UNIVERSITY OF COPENHAGEN

Faculty of Science

PyCSP Revisited

Brian Vinter
John Markus Bjgrndalen
Rune Mgllegaard Friborg

Dias 1

UNIVERSITY OF COPENHAGEN eScience Centre

Target domain

UNIVERSITY OF COPENHAGEN

History of PyCSP

Started at CPA 2006

Presented at CPA 2007
e Based on Python (OS) threads

A GUI and multiple minor additions in 2008

IIIIIIIIIIIIIIIIIIllIIIIIIIIIIIIIllllII
k - v-ros | B e o . (R

UNIVERSITY OF COPENHAGEN

Reality check

Live or die for PyCSP?
- The exercise was done
- GIL reduces all applications to serialized execution
- OS limits reduces the number of threads significantly
+ Is is very popular amongst our own students

Python is growing in popularity amongst “scientists as
programmers”

IIIIIIIIIIIIIIIIIIllIIIIIIIIIIIIIllllIIIIIIIIIIIIIllllIIIIIIIIIIIIIIIIIIIIIIIII

. > oy RN F '
i \] -8 o2y

UNIVERSITY OF COPENHAGEN

A look at the users and applications

Mostly CS students
e But a sizable number of “science” students also
Predominantly scientific applications are build using PyCSP
e This is what the class the introduce PyCSP focus on
e It is also where the need for parallelism is highest

UNIVERSITY OF COPENHAGEN

The verdict 1s “live”

We chose to let PyCSP live
e Which means invest more effort in the package
After reviewing many (—200!) student reports and comments
we decided to revise PyCSP on four points:

e There should be only one channel type, any-to-any, and it must
support external choice

e The channels should support both input and output guards for
external choice

e PyCSP should provide a mechanism for joining and leaving a
channel with support for automatic poisoning of a network

e The expressive power in Python should be used to make PyCSP
look more like occam where possible

s
REIIRR

. N b 9 | o | R eV
T EF rF F P FE P PP FEFF P PP T EFEEFEFE PP EFVFPEFEFEFEFEEFEEFEFE P EEEEEEEEEE

UNIVERSITY OF COPENHAGEN

Processes

At first glance processes have not changed since the first
version

However the Parallel construct now supports a combination of
scalars and lists

@process
def hello_world (msg):
print " Hello world , this is my message " + msg

Parallel (
source (),
[worker () for i in range (10)] ,
sink ()

)

lllllllllllllllllIlllllllllllllllllllIlllllIlllllIlllllllllllllllllllllllllIlll

UNIVERSITY OF COPENHAGEN

Processes

At first glance processes have not changed since the first
version

However the Parallel construct now supports a combination of
scalars and lists

@process
def hello_world (msg):
print " Hello world , this is my message " + msg

Parallel (
source (),

B)], 107worker()

UNIVERSITY OF COPENHAGEN

Channels

In programming and in engineering the use of different
channels makes sense

e In science they become a nuisance

Any process that has a given channel in its context may ask for
a channel-end from that channel

e Input or output end

. : -
o ~
— B e

UNIVERSITY OF COPENHAGEN

Channels

Channels are easily defined
e my channel = Channel ()

Channel ends are obtained by requesting an input or output
end

e my reader = my channel.reader()
e my reader = +my_channel
e my writer = my channel._writer()

e my writer = -my channel

T T T N N N T NN RN RN NN NN NN NN NN

UNIVERSITY OF COPENHAGEN

Controlled shutdown of network

Channel poisoning was a huge step forward for CSP libraries

But controlling the shutdown to avoid race conditions is still
Important

lllllllllllllllllIllIlllllIlllllIllllIlllllIlllllIllllIllllllllllllllllllllIlll

UNIVERSITY OF COPENHAGEN

Poisoning

Producer samsmss Worker - Consumer

Worker

UNIVERSITY OF COPENHAGEN

Poisoning

Worker

UNIVERSITY OF COPENHAGEN

Poisoning

Producer s Worker Consumer

Worker

UNIVERSITY OF COPENHAGEN

Poisoning

Producer samsmss Worker - Consumer

Worker

UNIVERSITY OF COPENHAGEN

Poisoning

Worker

UNIVERSITY OF COPENHAGEN

Controlled shutdown

Rather than poisoning channels PyCSP also support reference

counting

When a channel end is created the count on that direction is
iIncreased

A process can, where it would otherwise do a poison issue a
retire

When the reference count on a channel-end reaches zero the
whole channel enters a retired state

WWWW

UNIVERSITY OF COPENHAGEN

Controlled shutdown

Worker

UNIVERSITY OF COPENHAGEN

Controlled shutdown

Worker

UNIVERSITY OF COPENHAGEN

Controlled shutdown

(0,3) [(MEE—

. \Wor ke - —

Worker

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIllllII
F = v-ros |] (-G G 6 -0 - -6 € 0 (O

- 2 > . , oo

UNIVERSITY OF COPENHAGEN

Controlled shutdown

Consumer

Worker

UNIVERSITY OF COPENHAGEN

Controlled shutdown

Consumer

Worker

UNIVERSITY OF COPENHAGEN

Controlled shutdown

Consumer

UNIVERSITY OF COPENHAGEN

Controlled shutdown

Cc r er

UNIVERSITY OF COPENHAGEN

Choice

Choices are now selected and executed in one step
e More like Occam less like select()
The execution part is either a (small) direct statement or a
function
e Declared with @choice

