
Combining Partial Order Reduction with
Bounded Model Checking

José VANDER MEULEN and Charles PECHEUR

Université catholique de Louvain, Louvain-la-Neuve, Belgium
{jose.vandermeulen , charles.pecheur} @uclouvain.be

Abstract. Model checking is an efficient technique for verifying properties on reactive
systems. Partial-order reduction (POR) and symbolic model checking are two com-
mon approaches to deal with the state space explosion problem in model checking.
Traditionally, symbolic model checking uses BDDs which can suffer from space blow-
up. More recently bounded model checking (BMC) using SAT-based procedures has
been used as a very successful alternative to BDDs. However, this approach gives poor
results when it is applied to models with a lot of asynchronism. This paper presents an
algorithm which combines partial order reduction methods and bounded model check-
ing techniques in an original way that allows efficient verification of temporal logic
properties (LTLX ) on models featuring asynchronous processes. The encoding to a
SAT problem strongly reduces the complexity and non-determinism of each transition
step, allowing efficient analysis even with longer execution traces. The starting-point
of our work is the Two-Phase algorithm (Namalesu and Gopalakrishnan) which per-
forms partial-order reduction on process-based models. At first, we adapt this algo-
rithm to the bounded model checking method. Then, we describe our approach for-
mally and demonstrate its validity. Finally, we present a prototypal implementation
and report encouraging experimental results on a small example.

Introduction

Model checking is a technique used to verify concurrent systems such as distributed appli-
cations and communication protocols. It has a number of advantages. In particular, model
checking is automatic and usually quite fast. Also, if the design contains an error, model
checking will produce a counterexample that can be used to locate the source of the error [1].

In the 1980s, several researchers introduced very efficient temporal logic model check-
ing algorithms. McMillan achieved a breakthrough with the use of symbolic representations
based on the use of Ordered Binary Decision Diagrams (BDD) [2]. By using symbolic model
checking algorithms, it is possible to verify systems with a very large number of states [3].
Nevertheless, the size of the BDD structures themselves can become unmanageable for large
systems. Bounded Model Checking (BMC) uses SAT-solvers instead of BDDs to search er-
rors on bounded execution path [4]. BMC offers the advantage of polynomial space complex-
ity and has proven to provide competitive execution times in practice.

A common approach to verify a concurrent system is to compute the product finite-space
description of the processes involved. Unfortunately, the size of this product is frequently
prohibitive due, among other causes, to the modelling of concurrency by interleaving. The
aim of partial order reduction (POR) techniques is to reduce the number of interleaving se-
quences that must be considered. When a specification cannot distinguish between two in-
terleaving sequences that differ only by the order in which concurrently executed events are
taken, it is sufficient to analyse one of them [5].



This paper presents a technique which combines together the BMC method and the POR
method for verifying linear temporal logic properties. We start from the Two-Phase algorithm
(TP) of Namalesu and Gopalakrishnan [6]. We merge a variant of TP with the BMC pro-
cedure. This allows the verification of models featuring asynchronous processes. Intuitively,
from a model and a property, the BMC method constructs a propositional formula which
represents a finite unfolding of the transition relation and the property. Our method proceeds
in the same way, but instead of using the entire transition relation during the unfolding of the
model, we only use a safe subset based on POR considerations. This produces a propositional
formula which is well suited for most modern SAT solvers. In contrast, our previous work
introduced an algorithm to verify branching temporal logic properties which merges POR
and BDD-based model checking [7].

To assess the validity of our approach, we start by introducing two methods which can
be combined together for transforming computation trees. The POR method captures partial-
order reduction criteria [8,5,1]. The idle-extension shows how a finite number of transitions
can be added while also preserving temporal logic properties. Then, the Stuttering Bounded
Two-Phase (SBTP) reduction is introduced, as a particular instance of a combination of these
two methods inspired from TP. Finally, we present how a finite unfolding of SBTP is encoded
as a propositional formula suitable for BMC.

The remainder of the paper is structured as follows. Section 1 recalls some background
concepts, definitions and notations that are used throughout the paper: bounded model check-
ing, bisimulations and POR. In Section 2, two transformations of computation trees which
preserves CTL∗X properties are presented, as well as the SBTP algorithm and its transforma-
tion to a BMC problem. Section 3 presents the extension of our prototype implementing the
BMC of SBTP method. In Section 4, we present the results obtained by applying our method
on a case study. Section 5 reviews related works. Finally, Section 6 gives conclusions as well
as directions for future work.

1. Background

1.1. Transitions Systems

A transition system which is a particular class of state machine represents the behavior of
a system. A state of the transition systems is a snapshot of the system at a particular time,
formally each state is labelled with atomic propositions. The actions performed by the system
are modeled by means of transitions between states. Formally each transition carries a label
which represents the performed action [1] 1. In the rest of this paper, we assume a set AP of
atomic propositions and a set A of transitions. Without loss of generality, the set AP can be
restricted to the propositions that appear in the property to be verified on the system.

Definition 1 (Transition System). Given a set of transitions A and a set of atomic proposi-
tions AP , a transition system (over A and AP ) is a structure M = (S, T, s0, L) where S is
a finite set of states, s0 ∈ S is an initial state 2, T ⊆ S × A × S is a transition relation and
L : S → 2AP is an interpretation function over states.

We write s α−−→ s′ for (s, α, s′) ∈ T . A transition α is enabled in a state s iff there is a
state s′ such that s α−−→ s′. We write enabled(s, T ) for the set of enabled transitions of T in s.
When the context is clear, we write enabled(s) instead of enabled(s, T ). We assume that T

1Our treatment differs slightly from [1] which views T as a set of (unlabelled) transition relations α ⊆ S×S.
Using labelled transitions amounts to the same structures and is mathematically cleaner to define.

2For simplicity, s0 is a single state. All the arguments of this paper can be easily generalized to many initial
states (i.e. S0 ⊆ S).



is total (i.e. enable(s) 6= ∅ for all s ∈ S). A transition α is deterministic in a state s iff there
is at most one s′ such that s α−−→ s′.

A transition α ∈ T is invisible if for each pair of states s, s′ ∈ S such that s α−−→ s′,
L(s) = L(s′). A transition is visible if it is not invisible. An execution path ofM is an infinite
sequence of consecutive transitions steps s0

a0−−→ s1
a1−−→ s2

a2−−→ · · · .
A computation tree can be built from a transition system M . s0 ∈ S is the root of a tree

that unwinds all the possible executions from that initial state [1]. The computation tree of
M (CT (M)) is itself a transition system and is essentially equivalent to M , in a sense that
will be made precise below.

1.2. Model Checking

This section briefly introduces model checking. For more details, we refer the reader to [1].
Model checking is an automatic technique to verify that a concurrent systems such a dis-
tributed application and a communication protocol, satisfies a given property. Intuitively, the
system is modeled as a finite transition system, and model checking performs an exhaustive
exploration of the resulting state graph to fulfill the verification. If the system violates the
property, model checking will generate a counterexample which will help to locate the source
of the error.

