
Hydra: A Python Framework for Parallel
Computing

Waide B. TRISTRAM, Karen L. BRADSHAW

Department of Computer Science, Rhodes University, Grahamstown, South Africa
g05t1067@campus.ru.ac.za, k.bradshaw@ru.ac.za

Abstract. This paper investigates the feasibility of developing a CSP to Python trans-
lator using a concurrent framework for Python. The objective of this translation frame-
work, developed under the name of Hydra, is to produce a tool that helps program-
mers implement concurrent software easily using CSP algorithms. This objective was
achieved using the ANTLR compiler generator tool, Python Remote Objects and
PyCSP. The resulting Hydra prototype takes an algorithm defined in CSP, parses and
converts it to Python and then executes the program using multiple instances of the
Python interpreter. Testing has revealed that the Hydra prototype appears to function
correctly, allowing simultaneous process execution. Therefore, it can be concluded
that converting CSP to Python using a concurrent framework such as Hydra is both
possible and adds flexibility to CSP with embedded Python statements.

Keywords. concurrency, CSP, language translation, Python

Introduction

Parallel architectures started making an appearance from as early as the mid-1960s and con-
tinue to be the primary design for high performance computing systems. This is particularly
evident in modern supercomputers, such as IBM’s Roadrunner and Blue Gene/L, which make
use of thousands of processors to achieve their astonishing computational power. However,
these systems are only available to a select few scientists and researchers and it was not until
recently that multi-processor computers started becoming readily available to consumers.

The availability of dual and quad core CPUs targeted at the consumer, workstation and
server markets has created a problem in the field of software development. Multi-core com-
puters have the power and potential to greatly outperform their single-core counterparts, but
this potential can only be realised if the software is able to make use of multiple processors
[1]. Both consumers and researchers stand to gain from the performance increases afforded
by multi-core CPUs and parallel software. Researchers are now able to construct small high
performance computing systems for their data processing needs by combining a number of
relatively cheap multi-core CPU systems.

The Hydra project aims to provide a Python framework for parallel execution based on
Communicating Sequential Processes (CSP). The focus of this paper is our investigation into
the feasibility of translating CSP to Python code for the Hydra project.

1. Background and Related Work

This paper investigates the feasibility of a concurrency framework for Python based around
a CSP to Python translator. There is a significant amount of research in the related fields of
language translation, concurrency and parallel computing, and Communicating Sequential
Processes. However, a detailed review of the work is beyond the scope of this paper.

Therefore, only the relevant aspects of the related fields are briefly presented and dis-
cussed in this section. These discussions focus primarily around work that has facilitated the
development of our concurrent framework for Python based on CSP.

1.1. Language Parsing and Translation

The typical translation process involves a number of stages, ranging from identifying the
syntactic constructs to constraint analysis and finally, producing the output code [2,3]. While
constructing parsers can be done by hand, a tool known as a compiler generator is typically
used to produce the translator. Compiler generators accept the target grammar and generate
the various components of the compiler [3].

1.2. Parallel Computing and CSP

Communicating Sequential Processes was first introduced in 1978 by Hoare. A number of
operations and constructs were identified as the primary methods for structuring computer
programs [4]. Hoare identified input and output operations as being important but noted that
these were not well understood. He also noted that the repetitive, alternative and sequential
constructs were well understood, whereas there was less agreement on other constructs such
as subroutines, monitors, procedures, processes and classes [4].

Processor development at the time was such that multiprocessor systems and increased
parallelism were required to improve computation speed. However, Hoare noted that this par-
allelism was being hidden from the programmer as a deterministic, sequential machine. He
saw that a more effective approach would be to introduce this parallelism at the programming
level by defining communication and synchronization methods [4]. It is this approach that we
are attempting to incorporate into Python using Hydra.

1.2.1. The CSP Programming Notation

The programming language or notation specified by Hoare is based on a number of funda-
mental proposals. The first of these is the use of the alternative command in conjunction with
guarded commands, and the related guards, as a sequential control structure and a means
to control non-determinism. Associated with the guarded and alternative commands is the
repetitive command, which loops until all its guards terminate. Secondly, the parallel com-
mand specifies a means to start parallel execution of a number of processes or commands by
starting them simultaneously, and synchronizing on termination of each of the parallel pro-
cesses. Parallel processes may not communicate directly, except through the use of message
passing [4].

