Combining
Partial Order Reduction
with Bounded Model Checking

CPA 2009

José Vander Meulen and Charles Pecheur

UC Louvain

A Concurrent System

-

e Set of asynchronous and interacting processes

Producer 1 Consumer 1 ﬁ@

Producer 2 Consumer 2
Producer g - 1 bounded-buffer Consumerq-1
Producer Consumer q Qﬁ@

e Can we verify this system with Symbolic Model
Checking?

e Up to what ¢?

Model Checking

e Exhaustive exploration of the state space of a system

system: property:

Q "The buffer is never
aﬁﬁ overflowed"

R AVAY

O
K\OD & (buffer |=
Q — model-checking - - :
C}/ \C} algorithm overflowed)
C/ -

yes/no

-

Symbolic Model Checking
-

e Principle:

e Compute sets of states (BDDs), or
e Resolve a SAT problem (BMC)

e Brilliant results in the hardware domain
[Biere T 03, Mc Millan 93]

e Conventional wisdom: Symbolic Model Checking
methods are not well suited for asynchronous systems.

e How can we use symbolic Model Checking with
asynchronous system?

o

Outline

-

e Background

e Bounded Model Checking
e Partial Order Reduction

e Combining Partial Order Reduction with Bounded
Model Checking

e Experimental results
e Conclusion
e Perspectives

Bounded Model Checking siere + 99]

- N

e Search for a counterexample in executions whose
length = £

e e.g. paths of length 3

7 ()=

Bounded Model Checking siere + 99]
f e Reduce model checking problem to a SAT problem T

e Unfold the transition relation k£ times to obtain a boolean
formula [M],

[(Zo) NT (2o, 71) NT(Z1,72) N+ NT(Zp_1,Z1)

e Translate the negation of a LTL property f to a Boolean
formula [—f];

o If [M]r A [—f] IS satisfiable, an error is found

Partial Order Reduction

- N

e Partial order reduction methods are best suited for
asynchronous systems

e Can we use these methods with BMC and LTL?

e Verification = only check some interleavings of a
transition system

e Based on independence 0
between transitions and

invisibility of a transition @ @

Partial Order Reduction

- N

e Partial order reduction methods are best suited for
asynchronous systems

e Can we use these methods with BMC and LTL?

e Verification = only check some interleavings of a
transition system

e Based on independence 0
between transitions and %

invisibility of a transition @ @

-

Partial Order Reduction

e Algorithm : modified depth-first search (DFS)

e At each step s, a subset of the successors is
selected: ample(s)

e ample(s) has to respect a set of conditions

e cl: Along every path in the full state graph that starts at
s. a transition that is dependent on a transition in
ample(s) cannot be executed without a transition in
ample(s) occurring first.

-

—n. 10

-

Partial Order Reduction

e C2 at least one state s per cycle is fully expanded

e C3 If ample(s) # enable(s), all transitions In ample(s) are
invisible.

o c4 If ample(s) # enable(s), then ample(s) IS a singleton

e C1 — C3 preserve deadlocks, LT Lx properties
e Cl — C4 preserve CTLx properties

-

—n. 11

Two-phase algorithm naumasu + 97]

- N

e A modified DFS: performs alternatively 2 phases

e Phase-1: explore for each process as many safe
transitions (C1, C4) as possible

e Phase-2: fully expand the current state

Phase 1
Safe transitions

Phase 2
All transitions

Phase 1

L e Two-phase algorithm can check CT L x properties J

—n. 12

-

o

SBTP

e Algorithm combining POR with BMC: T
e SBTP: Phase-1 performs a fixed number »n of partial
expansions for each process

e A process might not be able to produce n safe
transitions (idle transitions)

Phase 1
Safe transitions

Phase 2
All transitions

Phase 1

—n. 13

SBTP

- N

e From a transition system to a computation tree

Ty A

e M and C'T'(M) are equivalent

o |

SBTP
B

e A modified computation tree (~ CT(M))

e Given p processes, a fixed number n of partial
expansions, construct a reduced computation tree.