A common approach to verify a concurrent system is to compute the combined finite-
space description of the processes involved. Unfortunately, the size of this combination can
grow exponentially, due to all the different interleavings among the executions of all the
processes. Partial Order Reduction (POR) techniques reduce the number of interleaving se-
quences that must be be considered. When a specification cannot distinguish between two
interleaving sequences that differ only by the order in which concurrently executed events
are taken, it is sufficient to analyse one of them [5].

Temporal logic is used to express properties to be verified. In addition to the elements of
propositional logic, this logic provides temporal operators for reasoning over different steps
of the execution. There are several types of temporal logics such as linear temporal logic
(LTL), computation tree logic (CTL), or CTL∗ which subsumes both LTL and CTL. For
instance, LTL formulæ are interpreted over each execution path of the model. In LTL, Gϕ
(globally ϕ) says that ϕ will hold in all future states, Fϕ (finally ϕ) says that ϕ will hold in
some future states, ϕ U ψ (ϕ until ψ) says that ψ will hold in some future states and at every
preceding states ϕ holds, and Xϕ (next ϕ) says that ϕ is true in the next state. In this paper we
will consider LTLX , the fragment of LTL without the X operator. Similarly, CTL∗X (resp.
CTLX) is the fragment of CTL∗ (resp. CTL) without the X operator.

By using temporal logic model checking algorithms, we can check automatically
whether a given system, modeled as a transition system, satisfies a given temporal logic prop-
erty. In the 1980’s, very efficient temporal logic model checking algorithms were introduced
for these logics [9,10,11,12]. For instance, to check if a systemM satisfies a LTL property ϕ,
the algorithm presented in [10] constructs an automaton B over infinite words named Büchi
automaton from the negation of ϕ [13]. Then it searches for violations of ϕ by checking the
executions of the state graph which result from the combination of M and B.

1.3. Bounded Model Checking

In 1992, a step forward was reached by McMillan by using a symbolic approach, based on
Binary Decision Diagrams (BDD), to reason on set of states rather than individual states.
This technique made it possible to verify systems with a very large number of states [14].
However for large models, the size of the BDD structures themselves can become intractable.

In contrast, the Bounded Model Checking (BMC) uses SAT solver instead of BDDs
as the underlying computational device [4]. The idea of BMC is to characterize an error



execution path of length k as a propositional formula, and search for solutions to that formula
with a SAT solver. This formula is obtained by combining a finite unfolding of the system’s
transition relation and an unfolding of the negation of the property being verified. The latter
is obtained on the basis of expansion equivalences such as p U q ≡ q∨ (p∧X(p U q)) which
allow us to propagate across successive states the constraints corresponding to the violation
of the LTL property. If no counterexample is found, k is incremented and a new execution
path is searched. We continue this process until a counterexample is found or any limit is
reached.

BMC allow to check LTL properties on a system. Since BMC works on finite paths, an
approximate bounded semantics of LTL is defined. Intuitively, the bounded semantics treats
differently paths with a back-loop (c.f. Figure 1(a)) and paths without such a back-loop (c.f.
Figure 1(b)). The former can be seen as an infinite path formed by a finite number of states. In
this case the classical semantic of LTL can be applied. In contrast, the latter is a finite prefix
of an infinite path. In some cases, such a prefix π is sufficient to show that a path violates a
property f . For instance, let f be the property Gp. If π contains a state which does not satisfy
p then all paths which start with the prefix π violate Gp.

(a)
sl si sk

(b)
si sk

Figure 1. The two cases for a bounded path [4].

The propositional formula [[M,¬f ]]k which is submitted to the SAT solver is constructed
as follows, where f is the LTL property to be verified.

Definition 2 (BMC encoding). Given a transition system M = (S, T, s0, L), a LTL formula
f , and a bound k ∈ N:

[[M,¬f ]]k = [[M ]]k ∧
(

(¬Lk ∧ [[¬f ]]) ∨
k∨
l=0

(lLk ∧ l[[¬f ]])
)

where

• [[M ]]k is a propositional formula which represents the unfolding of k steps of the tran-
sition relation,

• lLk is propositional formula which is true iff there is a transition from sk to sl,
• Lk is propositional formula which is true iff there exists a l such that lLk,
• [[¬f ]] is a propositional formula which is the translation of ¬f when [[M ]]k does not

contain any back loop, and
• l[[¬f ]] is a propositional formula which is the translation of ¬f when [[M ]]k does con-

tain a back loop to state sl.

It is shown in [4] that if M 6|= f then there is a k ≥ 0 such that [[M,¬f ]]k is satisfiable.
Conversely, if [[M,¬f ]]k has no solutions for any k then M |= f 3.

Given a propositional formula p produced by the BMC encoding, a SAT solver decides
if p is satisfiable or not. If it is, a satisfying assignment is given that describes the path vio-
lating the property. Most of the SAT solvers apply a variant of the Davis-Putnam-Logemann-
Loveland (DPLL) algorithm [15]. Intuitively, DPLL performs alternatively two phases. The
first one chooses a value for some variable. The second one propagates the implications of

3Actually, [4] shows that it is sufficient to look for bounded solutions of [[M,¬f ]]k up to bound k ≤ K which
depends on f and M .



this decision that are easy to infer. This method is known as unit propagation. The algorithm
backtracks when a conflict is reached

1.4. Bisimulation Relations

A bisimulation is a binary relation between two transition systems M and M ′. Intuitively, a
bisimulation can be constructed between two systems if one can simulate the other and vice-
versa. For instance, bisimulation techniques are used in model checking to reduce the number
of states of M while preserving some kind of properties (e.g. LTLX , CTLX , . . . ). The
literature proposes a large number of variants of bisimulation relations [16,8]. This section
describes two kinds of bisimulation relations used in the sequel.

1.4.1. Bisimulation Equivalence

Bisimulation equivalence is the classical notion [16], here adapted to transition systems by
requiring identical state labellings, which ensures that CTL∗ properties are preserved [1].
Intuitively, bisimulation equivalence groups states that are impossible to distinguish, in the
sense that both have the same labelling and offer the same transitions leading to equivalent
states.

Definition 3 (Bisimulation Equivalence). Let M = (S, T, s0, L) and M ′ = (S ′, T ′, s′0, L
′)

be two structures with the same set of atomic propositions AP . A relation B ⊆ S × S ′ is a
bisimulation relation between M and M ′ if and only if for all s ∈ S and s′ ∈ S, if B(s, s′)
then the following conditions hold:

• L(s) = L(s′).
• For every state s1 ∈ S such that s α−−→ s1 there is a s′1 ∈ S ′ such that s′ α−−→ s′1 and
B(s1, s

′
1).

• For every state s′1 ∈ S ′ such that s′ α−−→ s′1 there is a s1 ∈ S such that s α−−→ s1 and
B(s1, s

′
1).

M and M ′ are bisimulation-equivalent iff there exists a bisimulation relation B such
that B(s0, s

′
0).

In [1] it is shown that unwinding a structure results in a bisimulation-equivalent struc-
ture. So, we conclude that a computation tree which is generated from a model M is
bisimulation-equivalent to M . Furthermore, bisimulation equivalence preserves CTL∗ prop-
erties, as shown in [1].