To support the message passing concept, input and output commands are specified.
These commands enable communication between processes. Essentially, a channel is created
and used for synchronous communication when a source process names a destination process
for output and the destination process names the source process for input. This effectively
introduces the rendezvous as the primary method of synchronization [4].

1.2.2. The CSP Meta-Language

Hoare continued to refine CSP and it evolved substantially compared to the notation described
in his earlier paper. CSP had become a process algebra that allows for the formal description
and verification of interactions in a concurrent system [4].

The new notation consists of two primitives, namely the process and the event, and
a number of algebraic operators. Concurrent and sequential systems can then be defined
through a combination of these operators and primitives. An important addition to CSP is the
introduction of traces, which allow for the description of each possible behaviour in a system
as a sequence of actions [4].

1.3. The Python Programming Language

Python is a powerful, very high level programming language, supporting multiple program-
ming paradigms [5,6]. Python has a strong, dynamic typing system and robust automatic
memory management. It is very well suited for use both as a scripting language, much like
Perl, and as a general purpose programming language. Python places a great deal of emphasis
on programmer productivity and supports this via its expansive standard library and support
for third-party extensions.

1.3.1. Features and Benefits

There are numerous benefits and features that make Python a very attractive language both
to beginner programmers and for advanced scientific programming [6,7]. It has high-level
built-in data types, such as the dictionary, list and tuple. Python has strong introspection ca-
pabilities and provides easy to use object orientation features. There is also plenty of support
and readily available documentation.

Python supports full modularity and hierarchical packages for extending functionality
and can also be embedded within applications as a scripting interface. This makes it very use-
ful for linking together previously unrelated modules [7]. Python can therefore, be used for
the rapid prototyping of algorithms, with any performance critical modules being rewritten
in C and added as extensions. All of the above factors along with the availability of science
orientated packages, such as SciPy and NumPy, have aided in the acceptance of Python in
the computational science community.

1.3.2. Limitations

As an interpreted language, Python’s performance is not as good as compiled languages such
as C++, but the performance is sufficient for most applications. Python’s greatest limitation
is its global interpreter lock. The Python VM makes use of a global interpreter lock (GIL) to
ensure that only one thread runs in the VM at any time [8].

So, while Python supports multi-threading, these threads are time-sliced instead of ex-
ecuting in a truly parallel fashion. Attempts to remove the GIL, such as Greg Stein’s “free
threading” patches, resulted in an overall drop in performance [8]. This performance de-
crease for non-threaded programs was unacceptable and the patches were abandoned and no
further attempts to remove the GIL were made [8].

However, there are ways to circumvent the GIL limitation to achieve multiple processor
usage. The first of the suggested methods is to make use of C extensions. The C extension
can release the GIL and maintain the executing thread within the C code [8]. The second
method is to divide the tasks between multiple Python interpreter processes, which must be
spawned with appropriate communication and synchronization mechanisms [8]. There are
frameworks and tools that provide functionality for communication between distinct Python
processes, such as River [9], Trickle [10] and PYRO [11].

2. Methodology

As stated above, the aim of the Hydra project is to provide a Python framework for parallel
execution based on Communicating Sequential Processes. However, the scope of this initial
research was restricted to investigating the feasibility of translating CSP algorithms to con-
current Python code. The approach taken was that of research through design and develop-
ment, requiring a working prototype for use in further research. However, this prototyping
approach lead to a number of compromises in the development of the framework.

2.1. Approach

A number of issues needed to be addressed before being able to convert a CSP algorithm into
a working, concurrent Python program. These issues are highlighted and briefly described in
this section, while the decisions regarding these issues are fully discussed in Section 3.

First, an appropriate grammar for CSP was defined. There are a few variations of the
original CSP grammar introduced by Hoare and of the later CSP process algebra or CSP
meta-language [4]. While the CSP meta-language allows one to verify a concurrent algorithm
through the use of process algebra [4], the original CSP notation provides a more suitable
syntax for programming. Therefore a grammar has been devised based on the original CSP
notation.

The decision to develop our own CSP syntax instead of using an existing dialect, such
as that used by FDR, was influenced by the prototype nature of the project. In order to keep
the language to be implemented small, it was decided to use a novel syntax so that much of
the type support, expression and pattern matching elements of CSP could be ignored initially
and we could concentrate on the concurrent aspects thereof. We also wanted to allow the
programmer to embed Python expressions in their CSP, thus making the language much more
powerful. At a later stage, a more acceptable dialect could be used with some modifications
to the front-end of the parser.

