Concurrency First
... but we'd better get it night !

Peter Welch and Fred Barnes
School of Computing, University of Kent, UK

{phw, frmb}@kent.ac.uk

QZOOQ Fringe, Eindhoven, 1st. November/




Concurrency and Computer Systems

We see concurrency as a fundamental mechanism of the universe,
existing in all structures and at all levels of granularity.

To be useful in this universe, any computer system has to model
and reflect an appropriate level of abstraction.

For simplicity, therefore, the system must be concurrent — so that
this modelling Is obvious and correct.

Yet concurrency is thought to be an advanced topic, harder than
serial computing (which therefore needs to be mastered first).



This tradition makes no sense ...

... which has (radical) implications on how we should
educate people for computer science ...

... and on how we apply what we have learnt ...



This tradition makes no sense ...

So, here’s how we promote (and demote) concurrency at Kent, where
we have been running a full undergraduate module (20-25 lectures)
on concurrency for 23 years ...

The next 5 slides are promotional (and demotional) material presented
to first year students.

Although we would like to offer this in Term One, our modules
(Co538 / Co632) are, currently, elective options taken by second
and final year students. ®




This tradition makes no sense ...




(Co538) Concurrency — Design & Practice

Concurrency IS many things happening at the same time:

¢ 5o Is the real world — and computers, to be useful, have to model
relevant bits of it;

e it's needed to support multiple demands (e.g. internet services,
games, robotics, graphics/GUls, mobile phones, bio-systems
experiments, big physics modelling , real-time control, operating
systems, ...), even when running on a single processor;

¢ |t's needed to exploit multicore and multiprocessor systems;
¢ it's needed for distributed systems and supercomputing;

¢ It's needed for hardware design, implementation and operation.

Core Computer S@ ©OO




(Co538) Research Engagement

a language for concurrency

/
occam-m

JCSP / CHP /
C++CSP

concurrency libraries for
Java / Haskell / C++




(Co538) Research Engagement

For the past 20 years, this department has been a leading centre of
research into the theory and (especially) the practice of concurrency.

Programming technologies have been (are being) developed here:

¢ occam-=n (an industrial strength programming language based on
the formal process algebras of CSP and the n—calculus);

¢« JCSP (a 100% pure Java library providing an API that supports the
same concurrency model as occam-n);

¢ C++CSP/ CHP (a 100% pure C++ / Haskell library providing an API
that supports the same concurrency model as occam-n).

This module will teach this model though the programming technologies
(we won’t be doing the formal mathematics).

There will be lots of programming in this module. ©©©©©®© © © ©® ©




(Co538) Research Engagement

Key new concepts:

processes (components, water-tight and alive)

synchronised communication (over channels)

mulitiway synchronisation (over barriers)

networks (processes connected by channels and barriers)

structure (networks within networks)

choice (waiting for and reacting to events)

dynamics (run-time network construction and re-shaping)

mobility (agents)




(Co632) Advanced Concurrency — Design & Practice

Concurrency is many things happening at the same time.

This module introduces dynamics — the construction, evolution
and termination of systems (or sub-systems) on-the-fly.

This Is needed for systems that:
e scale with demand (e.g. web services, air-traffic control);
s evolve with demand (e.g. peer-to-peer networking);
« model growing organisms (e.g. nanite assemblies);

e configure, load and run supercomputer resources
(e.g. 6rid computing, our TUNA and CoSMoS clusters).




What we Need from Concurrency

= A powerful tool for simplifying the description of systems.

¢ Performance that spins out from the above, but is not the primary
focus.

¢ A model of concurrency that is mathematically clean, yields no
engineering surprises and scales well with system complexity.

¢ | The good news is that we can have it all — and we don’t need to
understand the maths! It's burnt into the languages (or libraries)
supporting the model. And we use diagrams.




CSP and w-calculus

CSP and the m-calculus are process algebrae — mathematical theories
for specifying and verifying patterns of behaviour arising from
Interactions between concurrent objects.