Figure 2 (a) and Figure 2 (b) are bisimulation-equivalent. For each dashed oval, we can
group together every state of Figure 2 (b) to state of Figure 2 (a) (e.g. B(1, 3)). On the other
hand, Figure 2 (a) and Figure 2 (c) are not bisimulation-equivalent because the node 7 in
Figure 2 (c) does not correspond to any states in Figure 2 (a).

1.4.2. The Visible Bisimulation

Visible bisimulation is a weaker equivalence that only preserves CTL∗X properties, and thus
also CTL and LTL properties. Our POR methods preserve visible bisimilarity and therefore
those logics. Intuitively, the visible bisimulation associates two states s and t that are impos-
sible to distinguish, in the sense that if from s a visible action a is attainable in the future, a
also belongs to t’s future.

Definition 4 (Visible Bisimulation [8]). A relation B ⊆ S × S ′ is a visible simulation
between two structures M = (S, T, s0, L) and M ′ = (S ′, T ′, s′0, L

′) iff B(s0, s
′
0) and for

every s ∈ S, s′ ∈ S such that B(s, s′), the following conditions hold:

1. L(s) = L′(s′)



1

p

2

p

3

p

4

q

5

p

a

b

a

b

a

(a)

(b)

6

p

7

q

8

p

a

b

a

b(c)

Figure 2. Bisimilar and nonbisimilar structures.

2. Let s a−−→ t. There are two cases:

• a is invisible and B(t, s′), or

• there exists a path s′
c0−−→ s′1

c1−−→ · · ·
cn−1−−−→ s′n

a′−−→ t′ in M ′, such that B(s, s′i)
for 0 < i ≤ n and ci is invisible for 0 ≤ i < n. Furthermore, if a is visible, then
a′ = a. Otherwise, a′ is invisible.

3. If there is an infinite path s = s0
a0−−→ s1

a1−−→ · · · in M , where all ai are invisible
and B(si, s

′) for i ≥ 0, then there exists a transition s′ c−−→ t′ such that c is invisible,
and for some j > 0, B(sj, t

′)

B is a visible bisimulation iff both B and B−1 are visible simulations. M and M ′ are
visibly-bisimilar iff there is a visible bisimulation B.

Figure 3 (a) and 3 (b) are visibly-bisimilar. To see this, we construct the relation which
put together states of Figure 3 (a) and states of Figure 3 (b) that are linked by a dashed line
together. The action a and b can be executed in any order leading to the same result, from the
standpoint of verification. Figure 3 (a) and Figure 3 (c) are not visibly-bisimilar, the node 12
in Figure 3 (c) does not correspond to any states in Figure 3 (a).

1

p

2p 3 p

4

p

5

q

6

r

a b

b a

c c

(a)

7

p

8 p

9

p

10

q

11

r

a

b

c c

(b)

12

p

13p 14 q

15

p

16

q

17

r

a b

b a

c c

(c)

Figure 3. Visibly-bisimilar and not visibly-bisimilar structures.

There also exists a weaker bisimulation, called stuttering bisimulation. In general, the
POR literature is based on the notion of stuttering bisimulation to reason about POR. In [8],
it is shown that a visible bisimulation is also a stuttering bisimulation, and also preserves
CTL∗X properties. In general, it is easier to reason about visible bisimulation than about
stuttering bisimulation because the former implies an argument about states and the latter



implies an argument about infinite paths. Actually, the POR method which is applied in the
sequel produces a reduced graph from a model M which is visible-bisimilar to M .

1.5. Partial-Order Reduction

The goal of partial-order reduction methods (POR) is to reduce the number of states explored
by model-checking, by avoiding to explore different equivalent interleavings of concurrent
events [8,5,1]. Naturally, these methods are best suited for strongly asynchronous programs.
Interleavings which are required to be preserved may depend on the property to be checked.

Partial-order reduction is based on the notions of independence between transitions and
invisibility of a transition. Two transitions are independent if they do not disable one another
and executing them in either order results in the same state.

Intuitively, if two independent transitions α and β are invisible w.r.t. the property f
that one wants to verify, then it does not matter whether α is executed before or after β,
because they lead to the same state and do not affect the truth of f . Partial-order reduction
consists in identifying such situations and restricting the exploration to either of these two
alternatives. In effect, POR amounts to exploring a reduced model M ′ = (S ′, T ′, s0, L) with
S ′ ⊆ S and T ′ ⊆ T . In practice, classical POR algorithms [5,1] execute a modified depth-
first search (DFS). At each state s, an adequate subset ample(s) of the transitions enabled in
s are explored. To ensure that this reduction is adequate, that is, that verification results on
the reduced model hold for the full model, ample(s) has to respect a set of conditions, based
on the independence and invisibility notions previously defined. In some cases, all enabled
transitions have to be explored. The following conditions are set forth in [1,8]:

C0 ample(s) = ∅ if and only if enable(s) = ∅.
C1 Along every path in the full state graph that starts at s, the following condition holds: a

transition that is dependent on a transition in ample(s) cannot be executed without a
transition in ample(s) occurring first.

C2 If ample(s) 6= enabled(s), then all transitions in ample(s) are invisible.
C3 A cycle is not allowed if it contains a state in which some transition α is enabled, but is

never included in ample(s) on the cycle.

On finite models, conditions C0, C1, C2 and C3 are sufficient to guarantee that the re-
duced model preserves properties expressed in LTLX . On infinite models (such as computa-
tion trees) condition C3 must be rephrased as the following condition, which intuitively states
that all the transitions in enabled(s) will eventually be expanded.

C3b An infinite path is not allowed if it contains a state in which some transition α is enabled,
but is never included in ample(s) on the path.

In order to demonstrate that C0, C1, C2 and C3b preserve LTLX properties, a similar
argument as the one presented in [1] can be used. The only difference is the method applied
for demonstrating the Lemma 28 of [1]. This Lemma can be demonstrated by using condition
C3b instead of condition C3.

Ensuring preservation of branching temporal logics requires an additional constraint
which is significantly more restrictive [8]:

C4 If ample(s) 6= enabled(s), then ample(s) contains only one transition that is determin-
istic in s.

When conditions C0 to C4 are satisfied, [8] shows that there is a visible bisimulation
between the complete and reduced models, which ensures preservation of CTL∗X properties
(and thus CTLX and LTLX). The same argument can be used to demonstrate that there is



also a visible bisimulation between the full and the reduced state graph, when conditions C0,
C1, C2, C3b, and C4 are satisfied.

Conditions C1 and C2 depend on the whole state graph and are not directly exploitable
in a verification algorithm. Instead, one uses sufficient conditions, typically derived from the
structure of the model description, to safely decide where reduction can be performed.

1.6. Process Model

In the sequel, we assume a process-oriented modeling language. We define a Process Model
as a refinement of a transition system:

Definition 5 (Process Model). Given transition system M = (S, T, s0, L), a process model
consists of a finite set P of m processes p0, p1, . . . , pm−1. For each pi, we define safe deter-
ministic actions Ai ⊆ A and safe deterministic transitions Ti = T ∩ (S × Ai × S) such that
for all a ∈ Ai, a is invisible, and for all s ∈ S: ample(s) = enable(s, Ti) = {a} satisfies
conditions C1 and C4.