Suitable compiler generators were then identified. There are a number of requirements
that the compiler generator needed to meet before being considered for use. Firstly, its pars-
ing technique needs to be powerful enough to deal with the CSP notation. It must be able to
cope with ambiguity, with backtracking and suitable lookahead sufficient for handling any
ambiguous cases. Secondly, it must provide functionality for generating target code as op-
posed to merely returning the identified tokens. Thirdly, the compiler generator must provide
a clear and easy to use method for defining the grammar. This is to ensure that the gram-
mar is maintainable and extensible. Finally, it would be beneficial for the generated parser
to be coded in Python for easier integration into the Hydra framework. Good error handling
mechanisms would also be beneficial.

The final choice of compiler generator was then made, based on its capabilities and short-
comings according to the above criteria. The availability of documentation and development
activity was also investigated to ensure that issues or bugs are easily resolved. Once the com-
piler generator had been identified, the CSP parser was implemented using the selected tool.
Due to the prototyping approach, the implementation of semantic checks and error reporting
was kept rather basic and incomplete.

The code generation aspect required the identification of suitable libraries and frame-
works on which to build the parallel constructs. Once the libraries had been chosen, the ap-
propriate code segments were then designed to represent the CSP constructs as closely as
possible using the features of the selected libraries. This put down the groundwork for the
actual code generation process.

Once the underlying concurrent framework was complete, the actual code generator was
developed. This step tied in closely with the parser generation and made use of the features
provided by the compiler generator. The code generator was designed to take the abstract
syntax tree (AST) returned by the parser and generate an equivalent Python program.

Finally, sample programs were developed and converted using Hydra. The output code
was analysed by hand to identify any glaring errors and the program was run and checked
for correct execution. Success is indicated by the correct execution and functioning of the
Hydra-based program and its communication channels, and whether or not multiple proces-
sors are used as shown by the CPU load and process metrics. However, more rigorous testing
is required to fully validate the correctness of the conversion process and execution.

2.2. Translation to an Intermediate CSP Implementation

While there are many projects that add CSP features to existing programming languages,
there are very few attempts to convert directly from CSP to executable code [12]. JCSP and
CTJ provide CSP features to Java [13,14]. CCSP and C++CSP provide similar CSP features
for C and C++, respectively [15,16]. PyCSP introduces CSP features to Python and is dis-
cussed further in Section 3.2.2 [17]. From the list of modern language CSP implementa-
tions mentioned above, it would appear that no further work is required to expose CSP to
programmers. However, these implementations require the programmer to convert their CSP
code into the appropriate form for the implementation they desire to use. For small programs,
this task is relatively easy. But once the programs start to get larger and more complex, the
process becomes more difficult and is prone to error, particularly with regards to the correct
naming and use of channels [12]. The time taken to develop and verify the CSP algorithm for
a complex system can often be rivaled by the time taken to convert and debug the program
written for one of the above mentioned CSP implementations [12]. Clearly this is not ideal
and a means for translating the original CSP directly to executable code is more desirable.

3. Hydra Framework

3.1. Compiler Generators

A number of parser generators and parsing frameworks for Python were investigated. The
strengths and weaknesses of each compiler generator were assessed and ANTLR [18] was
chosen as being most the suitable candidate for use in Hydra.

3.1.1. ANTLR

ANTLR (ANother Tool for Language Recognition) is a parser generator that automates the
construction of lexers and parsers [18]. ANTLR generates language recognisers that use a
fast and powerful LL(*) parsing technique, which is an extension to LL(k) that uses arbitrary
lookahead to make decisions. Ambiguity is handled by ANTLR’s backtracking functionality,
which allows the parser to work out the correct course of action during runtime, and partial
memoization of results means that this can be achieved with linear time complexity [18].

The code generation features of ANTLR are also quite advanced, with formal abstract
syntax tree construction rules allowing for custom ASTs to be constructed. Additionally,
ANTLR’s tight integration with StringTemplate enables the generation of structured text such
as source code [18]. These features make the code generator easily retargetable with mini-
mal changes to the front-end. ANTLR also has a grammar development IDE, named ANTL-
RWorks, which allows for the visualisation and debugging of parsers generated in any of
ANTLR’s supported target languages, which include Python among others [18]. ANTLR is
also actively supported with ongoing development, mailing lists, updated project website,
and plenty of documentation and examples.

