C>) ! ! ! ! ’} !
eleasey ENueue call on proc-B and release: the Iock}i i i i

| 1 | (| |

| proc-C.addRemoteCall(g, <lock-sem-B>) E ! i ! ! h:
releasey Oame for call on proc-C | | | ’: i |

proc-A scheduler call-sem-A lock-sem-B lock-sem-C ‘ proc-B |‘ proc-C |

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto

local activity
Continue with local activity
g

proc-A scheduler I call-sem-A | lock-sem-B I lock-sem-C |‘ proc-B |‘ proc-C
i scheduler.addRequest(m, <lock-sem-B, Iock—sem—C>)>! i i i i i
acquirey O€Nd request | ’: | | | |
| | | | | | |
I | acquire) | N I l I
| .] | | |]
| (1) Acquire locks acquire) | i h= i i
I I
i evaluate the await condition i i i i i
i (2) Check wait condition 4_—| i i i i i
| | I | | | |
| Send the “go ahead” signal :w)—pi i i i i
| proc-B.addRemoteCall(f, <lock-sem-C>) ! ! ! ’} !
eleasey ENueue call on proc-B and release: the Iock}i i i i
1 | (| |
| proc-C.addRemoteCall(g, <lock-sem-B>) I I I | h:
I | | |
eleasey Oame for call on proc-C | | ;E i |
| | o
I | | |
! | | |
| | | | |
1 | | | |
! | | | |
I | | | |
1 | | | |
I | | 1
| | | | ‘ ';l
I | | |
| | | |
! ! ! !

:

proc-A scheduler call-sem-A lock-sem-B lock-sem-C ‘ proc-B |‘ proc-C |

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto

CPA 2009

Core library

Architecture

Input SCOOP program

Consistency checking

Multi-threaded output

Faraz Torshizi, Department of Computer Science, University of Toronto

34

Translation rule for remote call

Annotated code Translation
1 5Cl
© ass Classame Class SCOOP_%ClassName {
//method body containing a separate call .
%ReturnType %Method (%Type0 %SepArg,...); //translated method
... o o o o .
$SepArg0 . $SepMethod ([$SepArg0, ..., $SepArgN, ...]); ;ReturnType sMethod (SCOOP_%Type0 %SepArg, ...);
} Call call;
T List<Processor> locks;
}
//1oop
Class $Type { locks.add (%$SepArg0.getProcessor ());
JVsupplier side ...//do this for all separate arguments of 3%SepMethod
void %SepMethod ($Type00 3%Arg0, ...%TypeNN %ArgN) locks.add (5SepArgN.getProcessor());
[//end loop
) s lock_request = new LockRequest (%$SepArg, locks,
%$SepArg.getProcessor () .getLockSemaphore()) ;
Input: annotated code List<Object> args_types, args;
//1oop

args_types.add ($Type00); //use the SCOOP_ for separate types
args.add(%Arg0) ;
...//do this for all arguments of $%SepMethod
args_types.add (%TypeNN) ;
args.add ($ArgN); ...
//end loop
call = new Call ("%$SepMethod", arg_types, args,
void, lock_request, %SepArg0, wvoid);
%SepArg0.getProcessor () .addRemoteCall (call);
...//move on to the next operation without waiting

Output: multi-threaded using core library

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 35

= New Project

Tool support: JSCOOP

(= | C |

Select a wizard

Create a new project resource

r—fx}

I cm—

Wizards:

vpe filter text

124 Java Project

5.2- Plug-in Project
= General

% Project
= CV5
lawa
= JSCOOP
£ 15CO0P Project

% Java Project from Existing Ant Buildfile

@ < Back

[

Ne¢> || FEnsh || Cancel

CPA 2009

Faraz Torshizi, Department of Computer Science, University of Toronto

36

CPA 2009

Tool support: JSCOOP

M *Client.java X

m *B.java 1 m X.java 1 m Ea.java 1@ sesawait. java] !

= &

2 public class Clientd

public static [separate X xl:
public static X ==
public static L a;

public void scl(){
[fzeparate X x1 = new X{):

X x2 = new X|[):
®2 = xl1: // invalid: traitor
¥l = =2: /) walid

ri (xi1; // invalid

public void rl (X x)1{}

public void =czZ ()
[fzeparate T x1 = new E():
2 (®1):

public void rZ2 (Bseparate X x){
®x.fia; /) dmvalid
x.gia): S5 walid

public void =c3 ()4
Ex1 = new X[):
s [=x1):

Violation of
consistency rules

alm

Faraz Torshizi, Department of Computer Science, University of Toronto

37

CPA 2009

Tool

support: JSCOOP

1 anll

2 k_—é JSCOOP-DiningPhilosophers 1¢
> src1991
> = JRE System Library [jrel 6.0
(& rewrite 1919
[.classpath 1733
[5} .project 1946
b k_—& JSCOOP-ProducerConsumer 1

i)
Y

®

LN E\ E/

New
Go Into

Open in New Window
Open Type Hierarchy

Show In

Copy

Copy Qualified Name
Paste

Delete

Remove from Context
Build Path

Source

Refactor

Import...
Export...

Refresh

Close Project

Close Unrelated Projects
Assign Working Sets...

Run As
Debug As

F4
Alt+Shift+W »

Ctrl+C

Ctrl+V
Delete

Ctrl+Alt+Shift+ Down
»
Alt+Shift+S »
Alt+Shift+T »

F5

Translate to Java

=
leam
Compare With
Replace With

Restore from Local History...

PDE Togls

Properties

Alt+Enter

Faraz Torshizi, Department of Computer Science, University of Toronto

38

Limitations / Future work

Not shown the correctness of translation

develop more examples in JSCOOP
check the bi-similar behavior to programs written in Java

Need for empirical studies
access the efficiency and effectiveness of the tool

Add full support for inheritance and genercity

SCOOP is still prone to deadlocks
Apply model-checking techniques to detect deadlocks at
compile-time

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 39

Summary

Design pattern for SCOOP that makes it feasible to apply

the SCOOP concurrency model to other OO languages
Annotation processing and consistency checking

Core library
Translation rules

A prototype implementation for Java based on an
Eclipse plug-in called JSCOOP

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 40

CPA 2009

Thank you!

Faraz Torshizi, Department of Computer Science, University of Toronto

41

Reterences

Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1997.
Piotr Nienaltowski. Practical framework for contract-based concurrent object-
oriented programming, PhD thesis 17031. PhD thesis, Department of
Computer Science, ETH Zurich, 2007.

Jonathan S. Ostroff, Faraz Torshizi, Hai Feng Huang, and Bernd Schoeller.
Beyond contracts for concurrency. Formal Aspects of Computing, 21(4):319—-
346, 2009.

Piotr Nienaltowski. Flexible access control policy for SCOOP. Formal Aspects of
Computing, 21(4):347-362, 20009.

Phillip J. Brooke, Richard F. Paige, and Jeremy L. Jacob. A CSP model of Eiffel’s
SCOOP. Formal Aspects of Computing, 19(4):487-512, 2007.

CPA 2009 Faraz Torshizi, Department of Computer Science, University of Toronto 42