All Ti contain only safe deterministic transitions. Given a state s and a Ti, s is safe
deterministic w.r.t. Ti if and only if enable(s, Ti) 6= ∅.

For instance, suppose a concurrent program S composed of a finite number of thread(s)
m. Each thread has exclusive access to some local variables, as well as some global variables
that all threads can read or write. This program can be translated into a process model M .
The translation procedure may translate each thread of S into a process pi. In particular, a
(deterministic) instruction of pi that affects only a local variable x (e.g. x = 3) will meet the
conditions of Definition 5 and can be modelled as a safe determinisitc action ax=3 ∈ Ai.
Indeed, all transition s

ax=3−−−−→ t resulting from the execution of that instruction will be safe
deterministic. Thus, ample(s) = enable(s, Ti) = {ax=3} is a valid ample set for POR.

1.7. The Two-Phase Approach to Partial Order Reduction

This section presents the Two-Phase algorithm (TP) which was firstly introduced in [6]. Start-
ing from a model M , it generates a reduced model M ′ which is visible-bisimilar to M . It is
a variant of the classical DFS algorithm with POR [5,1]. It alternates between two distinct
phases:

• Phase-1 only expands safe deterministic transitions considering each process at a time,
in a fixed order. As long as a process is deterministic, the single transition that is
enabled for that process is executed. Otherwise, the algorithm moves on to the next
process. After expanding all processes, the last reached state is passed on to Phase-2.

• Phase-2 performs a full expansion of the state resulting from the Phase-1, then applies
Phase-1 recursively to all reached states.

To avoid postponing a transition indefinitely, at least one state is fully expanded on each
cycle in the reduced state space. Such an indefinite postponing can only arise within Phase-1.
It is handled by detecting cycles within the current Phase-1 expansion. When such a cycle is
detected, the algorithm moves to the next process or to Phase-2.

As shown in [17], the Two-Phase algorithm produces a reduced state space which is
visible-bisimilar to the whole one and therefore preserves CTL∗X properties. This follows
from the fact that TP is a classical DFS algorithm with POR and that ample(s) meets condi-
tions C0 to C4 of Section 1.5.



2. The Stuttering Bounded Two-Phase Algorithm

This section presents a variant of the two-phase approach to partial-order reduction, called
the Stuttering Bounded Two-Phase method (SBTP).

In contrast to the original TP, which performs Phase-1 partial expansions as long as pos-
sible, our SBTP method imposes a fixed number n of Phase-1 expansions for each process.
If less than n successive steps are enabled for some process, invisible idle transitions are
performed instead. Figure 4 illustrates the resulting computation tree, for two processes with
n = 3 transitions each.

...
T

T1 else idle
T1 else idle
T1 else idle
T0 else idle
T0 else idle
T0 else idle

T

T1 else idle
T1 else idle
T1 else idle

T0 else idle
T0 else idle
T0 else idle

Figure 4. SBTP (M, 3) with two processes and n = 3.

This approach ensures that, at a given depth in the execution, the same (partial or global)
transition relation is applied to all states, which greatly simplifies the encoding and resolution
of this exploration as a bounded model-checking problem using SAT solvers.

We consider computation trees (CTs) rather than general transition systems. This offers
the advantage that states of the original transition system that can be reached through different
paths in the original model, and thus be expanded in different ways, become different states
in the computation tree, each with its unique expansion. It matches naturally with the SAT-
based bounded model-checking approach, which does not attempt to prevent exploring the
same state several times on the same path, as opposed to conventional enumerative model-
checkers.

To precisely define the SBTP approach, we first characterize a broad class of derived CTs
reduced according to partial-order criteria and extended with (finite chains of) idle transitions,
and show that they are visible-bisimilar to the CT they derive from. Then we define the CT
corresponding to the SBTP method we just outlined, as a particular instance of this class of
derived CTs. Finally, we express a constraint system whose solutions are (finite or infinite
periodic) bounded execution paths of the CT produced by SBTP.

2.1. Transforming the Computation Tree

This section presents two classes of derived computation trees that are visible-bisimilar to
a given computation tree CT : partial-order reductions (POR) of CT , which removes states
and transitions according to POR criteria, and idle-extensions of CT , which adds (finitely
many) idle transitions to each state.



Both derivations can be combined: indeed, given an initial CT we can successively de-
rive CT ′ as a POR of CT then CT ′′ as an idle extension of CT ′. By transitivity of equiva-
lence, we know that CT ′′ is visible-bisimilar to CT .

Partial-Order Reduction of CTs The definition of POR on computation trees is a straight
application of the criteria quoted in Section 1.5.

Definition 6 (POR). Given CT = (S, T, s0, L) and CT ′ = (S ′, T ′, s0, L) two computation
trees such that S ′ ⊆ S and T ′ ⊆ T , CT ′ is a partial-order reduction (POR) of CT if and
only if ample(s) respects the conditions C0, C1, C2, C3b and C4 from Section 1.5 over CT ,
where for all s in S, ample(s) = enabled(s, T ′) when s ∈ S ′ and ample(s) = enabled(s, T )
otherwise4.

Theorem 1. If CT ′ is a partial-order reduction of CT , then CT ′ ≈ CT .

Proof. This can be demonstrated by constructing a visible bisimulation between M and M ′.
The relation∼ ⊆ S×S is defined such that s ∼ s′ iff there exists a path s = s1

a1−−→ s2
a2−−→

· · ·
an1−−−→ sn = s′ such that ai is invisible and {ai} satisfies C1 from state si for 1 ≤ i < n.

It was shown in [8] that the relation ≈ = ∼ ∩ (S × S ′) is a visible bisimulation between M
and M ′.

Idle-Extension of CTs The idle-extension consists in adding a finite (possibly null) number
of idle transitions on states of CT , giving CT ′. Intuitively, an idle transition is a transition
which does nothing and so does not modify the current state.

Definition 7 (Idle-Extension). Given a computation tree CT = (S, T, s0, L), an idle-
extension of CT is a computation tree CT ′ = (S ′, T ′, s0, L) over an extended set of tran-
sitions A ∪ {idle}, with S ′ ⊇ S and such that for all s ∈ S there is a finite sequence
s = s0

idle−−−→ s1
idle−−−→ · · · idle−−−→ sn in CT ′ where:

• s1, . . . , sn are new states not in S,
• L(s1) = · · · = L(sn) = L(s),
• idle is the only enabled transition in s0, . . . , sn−1,
• for all s a−−→ t in CT we have sn

a−−→ t in CT ′.

We write s idle∗−−−→ si when such a sequence exists and call si an idle-successor of s and
s the idle-origin of si.

Note that the idle transition is invisible according to this definition. Since the idle-
extension is a tree, idle-successors are never shared between multiple idle-origins.

Theorem 2. If CT ′ is an idle-extension of CT , then CT ′ ≈ CT .