3.2. Concurrent Framework Modules

A code generator was required to interpret the source language and produce an equivalent
version in the target language [3]. The complexity of the code generator is often dependent
on the complexity of the target language or architecture.

One approach involves developing all the necessary constructs and underlying frame-
work from scratch. A more practical approach is to find and use existing frameworks for the
target architecture, and add custom code only for the functionality that is missing or incom-
plete [10]. Therefore, the back-end concurrent framework for Hydra is built on top of two
existing Python frameworks, namely PYRO and PyCSP.

3.2.1. Python Remote Objects

Python Remote Objects (PYRO) is a simple yet powerful framework for working with dis-
tributed objects written in Python. PYRO essentially handles all the network communication
between objects, allowing remote objects to appear as local ones [11]. Additionally, PYRO
provides remote method invocation functionality, which allows for methods from remote ob-
jects to be called locally. PYRO can be used over a network, allowing processes to be dis-
tributed between a number of separate computers, or it can be used purely on the local ma-
chine to provide a convenient inter-process communication mechanism [11].

PYRO consists of a special nameserver component that provides functionality for regis-
tering and retrieving remote objects. Client code is then able to register named objects with
the PYRO nameserver and retrieve these objects using the specified name [11]. This remote
object framework provides all the necessary functionality to implement CSP channels. Each
communication channel between processes can be implemented as a remote Channel object
with read and write methods. As such, PYRO plays a critical role in the implementation of
the concurrent Hydra back-end.

3.2.2. PyCSP

PyCSP is a Python module that provides a number of CSP constructs such as channels, chan-
nel poisoning, basic guards, skip guards, input guards, processes, and the alternative, parallel
and sequential constructs [17]. The biggest drawback of PyCSP is that the current implemen-
tation (version 0.3.0 at the time this research was conducted) makes use of Python’s thread-
ing library, which is limited by the GIL [8,17]. One solution to this problem is to make use
of network channels for communication between multiple local or remote operating system
processes, which is the approach we have taken.

The PyCSP Process construct is implemented by simply instantiating an object of the
Process class, which extends from Python’s Thread class [17]. The instantiated Process
object does not begin execution until it is used in either the Parallel or Sequential constructs
[17]. Communication via Channels is handled by simply passing the read and write methods
of a Channel object as arguments in a Process’s constructor. PyCSP Channels allow for any
object to be sent across them, including Processes [17]. This is a useful feature that allows
for easy distribution of work, as well as the relaxation of type limitations.

PyCSP provides network channel functionality using PYRO [19]. With the appropriate
custom framework code, this functionality can be leveraged to overcome PyCSP’s reliance
on Python’s threading library. PyCSP has already implemented Python versions of most of
the CSP constructs, such as the process, channel, guard and alternative commands, thus
alleviating the need to develop these from scratch.

3.3. CSP Grammar

While Hoare indicated that programs expressed in the original notation should be imple-
mentable, he also made it clear that the notation was not suitable for use as a programming
language [4]. However, CSP provides a convenient notation for defining the architecture and
communication channels of the processes used by the program. For this reason, a number
of compromises and changes have been made to the grammar to allow for the integration of
CSP into Python as a means of describing parallel communication.

The grammar that was used in the Hydra prototype is presented below. A number of
simplifications have been made to ease the construction of the prototype as mentioned in
Section 2.1. The goal production or starting point of the grammar is the program production,
which accepts zero or more Python import statements and a list of commands as represented
further on in the grammar. There is only one method for defining parallel processes, but this
is expanded upon in Section 3.4.2.

program = (PYIMPRT)* command_list;
parallel = ’[[’ process (’||’ process)* ’]]’;
process = (proc_label)? command_list;
proc_label = ID ’::’;
declaration = ID (’,’ ID)* ’:’ type ’;’;
int_const = simple_expr;
range = (ID ’:’)? int_const ’..’ int_const;
type = (’(’ INT ’..’ INT ’)’ basictype) | basictype;
basictype = ’integer ’ | ’boolean ’ | ’char’;
command_list = declaration* command +;
command = (simple_cmd | struct_cmd) ’;’;
simple_cmd = assignment | input_cmd | output_cmd | ’SKIP’ | PYEXPR;
struct_cmd = alternative | repetitive | parallel;
assignment = target_var ’:=’ expression;
subscripts = simple_expr (’,’ simple_expr)*;
target_var = ID (’[’ int_const ’]’)? | struct_target;
struct_targ = ID? ’(’ var_list? ’)’;
var_list = target_var (’,’ target_var)*;
simple_expr = ID (’[’ int_const ’]’)? | INT | BOOL | CHR | PYEXPR;
struct_expr = ID? ’(’ expr_list? ’)’;
expr_list = expression (’,’ expression)*;
expression = simple_expr | struct_expr;
input_cmd = ID ’?’ target_var;
output_cmd = ID ’!’ expression;
repetitive = ’*’ alternative;
alternative = ’[’ guarded (’[]’ guarded)* ’]’;
guarded = (’(’ range ’)’)? guard ’->’ command_list;
guard = guardlist | input_cmd | nullcmd;
guardlist = guard_elem (’;’ guard_elem)* (’;’ input_cmd)?;
guard_elem = simple_expr | declaration;