e e.g number of processes p =2,andn =3

Ty else idl
Ty else idl
Ty else idl

SBTP(M,n) /T else idle)\

T, else idle

T
Ty else idle

Ty else idle
T else idle

L T, eI;:e idle \ J

—n. 15

SBTP
B

e Given p processes, a fixed number n of partial
expansions, and £ = m(p x n+ 1), apply m times the
two phases to obtain [M]?E1F

e e.g number of processes p =2,andn =3

> @ > @

. m
ledle ledle ledle Tdele T27,dle T22dle T
® > @ > @ > @ > @ > @

e Translate the negation of a LT L x property f to a
boolean formula |- f]

o If [M]Z5TF A -]y is satisfiable, an error is found

|

—n. 16

-

Justification

There exists k > 0 such that [M, = f] %77 if and only if M [~ f

Our method finds a true assignment satisfying — f
=
Classical BMC on SBT P(M,n) finds a true assignment satisfying — f
S
SBTP(M,n) does not satisfy f
S
M does not satisfy f

-

—-n. 17

-

Tool

e Implemented in Scala:

e Smoothly integrates features of object-oriented and
functional languages.

e Fully interoperable with Java.
e SAT part uses the Yices SMT solver.

e Main Features:

e Modelling language based on processes and
synchronization by rendezvous

e BMC of LTL properties
e SBTP of LTLx properties

-

—n. 18

Case Study: Producer-Consumer

-

e A variant of the Producer-Consumer problem:

e With ¢ producers, ¢ consumers, and n = 8

e P»: In all cases the buffer will eventually contain more

than one piece

BMC property P»

SBTP property P»

q states K sec K cycles | sec

1 1,059 | 26 73 153 9 122
2 51,859 | 44 29,898 297 9 211
31| 3,807,747 | — — 441 9 401
4 ~10° | — — | 585 91,238
5 ~ 1010 | — — 729 911,338
6 ~ 1012 | — — | 873 91,926
7 ~ 1014 | — — | 1,017 9| 4,135

-

—n. 19

Case Study: Producer-Consumer

-

producers (resp. consumers) = 2

e Influence of the parameter n when the number of

property P,
n Kk # cycles TIME (sec) MEM (MB)
0 44 44 29,898 131
1 95 19 855 159
2 135 15 235 167
3 169 13 305 194
4 187 11 217 192
5 231 11 375 308
6 275 11 381 240
7 319 11 583 318
8 297 9 211 224
9 333 9 240 295

—n. 20

-

o

Conclusion

e Combining Partial Order Reduction with Bounded
Model Checking

e From 2 Producers/Consumers (51, 859 states) to 7
Producers/Consumers (=~ 10 states)

e How to choose the number n of partial expansions
during Phase-1?

e Need to apply SBTP to other case studies (more
complex, more realistic)

e Appropriate algorithm to check asynchronous systems
with symbolic model-checking

-

|

—-n. 21

-

Perspectives

e Extend SBTP to handle models featuring variables on
Infinite domains (SMT solvers)

e Automatically determine the number n of partial
expansions during Phase-1

e Consolidate our prototype:

e Perform state-of-the-art BMC translations
e Improve input language

-

—n. 22

	A Concurrent System
	Model Checking
	Symbolic Model Checking
	Outline
	Bounded Model Checking {small $[$Biere $^+$ 99$]$}
	Bounded Model Checking {small $[$Biere $^+$ 99$]$}
	Partial Order Reduction
	Partial Order Reduction
	Partial Order Reduction
	Partial Order Reduction
	Two-phase algorithm {small [Nalumasu $^+$ 97]}
	SBTP
	SBTP
	SBTP
	SBTP
	Justification
	Tool
	Case Study: Producer-Consumer
	Case Study: Producer-Consumer
	Conclusion
	Perspectives

