Combining Partial Order Reduction with Bounded Model Checking

CPA 2009

José Vander Meulen and Charles Pecheur

UC Louvain

A Concurrent System

Set of asynchronous and interacting processes

- Can we verify this system with Symbolic Model Checking?
- Up to what q?

Model Checking

• Exhaustive exploration of the state space of a system

Symbolic Model Checking

- Principle:
 - Compute sets of states (BDDs), or
 - Resolve a **SAT** problem (BMC)
- Brilliant results in the hardware domain [Biere ⁺ 03, Mc Millan 93]
- Conventional wisdom: Symbolic Model Checking methods are not well suited for asynchronous systems.
- How can we use symbolic Model Checking with asynchronous system?

Outline

- Background
 - Bounded Model Checking
 - Partial Order Reduction
- Combining Partial Order Reduction with Bounded Model Checking
- Experimental results
- Conclusion
- Perspectives

Bounded Model Checking [Biere + 99]

- Search for a counterexample in executions whose length = k
 - e.g. paths of length 3

Bounded Model Checking [Biere + 99]

- Reduce model checking problem to a SAT problem
- Unfold the transition relation k times to obtain a boolean formula $[\![M]\!]_k$

 $I(\vec{x}_0) \wedge T(\vec{x}_0, \vec{x}_1) \wedge T(\vec{x}_1, \vec{x}_2) \wedge \cdots \wedge T(\vec{x}_{k-1}, \vec{x}_k)$

- Translate the negation of a LTL property f to a Boolean formula $[\![\neg f]\!]_k$
- If $\llbracket M \rrbracket_k \land \llbracket \neg f \rrbracket_k$ is satisfiable, an error is found

- Partial order reduction methods are best suited for asynchronous systems
 - Can we use these methods with BMC and LTL?
- Verification = only check some interleavings of a transition system
- Based on independence between transitions and invisibility of a transition

- Partial order reduction methods are best suited for asynchronous systems
 - Can we use these methods with BMC and LTL?
- Verification = only check some interleavings of a transition system
- Based on independence between transitions and invisibility of a transition

• Algorithm: modified depth-first search (DFS)

- At each step s, a subset of the successors is selected: ample(s)
- *ample*(*s*) has to respect a set of conditions
- C1: Along every path in the full state graph that starts at s: a transition that is dependent on a transition in ample(s) cannot be executed without a transition in ample(s) occurring first.

- **c2** at least one state s per cycle is fully expanded
- **c3** If $ample(s) \neq enable(s)$, all transitions in ample(s) are invisible.
- **C4** if $ample(s) \neq enable(s)$, then ample(s) is a singleton
 - C1 C3 preserve deadlocks, LTL_X properties
 - C1 C4 preserve CTL_X properties

Two-phase algorithm [Nalumasu + 97]

- A modified DFS: performs alternatively 2 phases
 - Phase-1: explore for each process as many safe transitions (C1, C4) as possible
 - Phase-2: fully expand the current state

• Two-phase algorithm can check CTL_X properties

- Algorithm combining POR with BMC:
 - SBTP: Phase-1 performs a fixed number *n* of partial expansions for each process
 - A process might not be able to produce *n* safe transitions (*idle* transitions)

• From a transition system to a computation tree

• M and CT(M) are equivalent

- A modified computation tree ($\approx CT(M)$)
- Given *p* processes, a fixed number *n* of partial expansions, construct a reduced computation tree.
 - e.g number of processes p = 2, and n = 3

- Given p processes, a fixed number n of partial expansions, and $k = m(p \times n + 1)$, apply m times the two phases to obtain $[\![M]\!]_{k,n}^{SBTP}$
 - e.g number of processes p = 2, and n = 3

- Translate the negation of a LTL_X property f to a boolean formula $[\![\neg f]\!]_k$
- If $\llbracket M \rrbracket_{k,n}^{SBTP} \land \llbracket \neg f \rrbracket_k$ is satisfiable, an error is found

Justification

There exists $k \ge 0$ such that $\llbracket M, \neg f \rrbracket_{k,n}^{SBTP}$ if and only if $M \not\models f$

Our method finds a true assignment satisfying $\neg f$

Classical BMC on SBTP(M, n) finds a true assignment satisfying $\neg f$ \iff SBTP(M, n) does not satisfy f \iff M does not satisfy f

Tool

- Implemented in Scala:
 - Smoothly integrates features of object-oriented and functional languages.
 - Fully interoperable with Java.
- SAT part uses the Yices SMT solver.
- Main Features:
 - Modelling language based on processes and synchronization by rendezvous
 - BMC of LTL properties
 - SBTP of LTL_X properties

Case Study: Producer-Consumer

- A variant of the Producer-Consumer problem:
 - with q producers, q consumers, and n = 8
- P₂: in all cases the buffer will eventually contain more than one piece

		BMC property P_2		SBTP property P_2		
q	states	k	Sec	k	cycles	sec
1	1,059	26	73	153	9	122
2	51,859	44	29,898	297	9	211
3	3,807,747		—	441	9	401
4	$\approx 10^8$		—	585	9	1,238
5	$\approx 10^{10}$		—	729	9	1,338
6	$\approx 10^{12}$		—	873	9	1,926
7	$\approx 10^{14}$			1,017	9	4,135

Case Study: Producer-Consumer

 Influence of the parameter n when the number of producers (resp. consumers) = 2

	property P_2							
n	k	# cycles	TIME (sec)	MEM (MB)				
0	44	44	29,898	131				
1	95	19	855	159				
2	135	15	235	167				
3	169	13	305	194				
4	187	11	217	192				
5	231	11	375	308				
6	275	11	381	240				
7	319	11	583	318				
8	297	9	211	224				
9	333	9	240	295				

Conclusion

- Combining Partial Order Reduction with Bounded Model Checking
 - From 2 Producers/Consumers (51,859 states) to 7 Producers/Consumers ($\approx 10^{14}$ states)
 - How to choose the number *n* of partial expansions during Phase-1?
 - Need to apply SBTP to other case studies (more complex, more realistic)
- Appropriate algorithm to check asynchronous systems with symbolic model-checking

Perspectives

- Extend SBTP to handle models featuring variables on infinite domains (SMT solvers)
- Automatically determine the number *n* of partial expansions during Phase-1
- Consolidate our prototype:
 - Perform state-of-the-art BMC translations
 - Improve input language