A significant change that warrants discussion is the removal of expression operators such
as the arithmetic and Boolean operators. In their place, the ability to use Python expressions
has been added, allowing for much greater flexibility when it comes to expressions. The
Python code is enclosed in braces and can be any valid Python expression. To support func-
tionality from Python’s vast module collection, the ability to add Python import statements to
the beginning of the program was added. These import statements are preceded by “ include”
and are enclosed in braces. The rationale behind this rather significant change is that Python
has the ability to evaluate expressions and implementing them in the grammar would just du-
plicate existing functionality. This removes the burden of parsing and evaluating expressions
and essentially gets the Python interpreter to do this on behalf of the parser. This feature
also allows for the use of all of Python’s data types, bypassing the limited data type support
natively provided by the parser. Examples of the use of these constructs are given in Section
4.

The Hydra CSP grammar supports single-line comments, starting with a double hyphen
and ending in a newline. Since there is no symbol for the → and 2 symbols used by the
guarded statement on common keyboards, “->” and “[]” were used in their place. The Hy-
dra lexer supports four basic expression types, namely identifiers, characters, integers and
booleans. Identifiers start with a lowercase letter of the alphabet, and can be followed by any
combination of uppercase and lowercase letters, digits and the underscore character. Char-
acters can be any valid ASCII character, denoted between single-quotes. Integers are simply
defined as a series of digits. And finally, Boolean expressions are denoted by either “True” or
“False” and are case-sensitive.

3.4. Hydra Framework Implementation

3.4.1. Using Hydra

Before going into the implementation of the framework, it would be beneficial to describe
the manner in which CSP is used within a Python program. The mechanism chosen is fairly
simple, although somewhat less than ideal. The process is described below, along with a very
simple example, which defines a process, declares an integer variable and assigns it a value.

from Hydra.csp import cspexec

code = """[[
prod ::

data : integer;
data := 4;

]];
"""
cspexec(code , progname=’simple ’)

Firstly, the Hydra csp module must be imported. The csp module provides the cspexec
method, which takes the string containing the CSP algorithm as an argument and an optional
program name argument. The cspexec method is responsible for converting the algorithm
and managing the execution of the processes. Since the CSP algorithm is represented as a
string, it is possible to specify the algorithm inline as a triple-quoted string or the algorithm
could be specified in a separate file which could then be read in and supplied to the cspexec
method. The program is then run by simply executing the Python program as usual.

3.4.2. Implementation Decisions

The parallel production, although very simple in its appearance, is of paramount impor-
tance as it defines the concurrent architecture of the program. It takes a list of one or more
processes to be executed in parallel. During execution, these processes are spawned asyn-
chronously and may execute in parallel, thus achieving one of the project goals: execution
of code over multiple processors. However, the prototype implementation exhibits two dis-
tinct behaviours. For the top-level parallel construct, it generates the appropriate code for
executing over multiple Python interpreters, but for any nested parallel statements, PyCSP’s
Parallel method is used. The rationale behind this is that current desktop computers have
at most eight processor cores, therefore, implementing every process in a new Python inter-
preter instance is not likely to scale adequately. In the future, this distinction could be made
explicitly controllable by the programmer.

Another important set of CSP constructs is the input and output commands. These es-
sentially define the channels of communication between processes and provide a synchroni-
sation mechanism in the form of a rendezvous. Channels are named according to their source
and destination processes and are carefully tracked and recorded so that they can be correctly
registered by the PYRO nameserver before execution. The input and output commands gen-
erate simple read and write method calls on the appropriate Channel objects. While it is
possible to communicate with external code through these channels by acquiring the appro-
priate Channel object via PYRO, such actions are not recommended as they can affect the
correct operation of the Hydra program.