Both input and output guards are supported

. : -
id -
— B e

UNIVERSITY OF COPENHAGEN

Choice

Input guards are
e <channel> : <guard>

Output guards are
e (<channel>=, <value>) : <guard>

@choice
def print_result():
print __channel _input

Alternation([

{in : print_result()},

{(out , value) : “value += 1"}
1) .execute()

IIIIIIIIIIIIIIIIIIllIIIIIIIIIIIIIllllIIIIIIIIIIIIIllllIIIIIIIIIIIIIIIIIIIIIIIII

. : -
o ~
— B e

UNIVERSITY OF COPENHAGEN

Prioritization

Alternation support mixing prioritized and unprioritized guards

An alternation is a list of dictionaries
e List order define priority
e Within a dictionary the elements are peer

HALT
@choice

#PRIALT
@choice

def print_result():
print ___channel_input

Alternation([{
in : print_result(),

}]).execute()

(out , value) : “value +=

111

def print_result():
print ___channel_input

Alternation([
{in : print_result()},

{(out , value) : “value +=

] .execute()

1}

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlllIIIIIIIlIIIIIllllIIIIIIIIIIIIIIIIIIIIIIIII
3 . 3 S - .) | S 3 (-G G 6 -0 - -6 € 0 (O

5 — v) s -
\ : - J - .
llllllllllllllllllllllIIIIlIllllIllllllIIIIIllllllIllllIlllllllllllllllllllllll

UNIVERSITY OF COPENHAGEN

Everything is “Any2Any”

—

lllllllllllllllllllllllIllllllllIllllllIlllllllllIIIIIIIllllllll-llllllllllllll

UNIVERSITY OF COPENHAGEN

Challenge

When we combine input and output guards and multi-ended
channels we have a well established challenge

e A given guard may by matched by several other guards
How do we ensure that a match is performed

e Atomically

e Without deadlock

e Without livelock

lllllllllllllllllIllIlllllIlIlllIllllIlllllIlllllIllllIllllllllllllllllllllIlll

UNIVERSITY OF COPENHAGEN

Simplified matching algorithm

handle = new_request _handle ()
guard_channel.registered handle.add(handle)
for guard in choice :
If handle match registered_handle in guard.channel :

perform communication

make active (handle , registered handle)
waitfor active (handle)
guard_channel.registered_handle.remove(handie)

NN NN NN NN NN NN NN N NN NN NN NN R R R NN NN NN NN NN
' : — T =I""% = ‘"""""""""""""""?
sesege? %atesetatenesesetetesele
AL
8l a0 S,

it _ " L 9, T " SIS LY
\ : - J - .
llllllllllllllllllllllIIIIlIllllIllllllIIIIIllllllIllllIlllllllllllllllllllllll

UNIVERSITY OF COPENHAGEN

Monte Carlo Pi

Producer

isiilnassiinassninnsissnnnung
‘ = Li——

Worker

Worker

0T

Consumer

GGG

UNIVERSITY OF COPENHAGEN

Monte Carlo Pi

@process
def worker (job_in , result_out):
while True :
cnt = job_in () #Get task
sum = reduce (lambda x,y:
X+(random ()**2+ random
(O**2 <1.0) ,range (cnt))
result_out ((cnt ,sum)) #
Forward result

@process

def consumer (result_in):
cnt , sum =0 ,0
try:
while True :
c,s= result_in () #Get result
cnt , sum = cnt +c, sum +s
except ChannelRetireException :
print 4.0* sum/cnt

@process
def producer (job_out , bagsize , bags

)

for i in range (bags):
job_out (bagsize)
retire (job_out)

@process
def worker (job_in , result_out):
while True :
cnt = job_in () #Get task
sum = reduce (lambda Xx,y:
x+(random ()**2+ random
()**2 <1.0) ,range (cnt))
result_out ((cnt ,sum)) #
Forward result

An example...

from pycsp import *
from random import random
@process
def producer (job_out , bagsize , bags):
for i in range (bags): job_out (bagsize)
retire (job_out)
@process
def worker (jJob_in , result_out):
while True :
cnt = job_in () #Get task
sum = reduce (lambda x,y: x+(random ()**2+ random ()**2 <1.0) ,range (cnt))
result_out ((cnt ,sum)) # Forward result
@process
def consumer (result_in):
cnt, sum =0 ,0
try:
while True :
c,s= result_in () #Get result
cnt , sum = cnt +c, sum +s
except ChannelRetireException :
print 4.0* sum/cnt #We are done - print result

jobs = Channel ()

results = Channel ()

Parallel (producer (jobs.writer () ,1000 , 10000) ,

[worker (jobs.reader (), results.writer ()) for i in range (10)] ,
consumer (results.reader ()))

SN RERSRERRERR RN AR RN RN R RN R R R TR RN T ORI T TR AT ORFEFEO O N N T IO I I TR OREIEIOERIEIOET

T

o —
h, N = 9 I e o 1 3 IR
isiiifnssniinsgniiniinnsinnnnnnnnnannnnnnEnRnNN

UNIVERSITY OF COPENHAGEN

Conclusions

PyCSP is alive
e Target is scientists not programmers

Only one channel-type
e With multi ended channels

External choice is supported by these channels
e And adds an output guard

Guards are now handled atomically

Graceful shutdown is introduced through channel reference
counting

lllllllllllllllllIllIlllllIlIlllIllllIlllllIlllllIllllIllllllllllllllllllllIlll