Proof. LetCT = (S, T, s0, L) andCT ′ = (S ′, T ′, s0, L). We defineB ⊆ CT×CT ′ such that
B(s, s′) iff s′ is an idle-successor of s (including s itself). We will prove that B is a visible
bisimulation between CT and CT ′. First, obviously we have B(s0, s0). Next, we consider
s, s′ such that B(s, s′) and check that the three conditions of Definition 4 are satisfied both
ways. By definition of B, s′ is an idle-successor of s.

1. L(s) = L(s′) by Definition 4.
2. If s a−−→ t in CT , then there is s′ idle∗−−−→ s′′

a−−→ t in CT ′, with B(t, t).
Conversely, if s′ a−−→ t′ in CT ′ then either a = idle, which is invisible, and t′ is
another idle-successor of s so B(s, t′), or a 6= idle, in which case s′ is the last idle-
successor of s and s a−−→ t′ in CT , with B(t′, t′).

4The case where s /∈ S′ is for technical soundness only.



3. Suppose that there exists an infinite path s
a1−−→ t1

a2−−→ t2 · · · in CT , where all ai
are invisible and B(ti, s

′) for all ti. Then s′ is a shared idle-successor of all ti, which
is impossible according to Definition 7.
Conversely, suppose that there exists an infinite path s′

a1−−→ t′1
a2−−→ t′2 · · · in CT ′,

where all ai are invisible and B(s, t′i) for all t′i. Then all t′i are idle-successors of s,
which is again impossible according to Definition 7.

2.2. The Stuttering Bounded Two Phase Computation Tree

In order to accelerate the SAT procedure, we want to consider a modified computation tree
of a model such that the same (possibly partial) transition relations are applied to all states at
a given depth across the tree.

This result can be obtained by applying Stuttering Bounded Two Phase (SBTP) which is
a variant of the Two-Phase algorithm (TP). For the simplicity of the arguments, the method
presented in this Section and in Section 2.3 considers only the case of finite traces without
back-loops (c.f. Section 1.3). Section 2.4 explains how to reason about back-loops.

We consider a process model M = (S, T, s0, L) with m processes p0, p1, . . . , pm−1

(c.f. Section 1.6) SBTP’s Phase-1 expands exactly n deterministic transitions of p0, then n
deterministic transitions of p1, . . . , then n deterministic transitions of pm−1 (n ∈ N). If less
than n safe deterministic transitions are allowed, then idle transitions are performed instead.
After Phase-1, a Phase-2 expansion occurs even if there are safe deterministic transitions
remaining. The computation tree produced by SBTP (M,n) is defined in Listing 1, where
BCT (s, t, i) computes the transition relation from state t at depth i using transitions from
state s.

SBTP (M,n) = (S′, T ′, s0, L) where

c = m · n+ 1,
T ′ = BCT (s0, s0, 0),
BCT (s, t, i) =
if n · p ≤ i mod c ≤ n · (p+ 1) ∧ s a−−→ s′ ∈ Tp then

{t a−−→ s′} ∪BCT (s′, s′, i+ 1)
else if n · p ≤ i mod c ≤ n · (p+ 1) ∧ enable(s, Tp) = ∅ then

{t idle−−−→ t′} ∪BCT (s, t′, i+ 1) where t′ is a idle -successor of s
else

// p = M⋃
(s,a,s′)∈T

{
{t a−−→ s′} ∪BCT (s′, s′, i+ 1)

}
, and

S′ = {s | s is reachable from s0 using T ′}

Listing 1. SBTP.

It is easily seen that the computation tree produced by SBTP is an idle-extension of a
partial order reduction of CT (M), and is therefore visible-bisimilar to CT (M).

We notice that when n equals 0 no partial order reduction is performed and the resulting
computation tree is the same as the original computation tree. Figure 5(b) illustrates the result
of applying one full cycle of SBTP to the CT of Figure 5(a), with two processes and n = 3.
The gray arrows of Figure 5(a) represent transitions which are ignored by Phase-1.



s0 s1 s2 s3

s4

s5

s6

T1 T1 T2

T

T

T

s0 s1 s20 s21 s30 s31 s32

s4

s5

s6

T1 T1 idle T2 idle idle
T

T

T

Phase 1 Phase 2

i = 0 1 2 3 4 5 6 7

(a) CT (M)

(b) SBTP (M, 3)

Figure 5. CT (M) vs SBTP (M, 3), if s and s′ are linked by a dashed line then s ≈ s′ and s′ ≈ s.

2.3. Applying Bounded Model Checking to SBTP

This section describes the actual bounded model checking problem used in our approach.
This problem encodes bounded executions of the SBTP computation tree defined in the pre-
vious section.

Given a process model M with m processes, a LTLX property f , and n, k ∈ N, our
approach uses a variant of the method presented in [4] to create a propositional formula
[[M,¬f ]]SBTPk,n . Contrary to the classical bounded model checking methods which uses a sin-
gle transition relation to carry out the required computation on the state space, we define
m + 1 transition relations. One is the full transition relation T used in Phase-2. The others,
used in Phase-1, only contain for each process pi, the safe deterministic transitions of pi and
idle transitions on states where no such safe deterministic transitions are enabled. We denote
these relation transitions by T idlei . Given two states s, t and an action a , T idlei (s, a, t) if and
only if either enable(s, Ti) = {a} and s a−−→ t , or enable(s, Ti) = ∅ and a = idle . Given
the number of processes m and parameter n, we know which phase is used in the unfolding
process at each depth i of the unfolding process. Furthermore, if Phase-1 is expanded at i,
we know which process is being unfolded (c.f. Figure 4). The transition relation Tn(i, s, a, s′)
expanded at level i is defined as follows:

Definition 8 (Tn(i, s, a, s′)). GivenM = (S, T, s0, L) withm processes p0, p1, . . . , pm−1. Let
c = m · n + 1 the number of steps of a cycle: n Phase-1 steps for each of the m processes
plus one Phase-2 step, i ∈ N, s, s′ ∈ S, and a ∈ A:

Tn(i, s, a, s
′) :=

{
T (s, a, s′) if i mod c = m · n (Phase-2)
T idlej (s, a, s′) where j = (i mod c) div n otherwise (Phase-1)

We are able to apply POR on bounded model checking by making use of the previous
definition into Definition 2 which translate a transition system and a LTL property into a
propositional formula:



Definition 9 (SBTP encoding). Let M be a process model which contains m processes, f be
a LTLX property and n, k ∈ N:

[[M,¬f ]]SBTPk,n := I(s0) ∧
i=k−1∧
i=0

Tn(i, si, a, si+1) ∧ lL
k ∧ [[¬f ]]k

When the propositional formula [[M,¬f ]]SBTPk,n is built, a decision procedure is used to
check its satisfiability. An error is found if [[M,¬f ]]SBTPk,n is satisfiable. The validity of this
method stems from the following observations. By comparing the construction of SBTP(M,
n) and [[M,¬f ]]SBTPk,n it is clear that the latter is the BMC encoding of the former i.e.
[[M,¬f ]]SBTPk,n = [[SBTP (M,n),¬f ]]k (restricted to finite traces). The rest derives from the
validity of BMC and SBTP, as follows:

Theorem 3. LetM be a process model withm processes, f be an LTLX formula, and n ∈ N.
There exists k ≥ 0 such that [[M,¬f ]]SBTPk,n if and only if M 6|= f .