The process construct is represented as a PyCSP Process. The necessary care is
taken to retrieve the relevant Channel objects from the PYRO nameserver using the
getNamedChannel method, based on the recorded channels. Since CSP allows for the def-
inition of anonymous processes, a technique for handling and defining these methods was
devised. The technique is fairly simple and involves giving each process an internal name. It

is worth noting that since anonymous processes have no user-defined name, it is not possible
to use input and output commands within these processes.

The repetitive, alternative and guarded statements are implemented using appropri-
ately constructed Python while and if-else statements. To simplify code generation, all
while blocks start with an if statement with the condition always false. This means that
only elif statements need to be generated when translating the alternative construct. Input
guards are implemented using PyCSP’s Alternative class and the priSelect method that
uses order of appearance as an indicator of priority.

Array declarations need to be treated specially by the declaration code as CSP permits
the declaration of array bounds, which can lead to out-of-bounds errors if the programmer
attempts to reference an uninitialised list variable. Therefore, arrays are declared as a Python
list with the appropriate number of elements all set to None.

Python has a number of keywords that cannot be used as method or variable names.
Therefore, all user-defined identifiers are sanitised by simply prefixing an underscore to any
identifiers that clash with known keywords. Python expressions and statements embedded
in the CSP are handled by simply expressing them as normal Python code. This allows the
programmer to use external modules and leverage the power of Python within their CSP code.

3.5. Process Distribution and Execution

Once the programmer has defined their Hydra CSP-based program within a Python file, this
file can be executed as a normal Python program (this runs in its own Python interpreter),
which then calls the cspexec method of the Hydra framework. The cspexec method controls
the execution process from receiving the CSP algorithm, having the ANTLR-based trans-
lator convert it, registering the appropriate channels, to finally starting the execution of the
concurrent program.

A relatively simple approach was taken to bootstrapping and executing the relevant pro-
cesses once code generation was complete. One of the problems encountered with using
PyCSP’s network channel functionality is that all channels need to be registered with the
PYRO nameserver before the processes are able to retrieve the remote Channel objects.
There is no easy way to add this registration process to the generated program without en-
countering situations where one process requests a channel that has not yet been registered.
This problem was addressed by registering all the necessary channels beforehand in the
cspexec method of the Hydra.csp module. The translation process returns a list of channels
and processes that need to be configured and executed, which is then processed by a simple
loop that registers the appropriate channel names with the PYRO nameserver. This can be
seen in the Python code snippet below.

Iterate through required channels
for i, chan in enumerate(outpt.channels):

cn = One2OneChannel () # Create new channel
chans.append(cn) # Keep track of the channel

Register the channel with the PYRO nameserver
registerNamedChannel(chans[i], chan)

Since this happens before process execution, there is no chance of channels being un-
registered or multiple registrations occurring for the same channel name, thus breaking inter-
process communication.

Once the channels have been registered, the processes are asynchronously executed by
spawning a new Python interpreter using a loop and Python threads. The cspexec method
then waits for the processes to finish executing and allows the user to view the results before
ending the program. This process can be seen in the following Python code snippet.

class runproc(Thread):
def __init__ (self , procname , progname):

Thread.__init__(self)
self.procname = procname
self.progname = progname

def run(self):
os.system(’python ’ + self.progname + ’.py ’ + self.procname)

def cspexec(cspcode , progname=’hydraexe ’, debug=False):
Translation and channel registration occurs here

proclist = []
Iterate through the list of defined processes
for proc in outpt.procs:

Create a new Python interpreter for each top -level
process and start it in a new thread.
newproc = runproc(proc , progname)
proclist.append(newproc)
newproc.start()

Wait for processes to finish before terminating
for proc in proclist:

proc.join()

An overview of the Hydra translation and execution process is shown in Figure 1.

Figure 1. Hydra translation and execution process.

Since all the processes are defined within the same Python file, it was necessary to pro-
vide some means for the new Python interpreters to execute the correct process method. Dur-
ing code generation, simple command-line argument handling is added to the output file that
allows for the correct method to be executed based on the supplied argument. This is shown
in the Python code snippet below.

Snippet from generated Python code
def __program(_proc_):

PyCSP processes omitted

Process selection
if _proc_ == "producer":

Sequence(producer ())
elif _proc_ == "consumer":

Sequence(consumer ())
else:

print ’Invalid process specified.’

