
HydraHydra:: a Python Framework a Python Framework
for Parallel Computingfor Parallel Computing

Waide Tristram
Karen Bradshaw

3rd November 2009

 An Opportunity
 Why Python and CSP?
 Aim
 Approach
 Framework
 Results
 Conclusions

Hydra in Hydra in ½½ hourhour

2 Hydra: a Python Framework for Parallel Computing

 Desktop and Server CPUs have changed quite
considerably over the last few years

 No longer a race for GHz
 Shift to multi-core CPUs
 Main drawback is the difficulty involved in writing

concurrent software able to make use of these parallel
CPUs

 Performance gains aren’t automatic when adding more
cores
 Developers need to explicitly code concurrency into their

software to benefit from multiple processors
 Tools and frameworks are required to ease the process

An OpportunityAn Opportunity

3 Hydra: a Python Framework for Parallel Computing

Python ?Python ?

 Python is a good candidate for such a framework
 Powerful built-in data types
 Extensive and powerful libraries
 Supports multiple programming paradigms
 Increased use in scientific computing

SciPy, NumPy, BioPython

 Suffers from some concurrency limitations
 Global Interpreter Lock – single thread at a time
 Affects modules based on Python’s threading module
 Multiple Python interpreter processes can bypass this
 Co-ordinating multiple Python interpreters is tricky

4 Hydra: a Python Framework for Parallel Computing

CSP ?CSP ?

 Message-passing model good start
 CSP provides key constructs for developing programs

based on the message-passing
 Several CSP implementations exist for modern

languages such as Java and C/C++
 CSP implementation for Python, PyCSP, is limited by

the GIL (newer versions address this)
 Current CSP implementations require the programmer

to convert CSP algorithm into the appropriate form

5 Hydra: a Python Framework for Parallel Computing

SoSo

 Investigate the feasibility of a concurrent
framework for Python that overcomes the GIL
based on the original CSP notation

 Develop prototype framework that:
 provides concurrent programming functionality for

Python based on CSP constructs
 properly harnesses power of multi-processor

systems
 provides a high level approach instead of requiring

that CSP algorithms be manually converted

6 Hydra: a Python Framework for Parallel Computing

ApproachApproach

 Identify or develop suitable grammar
 Select a suitable compiler generator
 Identify suitable existing libraries to form the

base of the framework
 Develop the parser and code generator for the

grammar
 Basic testing

7 Hydra: a Python Framework for Parallel Computing

Approach Approach -- GrammarGrammar

 Grammar was developed as a modified version
of the original CSP notation

 Novel syntax chosen over an existing machine
readable syntax such as that used by FDR

 Can keep the language small – prototype
 Allows for the incorporation of Python expressions
 Reduce parser complexity

8 Hydra: a Python Framework for Parallel Computing

Approach Approach -- GrammarGrammar

 Number of modifications required

 Process construct uses [[instead of [to avoid
ambiguity with the Alternative construct.

 Inclusion of Python import statements at the start of
the program: _include{import time}

 Expression handling removed in favour of having
Python interpret the expressions as Python code;
anything within { }

9 Hydra: a Python Framework for Parallel Computing

Approach Approach -- LibrariesLibraries

 PYRO – Python Remote Objects
 Powerful library for distributed Python objects with easy access
 Handles the network communication between objects
 Used as CSP style channels for inter-process communication

 PyCSP
 Python module that provides a number of CSP constructs
 Channels can be created as PYRO objects
 Process and Parallel implemented using Python threads

 However, newer versions (v0.6) create Processes as OS
processes and network processes

10 Hydra: a Python Framework for Parallel Computing

Approach Approach –– Compiler DesignCompiler Design

11 Hydra: a Python Framework for Parallel Computing

Framework Framework –– Using HydraUsing Hydra

 Include the csp module from the Hydra package in
Python program

 Write Hydra CSP code in a triple-quoted Python string
or read it into a string from a file

 Call the cspexec method with the string as an
argument

from Hydra.csp import cspexec
code = """[[

prod ::
data : integer;
data := 4;

