
Combining
Partial Order Reduction

with Bounded Model Checking
CPA 2009

José Vander Meulen and Charles Pecheur

UC Louvain

– p. 1

A Concurrent System

• Set of asynchronous and interacting processes

bounded-buffer

Producer 1

Producer 2
. . .

Producer q - 1

Producer q

Consumer 1

Consumer 2
. . .
Consumer q - 1

Consumer q

• Can we verify this system with Symbolic Model
Checking?

• Up to what q?

– p. 2

Model Checking

• Exhaustive exploration of the state space of a system

– p. 3

Symbolic Model Checking

• Principle:

• Compute sets of states (BDDs), or
• Resolve a SAT problem (BMC)

• Brilliant results in the hardware domain
[Biere + 03, Mc Millan 93]

• Conventional wisdom: Symbolic Model Checking
methods are not well suited for asynchronous systems.

• How can we use symbolic Model Checking with
asynchronous system?

– p. 4

Outline

• Background

• Bounded Model Checking
• Partial Order Reduction

• Combining Partial Order Reduction with Bounded
Model Checking

• Experimental results

• Conclusion

• Perspectives

– p. 5

Bounded Model Checking [Biere + 99]

• Search for a counterexample in executions whose
length = k

• e.g. paths of length 3

M

x y

y z z

x y y z x y y z

x y y z x y z

x y y z z z

x y z z z

– p. 6

Bounded Model Checking [Biere + 99]

• Reduce model checking problem to a SAT problem

• Unfold the transition relation k times to obtain a boolean
formula [[M]]k

I(~x0) ∧ T (~x0, ~x1) ∧ T (~x1, ~x2) ∧ · · · ∧ T (~xk−1, ~xk)

• Translate the negation of a LTL property f to a Boolean
formula [[¬f]]k

• If [[M]]k ∧ [[¬f]]k is satisfiable, an error is found

– p. 7

Partial Order Reduction

• Partial order reduction methods are best suited for
asynchronous systems

• Can we use these methods with BMC and LTL?

• Verification = only check some interleavings of a
transition system

• Based on independence
between transitions and
invisibility of a transition

x y

x ¬y ¬x y

¬x ¬y

– p. 8

Partial Order Reduction

• Partial order reduction methods are best suited for
asynchronous systems

• Can we use these methods with BMC and LTL?

• Verification = only check some interleavings of a
transition system

• Based on independence
between transitions and
invisibility of a transition

x y

x ¬y ¬x y

¬x ¬y

X

X
X

– p. 9

Partial Order Reduction

• Algorithm : modified depth-first search (DFS)

• At each step s, a subset of the successors is
selected: ample(s)

• ample(s) has to respect a set of conditions

• c1: Along every path in the full state graph that starts at
s: a transition that is dependent on a transition in
ample(s) cannot be executed without a transition in
ample(s) occurring first.

x y

x ¬y ¬x y

¬x ¬y x y

– p. 10

Partial Order Reduction

• c2 at least one state s per cycle is fully expanded

• c3 If ample(s) 6= enable(s), all transitions in ample(s) are
invisible.

• c4 if ample(s) 6= enable(s), then ample(s) is a singleton

• C1 – C3 preserve deadlocks, LTLX properties
• C1 – C4 preserve CTLX properties

– p. 11

Two-phase algorithm [Nalumasu + 97]

• A modified DFS: performs alternatively 2 phases

• Phase-1: explore for each process as many safe
transitions (C1, C4) as possible

• Phase-2: fully expand the current state

Phase 1
Safe transitions

Phase 2
All transitions

Phase 1

P1

P2

P3

• Two-phase algorithm can check CTLX properties

– p. 12

SBTP

• Algorithm combining POR with BMC:

• SBTP: Phase-1 performs a fixed number n of partial
expansions for each process

• A process might not be able to produce n safe
transitions (idle transitions)

idle

idle

Phase 1
Safe transitions

Phase 2
All transitions

Phase 1

P1

P2

P3

– p. 13

SBTP

• From a transition system to a computation tree

M

x y

y z z

CT (M)

x y

y z z

x y z z

• M and CT (M) are equivalent

– p. 14

SBTP

• A modified computation tree (≈ CT (M))

• Given p processes, a fixed number n of partial
expansions, construct a reduced computation tree.