__program(sys.argv [1])

In the above snippet, PyCSP’s Sequence construct is used to start the appropriate Pro-
cess. This is because PyCSP Processes are only executed when they are used in a PyCSP
Parallel or Sequence construct.

4. Analysis

Two forms of testing were performed on the Hydra prototype. The system was tested with
a number of sample programs; the resulting output code was then manually inspected to
determine if it is an accurate representation of the CSP algorithm.

Secondly, the code was executed and the operating system’s process and CPU load mon-
itoring tools were used to determine whether or not the program was executing over multiple
process cores.

Since this implementation is merely a prototype for investigating the feasibility of us-
ing CSP within Python, the actual performance of the framework was not considered. The
primary focus was on enabling multiprocessor execution in Python. Once that had been
achieved, further work can focus on refining the framework and optimising for performance.

All testing was performed on the system configuration specified in Table 1.

Table 1. Testing platform configuration.

Component Specification
CPU AMD Opteron 170 (2 cores @ 2.0GHz)
Motherboard ASUS A8R32-MVP Deluxe
Memory 2x1GB G.Skill DDR400
Hard Disk Seagate 320GB 16MB Cache
Network Marvel Gigabit On-board Network Card
Operating System Microsoft Windows 2003 Server SP2
Python Version 2.5.2

4.1. Generated Code Analysis

One of the example Hydra CSP algorithms can be seen in the code listing below. This is
a simple program with two processes (only the producer is shown). The producer process
outputs the value of x to the consumer process 10000 times and the consumer process simply
inputs the value received from producer and stores it in y. The value of x is updated with
the current time expressed in seconds from a fixed starting time. The example also highlights
the use of Python import statements and the use of Python statements within CSP.

from Hydra.csp import cspexec
prodcons = """
_include{from time import time}
[[

-- producer process : sends the value of x to consumer
producer ::

x : integer; x := 1;
*[

{x <= 10000} -> {print "prod: x = " + str(x)};
consumer ! x; x := {time ()};

];
|| consumer ::

-- code omitted
]];
"""
cspexec(prodcons , progname=’prodcons ’)

One of the resulting Python processes can be seen in the listing below.

import sys
from pycsp import *
from pycsp.plugNplay import *
from pycsp.net import *
from time import time
def __program(_proc_):

@process
def producer ():

__procname = ’producer ’
__chan_consumer_out = getNamedChannel("producer ->consumer")
x = None
x = 1
__lctrl_1 = True
while(__lctrl_1):

if False:
pass

elif x <= 10000:
print "prod: " + str(x)
__chan_consumer_out.write(x)
x = time()

else:
__lctrl_1 = False

@process
def consumer ():

code omitted

Looking at the output code, it is clear that Hydra has generated both processes and de-
fined them correctly, with correct channel initialisation and variable declarations. The repet-
itive command is present in the form of a while loop with the appropriate control variable
and alternative code. The guarded commands can also be seen in the form of the elif state-
ments, with expressions and statement blocks correctly represented. The output command
can be seen with the write method call on the channel object. This example, while simple, is
able to show many of the CSP constructs and their respective representations in Python using
Hydra.

The resulting Hydra program was then executed and the Windows Task Manager was
used to monitor the python.exe interpreter processes and overall CPU usage. All unneces-
sary programs and services were closed to ensure the least possible interference with the CPU

Table 2. Average CPU loads.

Core Average Load
CPU 0 83%
CPU 1 79%
Combined 81%

load measurements. To demonstrate the parallel execution effectively, the guard conditions
for the producer and consumer processes were changed to True, thus creating infinite loops.
Additionally, complex mathematical calculations were added to the producer and consumer
processes to increase CPU load. This provided enough time to effectively demonstrate multi-
core usage. Table 2 shows the resulting average CPU loads, which clearly indicate multi-core
execution. The number of Python processes was also verified. Four processes were found,
which include two for the CSP processes, one for the Hydra framework and one for the PYRO
nameserver. Therefore, the correct number of processes are being spawned. However, further
testing is required on larger more complex programs to confirm their successful functioning
and the correct functioning of the communication channels as well.