Proof.
∃k : [[M,¬f ]]SBTPk,n is satifiable

⇐⇒ ∃k : [[SBTP (M,n),¬f ]]k is satifiable
(
[[M,¬f ]]SBTPk,n = [[SBTP (M,n),¬f ]]k

)
⇐⇒ ∃k : SBTP (M,n) 6|=k f (by validity of BMC (c.f. Theorem 2 of [4]))
⇐⇒ SBTP (M,n) 6|= f (by validity of BMC (c.f. Theorem 1 of [4]))
⇐⇒ M 6|= f (SBTP (M,n) ≈ CT (M) ≈M )

[[M,¬f ]]SBTPk,n is well suited for the DPLL algorithm in the sense that the Phase-1 tran-
sition T idlej produces mostly efficient unit propagation with little backtracking. Suppose that
we want to find a satisfying assignment for the path s0

a0−−→ s1 · · · and that s0 is a determin-
istic state. Once the variable’s values of s0 are completely decided, the variable’s values of s1

can be completely inferred by the propagation unit phase. Because s0 is a deterministic state,
there is exactly one possibility for the variable’s value of s1.

2.4. BMC with the Back-loops

This section shows why paths with back-loops invalidate the arguments of Section 2.3, and
how to extend those arguments of Section 2.3 to deal with back-loops.

Figure 6 represents a path π which contains a back-loop. It is easy to see that this finite
loop induces an infinite path which does not belong to SBTP (M, 2). This path belongs to the
computation tree presented in Figure 7. All the execution paths start with a prefix of length

k1 = 3 of the form s0

T idle
1−−−−→ s1

T idle
1−−−−→ s2

T idle
2−−−−→, followed by an infinite expansion of the

loop of length k2 = 6: si
T idle
2−−−−→ si+1

T−−→ si+2

T idle
1−−−−→ si+3

T idle
1−−−−→ si+4

T idle
2−−−−→ si+5

T−−→.
Given a process model M = (S, T, s0, L) with m processes, and lengths k1 and k2, we

can build variants of SBTP (M,n) that correspond to the computation tree of Figure 7. These
variants are still idle extensions of partial order reductions ofCT (M), hence visible-bisimilar
to M . We can then construct a complete version of [[M,¬f ]]SBTPk,n with back-loops, similar to
Definition 2, that essentially corresponds to the union of those modified SBTP computation
trees.

Note that in order to satisfy the condition C3b of Section 1.5, the full transition relation
T must be used to check whether there exists a back loop or not. If a transition relation
T idlej was used instead, we could have a loop that does not contain a Phase-2 expansion, thus
postponing some transitions indefinitely and violating condition C3b.



sk

T idle
1 T idle

1 T idle
2 T idle

2 T T idle
1 T idle

1 T idle
2

T

k1 k2

Figure 6. A finite path with a back-loop.

T idle
1

T idle
1

T idle
2

T idle
2

T idle
1

T idle
1

T idle
2

T

T

T idle
2

T idle
1

T idle
1

T idle
2

T

T

prefix (k1)

loop 1 (k2)

loop 2 (k2)

...
...

Figure 7. variant of SBTP (M,n).

3. Implementation

We extended the model checker presented in [7] to support the BMC over SBTP models. It
allows us to describe concurrent systems and to verify LTLX properties. Our prototype has
been implemented with the Scala language [18]. We decided to use the Scala language be-
cause it is a multi-paradigm programming language, fully interoperable with Java, designed
to integrate features from object-oriented programming and functional programming. Scala
is a pure object-oriented language in the sense that every value is an object. Scala is also a
functional language in the sense that every function is a value.

The model checker defines a language for describing transitions systems. The design
of the language has been influenced on the one hand by process algebras and on the other
hand by the NuSMV language [19]. A model of a concurrent system declares a set of global
variables, a set of shared actions and a set of processes. A process pi declares a set of local
variables, a set of local actions and the set of shared actions which pi is synchronized on.
Each process has a distinguished local program counter variable pc. For each value of pc, the
behavior of a process is defined by means of a list of action-labelled guarded commands of
the form [a]c → u, where a is an action, c is a condition on variables and u is an assign-
ment updating some variables. Shared actions are used to define synchronization between
the processes. A shared action occurs simultaneously in all the processes that share it, and



only when all enable it. For each process pi, we use an heuristic which is based on syntactic
information about pi to compute a safe approximationAi of the safe deterministic transitions.
These conditions are described in [20]. We only allow properties to refer the global variables.
Intuitively, the safe deterministic transitions are those which perform a deterministic action
(e.g. a deterministic assignment) and do not access any global variables or global labels. A
more complex heuristic could take into account the variables occurring in the properties being
verified to improve the quality of the safe approximation Ai.

The model checker takes a model in this language as input. The number of steps per
process in Phase-1 (parameter n) is fixed by the user. To find an error, it applies an iterative
deepening, producing a SAT problem corresponding to Definition 9 for increasing depths k.
The Yices SMT solver is used to check the satisfiability of the generated formula [21]. We
decided to use Yices because it offers built-in support for arithmetic operators defined in our
language. If a counterexample is found, a trace which violates the property is displayed.

4. Case Study

In order to assess the effectiveness of our method, we applied it to a variant of a producer-
consumer system where all producers and consumers contribute on the production of every
single item. The model is composed of 2m processes: m producers and m consumers. The
producers and consumers communicate together via a bounded buffer. Each producer works
locally on a piece p, then it waits until all producers terminate their task. Then, p is added to
the bounded buffer, and the producers start processing the next piece. When the consumers
remove p from the bounded-buffer, they work locally on it. When all the consumers have
terminated their local work, an other piece can be removed from the bounded-buffer.

Two properties have been analyzed on this model: P1 states that the bounded buffer is
always empty, and P2 states that in all cases the buffer will eventually contain more than one
piece.

Table 1 and Table 2 compare the classical BMC method and the SBTP method when
applied to P1 and P2. Notice that BMC proceeds by increasing depth k until an error is
found (c.f. iterative deepening). Classical BMC quickly runs out of resources whereas our
method can treat much larger models in a few minutes. In regard of the verification time, we
notice that our method significantly outperforms the BMC method for this example. We also
notice that SBTP traces are 3.4 to 6.75 times longer. This difference can come from either
the addition of the idle transitions, or the considered paths themselves: contrary to BMC, our
method does not consider all possible interleavings, thus it is possible that the smallest error
traces are not considered.

Table 3 analyses the influence of the number of times Phase-1 is executed for each pro-
cess (i.e. the parameter n). We notice that for a given number of producers and consumers,
n influences in a non-monotonic way the length of the error execution path, the verification
time as well as the memory used during the verification. n influences the two aspects of the
transformation of the model. On one hand, the graph is more reduced as n is increased due to
more partial-order reduction. On the other hand, the number of added idle transitions is also
influenced by this parameter. When n is increased, the number of cycles on the discovered
error path tends towards the minimum number of unsafe transitions which participate to the
violation of the property. We notice that each time the number of cycles is decremented by
one (c. f. n = 4), the cpu time and the memory needed reach a local minimum. Then the cpu
time and the memory used augment until the number of cycles is decremented again.