• e.g number of processes p = 2, and n = 3

SBTP (M,n)

...

T

T1 else idle
T1 else idle
T1 else idle
T0 else idle
T0 else idle
T0 else idle

T

T1 else idle
T1 else idle
T1 else idle

T0 else idle
T0 else idle

T0 else idle

– p. 15

SBTP

• Given p processes, a fixed number n of partial
expansions, and k = m(p × n + 1), apply m times the
two phases to obtain [[M]]SBTP

k,n

• e.g number of processes p = 2, and n = 3

T idle

1 T idle

1 T idle

1 T idle

2 T idle

2 T idle

2 T
[]m

• Translate the negation of a LTLX property f to a
boolean formula [[¬f]]k

• If [[M]]SBTP
k,n ∧ [[¬f]]k is satisfiable, an error is found

– p. 16

Justification

There exists k ≥ 0 such that [[M,¬f]]SBTP
k,n if and only if M 6|= f

Our method finds a true assignment satisfying ¬f

⇐⇒

Classical BMC on SBTP (M, n) finds a true assignment satisfying ¬f

⇐⇒

SBTP (M, n) does not satisfy f

⇐⇒

M does not satisfy f

– p. 17

Tool

• Implemented in Scala:
• Smoothly integrates features of object-oriented and

functional languages.
• Fully interoperable with Java.

• SAT part uses the Yices SMT solver.

• Main Features:
• Modelling language based on processes and

synchronization by rendezvous
• BMC of LTL properties
• SBTP of LTLX properties

– p. 18

Case Study: Producer-Consumer

• A variant of the Producer-Consumer problem:

• with q producers, q consumers, and n = 8

• P2: in all cases the buffer will eventually contain more
than one piece

BMC property P2 SBTP property P2

q states k sec k cycles sec

1 1,059 26 73 153 9 122
2 51,859 44 29,898 297 9 211
3 3,807,747 — — 441 9 401
4 ≈ 108 — — 585 9 1,238
5 ≈ 1010 — — 729 9 1,338
6 ≈ 1012 — — 873 9 1,926
7 ≈ 1014 — — 1,017 9 4,135

– p. 19

Case Study: Producer-Consumer

• Influence of the parameter n when the number of
producers (resp. consumers) = 2

property P2

n k # cycles TIME (sec) MEM (MB)

0 44 44 29,898 131
1 95 19 855 159
2 135 15 235 167
3 169 13 305 194
4 187 11 217 192
5 231 11 375 308
6 275 11 381 240
7 319 11 583 318
8 297 9 211 224
9 333 9 240 295

– p. 20

Conclusion

• Combining Partial Order Reduction with Bounded
Model Checking

• From 2 Producers/Consumers (51, 859 states) to 7
Producers/Consumers (≈ 1014 states)

• How to choose the number n of partial expansions
during Phase-1?

• Need to apply SBTP to other case studies (more
complex, more realistic)

• Appropriate algorithm to check asynchronous systems
with symbolic model-checking

– p. 21

Perspectives

• Extend SBTP to handle models featuring variables on
infinite domains (SMT solvers)

• Automatically determine the number n of partial
expansions during Phase-1

• Consolidate our prototype:

• Perform state-of-the-art BMC translations
• Improve input language

– p. 22

	A Concurrent System
	Model Checking
	Symbolic Model Checking
	Outline
	Bounded Model Checking {small $[$Biere $^+$ 99$]$}
	Bounded Model Checking {small $[$Biere $^+$ 99$]$}
	Partial Order Reduction
	Partial Order Reduction
	Partial Order Reduction
	Partial Order Reduction
	Two-phase algorithm {small [Nalumasu $^+$ 97]}
	SBTP
	SBTP
	SBTP
	SBTP
	Justification
	Tool
	Case Study: Producer-Consumer
	Case Study: Producer-Consumer
	Conclusion
	Perspectives