5. Conclusions

The goal of the Hydra project is the creation of a concurrent framework for Python based on
CSP. This framework is responsible for converting CSP code into concurrent Python code.
The process involved the development of a parser for CSP using ANTLR and the creation
of a code generator using ANTLR and StringTemplate, which takes the AST produced by
the parser and generates the required Python code. Finally, basic testing was conducted to
determine whether or not the Hydra framework was capable of meeting its objectives and
it was confirmed that the Hydra prototype appears to execute the target program correctly,
along with correct channel initialisation and communication. It also spawns the correct num-
ber of processes and executes over multiple processors. However, as stated previously, more
rigorous testing and evaluation is required to validate the correctness of the Hydra program
with certainty.

The Hydra prototype has demonstrated that it is possible to take a CSP algorithm and
convert it into concurrent Python code, using the method described in this paper, and have
the concurrent program execute over multiple CPU cores. The objective of developing a
flexible parser and translator was also achieved thanks to ANTLR’s powerful parsing and
code generation functionality.

A recent update to the PyCSP project (version 0.6.1) has added support for creating CSP
processes as operating system processes instead of threads, similar to what is done in this
prototype, although the underlying implementation differs.

Acknowledgements

The authors would like to acknowledge the financial support of Telkom, Comverse, Stortech,
Tellabs, Amatole Telecom Services, Mars Technologies, Bright Ideas 39, and THRIP through
the Telkom Centre of Excellence in the Department of Computer Science at Rhodes Univer-
sity.

References

[1] Brian Hayes. Computing in a Parallel Universe. American Scientist, 95:476–480, 2007.
[2] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques,

and Tools, 2/E. Addison-Wesley, 2nd edition, 2006.
[3] Pat Terry. Compiling with C# and Java. Addison-Wesley, 2005.
[4] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,

1985.
[5] Alex Martelli. Python in a Nutshell. O’Reilly & Associates, Inc., 2003.
[6] Python.org. About Python. Online, May 2008.
[7] D. Beazley and P. Lomdahl. Feeding a Large Scale Physics Application to Python. In Proceedings of the

6 th International Python Conference, San Jose, California, October 1997.
[8] Python.org. Python Library and Extension FAQ. Online, January 2008.
[9] Gregory Benson, Alexey Fedosov, Joe Gutierrez, Brian Hardie, Tony Ngo, Jennifer Reyes, and Yiting Wu.

River - A Python-based Framework for Rapid Prototyping of Reliable Parallel Run-time Systems. Online,
May 2008.

[10] Gregory Benson and Alexey Fedosov. Python-based Distributed Programming with Trickle. In Hamid R.
Arabnia, editor, PDPTA, pages 30–36, Las Vegas, Nevada, USA, June 25-28 2007. CSREA Press.

[11] Irmen de Jong. PYRO - Python Remote Objects. Online, May 2008.
[12] V. Raju, L. Rong, and G.S. Stiles. Automatic Conversion of CSP to CTJ, JCSP, and CCSP. IOS Press,

2003.
[13] Abhijit Belapurkar. CSP for Java Programmers. Online, June 2005.
[14] Gerald Hilderink, Jan Broenink, Wiek Vervoert, and Andre Bakkers. Communicating Java Threads. In

Proceedings of the 20th World Occam and Transputer User Group Technical Meeting, pages 48–76, The
Netherlands, 1997. IOS Press.

[15] J. Moores. CCSP – a Portable CSP-based Run-time System Supporting C and occam. In B.M.Cook, edi-
tor, Architectures, Languages and Techniques for Concurrent Systems, volume 57 of Concurrent Systems
Engineering series, pages 147–168, Amsterdam, the Netherlands, April 1999. WoTUG, IOS Press.

[16] Neil C.C. Brown. C++CSP2: A Many-to-Many Threading Model for Multicore Architectures. In Alis-
tair A. McEwan, Steve Schneider, Wilson Ifill, and Peter Welch, editors, Communicating Process Archi-
tectures 2007, pages 183–205. IOS Press, July 2007.

[17] John Markus Bjørndalen, Brian Vinter, and Otto Anshus. PyCSP - Communicating Sequential Processes
for Python. In Alistair A. McEwan, Steve Schneider, Wilson Ifill, and Peter Welch, editors, Communicat-
ing Process Architectures 2007, pages 229–248. IOS Press, July 2007.

[18] Terence J. Parr. The Definitive ANTLR Reference: Building Domain-Specific Languages. The Pragmatic
Programmers, Raleigh, North Carolina, 2007.

[19] John Markus Bjørndalen. PyCSP. Online, May 2008.