]]; """
cspexec(code, progname='simple')

12 Hydra: a Python Framework for Parallel Computing

Framework Framework -- ImplementationImplementation

 Parallel construct
 Defines the concurrent architecture of the program
 Takes a list of processes to be executed in parallel
 During execution, these processes are spawned

asynchronously and may execute in parallel

 Drawbacks
 Spawning a Python interpreter for every parallel process is

not viable
 Only the top-level parallel processes run in separate VMs

and nested parallel processes use Python’s threading library

1313 Hydra: a Python Framework for Parallel Computing

Framework Framework -- CommunicationCommunication

 I / O commands define the channels of
communication (and synchronisation)

 Channels are implemented as remote PyCSP
channel objects using PYRO

 Named according to source and destination processes
 Carefully tracked and recorded
 Registered with PYRO nameserver before execution

 I / O commands generate simple read / write
method calls on appropriate Channel objects

1414 Hydra: a Python Framework for Parallel Computing

Framework Framework –– Hydra CSPHydra CSP

 Process construct
 Represented as a PyCSP Process for simplicity
 Care taken to retrieve relevant Channel objects from PYRO
 Need to handle definition of anonymous CSP processes

 Flow control
 Repetitive, alternative and guarded statements implemented

using appropriately constructed Python while and if-else
statements

 Input guards are implemented using PyCSP's Alternative
class and the priSelect() method and can be mixed with
boolean guards

1515 Hydra: a Python Framework for Parallel Computing

Framework Framework -- BootstrappingBootstrapping

 Hydra CSP-based program defined as a Python file

 PyCSP's network channel functionality requires
channels to be registered with PYRO

 Processes asynchronously executed by spawning a
new Python interpreter using a loop and Python threads
(process started by passing its name as a cmdline
argument).

 The cspexec method then waits for the Processes to
finish executing and allows the user to view the results
before ending the program.

1616 Hydra: a Python Framework for Parallel Computing

The FrameworkThe Framework

17 Hydra: a Python Framework for Parallel Computing

ResultsResults

 Prototype for investigating use of CSP within Python
 Performance was not considered
 Use of Python expressions and statements embedded in CSP
 By no means rigorous testing (correctness and communication)
 Focus on multiprocessor execution in Python
 Execution observed using operating system's process and CPU load

monitoring tools
 Simple producer-consumer program running in an infinite loop

performing numerous mathematical operations

• Processes
 Four Python processes were spawned for this example
 Average CPU loads over program execution.

CPU Core 1: 83%
CPU Core 2: 79%

1818 Hydra: a Python Framework for Parallel Computing

Results Results -- Sample Hydra Sample Hydra
programprogram

from Hydra.csp import cspexec
prodcons = """
_include{from time import time}

[[
producer ::

x : integer; x := 1;
*[

{x <= 10000} -> {print "prod: x = " + str(x)};
consumer ! x; x := {time()};

];
||

consumer ::
-- code omitted

]]; """
cspexec(prodcons, progname='prodcons')

19 Hydra: a Python Framework for Parallel Computing

Results Results –– Python conversionPython conversion
import sys
from pycsp import *
from pycsp.plugNplay import *
from pycsp.net import *
from time import time
def __program(_proc_):

@process
def producer():

__procname = 'producer'
__chan_consumer_out = getNamedChannel("producer->consumer")
x = None
x = 1
__lctrl_1 = True
while(__lctrl_1):

if False:
pass

elif x <= 10000:
print "prod: " + str(x)
__chan_consumer_out.write(x)
x = time()

else:
__lctrl_1 = False

@process
def consumer():

code omitted
20 Hydra: a Python Framework for Parallel Computing

ConclusionsConclusions

Is possible to convert a CSP algorithm
into suitably concurrent Python code
using the chosen approach and tools

 Conversion process is automatic – easier for
non-programmers

 More flexible than standard CSP as Python
expressions and functionality can be used

 Parallel execution is possible

21 Hydra: a Python Framework for Parallel Computing

Questions?Questions?

22 Hydra: a Python Framework for Parallel Computing