Table 1. Statistics of property P1 of the producer-consumer model using BMC approach and SBTP approach
with n = 8. m is the number of producers (resp. consumers), # states is the state space size, k is the smallest
bound for which an error is found, TIME is the verification time (in seconds), MEM is the memory used by
Yices when the bound equals k (in Megabytes), and # cycles is the number of cycles: Phase-1/Phase-2. —
indicates that the computation did not end with 8 hours.

BMC property P1 SBTP property P1

m # states k TIME (sec) MEM (MB) k # cycles TIME (sec) MEM (MB)
1 1,059 10 10 29 34 2 7 30
2 51,859 18 44 41 66 2 8 49
3 3,807,747 26 11,679 65 98 2 16 85
4 ≈ 108 — — — 130 2 31 122
5 ≈ 1010 — — — 162 2 43 169
6 ≈ 1012 — — — 194 2 57 224
7 ≈ 1014 — — — 226 2 77 288

Table 2. Statistics of property P2 of the producer-consumer model using BMC approach and SBTP approach
with n = 8. m is the number of producers (resp. consumers), # states is the state space size, k is the smallest
bound for which an error is found, TIME is the verification time (in seconds), MEM is the memory used by
Yices when the bound equals k (in Megabytes), and # cycles is the number of cycles: Phase-1/Phase-2. —
indicates that the computation did not end with 8 hours.

BMC property P2 SBTP property P2

m # states k TIME (sec) MEM (MB) k # cycles TIME (sec) MEM (MB)
1 1,059 26 73 33 153 9 122 96
2 51,859 44 29,898 131 297 9 211 224
3 3,807,747 — — — 441 9 401 363
4 ≈ 108 — — — 585 9 1,238 680
5 ≈ 1010 — — — 729 9 1,338 983
6 ≈ 1012 — — — 873 9 1,926 1,438
7 ≈ 1014 — — — 1,017 9 4,135 1,618

Table 3. Influence of the parameter nwhen the number of producers (resp. consumers) equals 2. k is the smaller
bound for which an error is found, # cycles is the number of cycles: Phase-1/ Phase-2, TIME is the verification
time (in seconds), and MEM is the memory used by Yices when the bound equals k (in Megabytes).

property P1 property P2

n k # cycles TIME (sec) MEM (MB) k # cycles TIME (sec) MEM (MB)
0 18 18 44 41 44 44 29,898 131
1 35 7 12 41 95 19 855 159
2 45 5 11 40 135 15 235 167
3 39 4 10 47 169 13 305 194
4 51 3 8 47 187 11 217 192
5 63 3 10 50 231 11 375 308
6 75 3 12 57 275 11 381 240
7 87 3 13 58 319 11 583 318
8 66 2 8 49 297 9 211 224
9 74 2 9 57 333 9 240 295



5. Related Work

Different approaches have been developed to apply symbolic model checking on asyn-
chronous systems.

In [22], Enders et al. show how to encode a transition relation T (s, a, s′) into BDDs. This
paper focusses on the ordering of the variables within BDDs. It is well-know that the size of
BDDs, and therefore performance of BDD-based model checking, strongly depends on this
ordering. In general finding the best variable ordering is a NP-complete problem. The paper
presents an heuristic which produces BDDs that grow linearly in the number of asynchronous
components according to experimental results.

In [8], Gerth et al. show how to perform partial order reduction in the context of process
algebras. They show that condition C0 to C4 of Section 1.5 can be applied to produce a
reduced structure that is branching-bisimilar, and hence preserve Hennessy-Milner logic [23].

Other approaches combine symbolic model checking and POR to verify different classes
of properties. In [24], Alur et al. transform an explicit model checking algorithm performing
partial order reduction. This algorithm is able to check invariance of local properties. They
start from a DFS algorithm to obtain a modified BFS algorithm. Both expand an ample set
of transitions at each step. In order to detect the cycles, they assume pessimistically that each
previously expanded state might close a cycle. In [25], Abdulla et al. present a general method
for combining POR and symbolic model checking. Their method can check safety proper-
ties either by backward or forward reachability analysis. So as to perform the reduction, they
employ the notion of commutativity in one direction, a weakening of the dependency rela-
tion which is usually used to perform POR. In [26], Kurshan et al. introduce a partial order
reduction algorithm based on static analysis. They notice that each cycle in the state space is
composed of some local cycles. The method performs a static analysis of the checked model
so as to discover local cycles and set up all the reductions at compile time. The reduced state
space can be handled with symbolic techniques.

This paper complements our previous work which combined symbolic model check-
ing and partial order reduction [7]. That work introduces the FwdUntilPOR algorithm that
combines two existing techniques to provide symbolic model checking of a subset of CTL
on asynchronous models. The first technique is the ImProviso algorithm which efficiently
merges POR and symbolic methods [20]. It is a symbolic adaptation of the Two-Phase al-
gorithm. The second technique is the forward symbolic model checking approach applicable
to a subset of CTL [27]. Contrary to FwdUntilPOR which checks CTLX properties using
BDD-based model checking, our method deals with LTLX properties using a SAT solver.

In [28], Jussila presents three improvement to apply bounded model checking to asyn-
chronous systems. Jussila considers reachability properties, whereas our method allows the
verification of LTLX properties. The partial order semantics replaces the standard interleav-
ing execution model with non-standard models allowing the execution of several indepen-
dent actions simultaneously. Then, the on-the-fly determinization consists to determinize the
different components during their composition. This is done creating a propositional formula
whose models correspond to the executions from the determinized equivalents of the compo-
nents. We point out that the state automaton resulting from the determinization of the compo-
nents are never constructed. Finally, the merging of local transitions can be seen as introduc-
ing additional transitions to the components. These transitions correspond to the execution of
a sequence of local actions. When a transition is added, the component has to contain a path
between the transition’s source and target states.

The partial order semantics addresses the same problem as we do. Both methods con-
sider a model which contains less execution paths than the original model. On-the-fly deter-
minization can be seen as a complementary method to ours. In general, when asynchronous
systems are considered, two causes of non-determinism are identified: the first one comes



from the components themselves, and the second one comes from the interleaving execution
model. The former is handled by on-the-fly determinization while our method tackles the lat-
ter. All three approaches are potentially applicable and open interesting directions for further
work. However, none of those methods provides a BMC encoding using only a subset of the
relation transition at some steps, which has proven to provide important performance gains
in our approach.

6. Conclusion

In this paper, we introduced a technique which applies the partial order reduction methods to
bounded model checking. It provides an algorithm which is appropriate to the verification of
LTLX properties to asynchronous models. The formulæ produced by this approach allow for
more efficient processing by the DPLL algorithm used in BMC, compared to those produced
by the conventional bounded model checking approach. These formulæ are obtained by using
only a restricted, safe subset of the transition relation based on POR considerations at many
steps in the unfolding of the model.

In order to assess the correctness of our method, we define two general procedures for
transforming a computation tree CT to a visible-bisimilar one. The partial-order reduction
of CT , which reduces CT according to classical POR criteria, and the idle-extension of
CT , which adds a finite number of idle transitions to each state. Then, we define the SBTP
algorithm which is a particular instance of these transformations. Finally, we present the
transformation of SBTP into a bounded model checking problem.

We extended a model checker which is currently under development at our university
to support our method. We show on a simple case study that our method achieves an im-
provement in comparison to the classical bounded model checking algorithm. However, our
method need to be tested on a larger range of case studies and to be compared with other
methods and tools such as NuSMV [19] or FDR [29]. Furthermore, one could explore how
to applied our method to those tools.

Our approach can be extended in the following ways:

• The SBTP algorithm can be extended to handle models featuring variables on infi-
nite domains. This can be achieved by using the capabilities of Satisfiability Modulo
Theories solvers such as Yices [21] and MathSat [30].

• When a partial T idlej (si, a, si+1) is applied, only local variables from pj are modified,
other variables y being constrained to remain the same (yi = yi+1). Based on that we
could merge these variables and remove the corresponding constraints. This would
amount to parallelizing safe transitions of different processes, approaching the result
of Jussila’s first method from a different angle.

• The heuristic used to determine the safe deterministic transitions is quite simple.
Meanwhile, there exists a large body of literature on this subject. Based on that, we
could explore better approximations that result in detecting more safe deterministic
states.

Acknowledgements

This work is supported by project MoVES under the Interuniversity Attraction Poles Pro-
gramme — Belgian State — Belgian Science Policy.

The authors are grateful for the fruitful discussions with Stefano Tonetta, Marco Roveri,
and Alessandro Cimatti during a stay at the Fondazione Bruno Kessler. These discussions
were the starting point of this work.



References

[1] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. Mit Press, 1999.
[2] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on Comput-

ers, C-35(8), 1986.
[3] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model checking: 1020

states and beyond. Information and Computation, 98(2):142–170, 1992.
[4] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu. Bounded model

checking. Advances in Computers, 58:118–149, 2003.
[5] Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems – An Approach to

the State-Explosion Problem, volume 1032 of Lecture Notes in Computer Science. Springer-Verlag, 1996.
[6] Ratan Nalumasu and Ganesh Gopalakrishnan. A new partial order reduction algorithm for concurrent sys-

tem verification. In CHDL’97: Proceedings of the IFIP TC10 WG10.5 international conference on Hard-
ware description languages and their applications : specification, modelling, verification and synthesis of
microelectronic systems, pages 305–314, London, UK, UK, 1997. Chapman & Hall, Ltd.

[7] José Vander Meulen and Charles Pecheur. Efficient symbolic model checking for process algebras. In
13th International Workshop on Formal Methods for Industrial Critical Systems (FMICS 2008), volume
5596, pages 69–84. LNCS, 2008.

[8] Rob Gerth, Ruurd Kuiper, Doron Peled, and Wojciech Penczek. A partial order approach to branching
time logic model checking. Information and Computation, 150(2):132–152, 1999.

[9] Orna Lichtenstein and Amir Pnueli. Checking that finite state concurrent programs satisfy their linear
specification. In POPL ’85: Proceedings of the 12th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 97–107, New York, NY, USA, 1985. ACM.

[10] Rob Gerth, Doron Peled, Moshe Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic verification of
linear temporal logic. In Proc. 15th Work. Protocol Specification, Testing, and Verification, Warsaw, June
1995. North-Holland.

[11] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems us-
ing temporal logic specifications. ACM Transactions on Programming Languages and Systems, 8(2):244–
263, 1986.

[12] E. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state concurrent systems using
temporal logic. In 10th Annual Symposium on Principles of Programming Languages. ACM, 1983.

[13] Julius R. Büchi. On a decision method in restricted second order arithmetic. In Ernest Nagel, Patrick
Suppes, and Alfred Tarski, editors, Proceedings of the 1960 International Congress on Logic, Methodology
and Philosophy of Science, pages 1–11. Stanford University Press, June 1962.

[14] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang. Symbolic model checking: 1020

states and beyond. Information and Computation, 98(2):142–170, 1992.
[15] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving. Com-

mun. ACM, 5(7):394–397, 1962.
[16] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.
[17] Ratan Nalumasu and Ganesh Gopalakrishnan. An efficient partial order reduction algorithm with an

alternative proviso implementation. Formal Methods in System Design, 20(3):231–247, 2002.
[18] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane Micheloud,

Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. An overview of the scala pro-
gramming language. Technical Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[19] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic model verifier. In Proc. of
International Conference on Computer-Aided Verification, 1999.

[20] Flavio Lerda, Nishant Sinha, and Michael Theobald. Symbolic model checking of software. In Byron
Cook, Scott Stoller, and Willem Visser, editors, Electronic Notes in Theoretical Computer Science, vol-
ume 89. Elsevier, 2003.

[21] Bruno Dutertre and Leonardo de Moura. The Yices SMT solver. Tool paper at http://yices.csl.sri.com/tool-
paper.pdf, August 2006.

[22] Reinhard Enders, Thomas Filkorn, and Dirk Taubner. Generating BDDs for symbolic model checking in
CCS. In CAV ’91: Proceedings of the 3rd International Workshop on Computer Aided Verification, pages
203–213, London, UK, 1992. Springer-Verlag.

[23] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and concurrency. J. ACM,
32(1):137–161, 1985.

[24] Rajeev Alur, Robert K. Brayton, Thomas A. Henzinger, Shaz Qadeer, and Sriram K. Rajamani. Partial-
order reduction in symbolic state space exploration. In Computer Aided Verification, pages 340–351,
1997.



[25] Parosh Aziz Abdulla, Bengt Jonsson, Mats Kindahl, and Doron Peled. A general approach to partial order
reductions in symbolic verification (extended abstract). In Computer Aided Verification, pages 379–390,
1998.

[26] Robert P. Kurshan, Vladdimir Levin, Marius Minea, Doron Peled, and Hüsnü Yenigün. Static partial order
reduction. In TACAS ’98: Proceedings of the 4th International Conference on Tools and Algorithms for
Construction and Analysis of Systems, pages 345–357, London, UK, 1998. Springer-Verlag.

[27] Hiroaki Iwashita, Tsuneo Nakata, and Fumiyasu Hirose. CTL model checking based on forward state
traversal. In ICCAD ’96: Proceedings of the 1996 IEEE/ACM international conference on Computer-aided
design, pages 82–87, Washington, DC, USA, 1996. IEEE Computer Society.

[28] Toni Jussila. On bounded model checking of asynchronous systems. Research Report A97, Helsinki
University of Technology, Laboratory for Theoretical Computer Science, Espoo, Finland, October 2005.
Doctoral dissertation.

[29] A. W. Roscoe. Model-checking CSP, In A classical mind: essays in honour of C. A. R. Hoare. Prentice
Hall International (UK) Ltd., Hertfordshire, UK, 1994.

[30] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and Roberto Sebastiani. The
MathSAT 4 SMT solver. In CAV ’08: Proceedings of the 20th international conference on Computer Aided
Verification, pages 299–303, Berlin, Heidelberg, 2008. Springer-Verlag.