CSP has a formal, and compositional, semantics that is in line with our

informal intuition about the way such things work.

The m-calculus has a formal, and operational, semantics that is in line
with our informal intuition about the way networks can be constructed,

and taken down, dynamically.

We do not need to be mathematically sophisticated to work with them.
The sophistication is pre-engineered into the model. We benefit simply
by using it.



t |
Processes < m.process |

A process is a component that encapsulates some data structures
and algorithms for manipulating that data.

Both its data and algorithms are private. The outside world can
neither see that data nor execute those algorithms! [They are not
objects ...] [Think chips ...]

The algorithms are executed by the process in its own thread (or
threads) of control. Each process is alive.

So, how does one process interact with another?

Well, they communicate ...




t |
Processes < m.process |

The simplest form of interaction is synchronised message-passing
along channels.

The simplest forms of channel are zero-buffered and point-to-point
(i.e. wires).

But, we can have buffered channels (blocking / overwriting).
And any-1, 1-any and any-any channels.
And multi-way synchronisation (barriers) ...

And more ...



|

foo —> m O
e
T l r |
g » server
bar —> €
(a) a network of three processes, connected by four (b) three processes sharing the writing end
internal (hidden) and three external channels. of a channel to a server process.

\ 4 A\ 4

s () - [s(7)

(c) three processes sharing the writing end of a channel (d) n processes enrolled on a shared barrier (any process
to a bank of servers sharing the reading end. synchronising must wait for all to synchronise).



left

inl

foo

Ib

il

ar

m

e

r —>.
right

g

e

(a) a network of three processes, connected by four
internal (hidden) and three external channels.

CHAN BYTE a, b, c, d:

PAR
foo (in?, left!, a?, b!, c!)
bar (a!, b?, d!)
merge (c?, d?, right!)




left

foo —> m
e
aT lb r >
g right Process
bar R abstraction
thing

PROC thing (CHAN INT in?, left!, right!)
CHAN BYTE a, b, c, d:
PAR
foo (in?, left!, a?, b!, c!)
bar (a!, b?, d!)
merge (c?, d?, right!)




left

thing

right Process

abstraction

PROC thing (CHAN INT in?, left!, right!)
CHAN BYTE a, b, c, d:
PAR
foo (in?, left!, a?, b!, c!)
bar (a!, b?, d!)
merge (c?, d?, right!)




in

left - right Process
y thing > abstraction

—

PROC thing (CHAN INT in?, left!, right!)

Like oo, bar and merge previously, thing is a process that can
be used as a component in another network.

Concurrent systems have structure — networks within networks.
We must be able to express this! Andwecan... © © ©



Q

SHARED ! CHAN SOME.SERVICE c:
PAR

circle (c})

triangle (c!)

square (c!)

server (c?)

~ server
C

(b) three processes sharing the writing end
of a channel to a server process.



T I

SHARED CHAN ANOTHER.SERVICE c:
PAR
PAR
circle (c})
triangle (c})
square (c!)
PAR i = O FOR 8
s (i, c?)

\ 4

‘S(O)l .

C

A\ 4

‘8(7)|

(c) three processes sharing the writing end of a channel
to a bank of servers sharing the reading end.



BARRIER b:
PAR 1 = 0 FOR n ENROLL b

p (i, b)

@ p (n-1)

i b 1

(d) n processes enrolled on a shared barrier (any process
synchronising must wait for all to synchronise).



Good News!

The good news is that we can worry about each process on its own.
A process interacts with its environment through its channels and
bariers. It does not interact directly with other processes.

Some processes have serial implementations - these are just like
traditional serial programs.

Some processes have parallel implementations - networks of sub-
processes (think hardware).

Our skills for serial logic sit happily alongside our new skills for
concurrency - there is no conflict. There will be no race hazards.
This will scale!



Blood Platelet Model

draw

We will work through a storyboard — a
sequence of snapshots showing an
keywatch . :
evolving process network, showing
mobile processes, representing blood
keyboard clots, in collision and combining.




Blood Platelet Model




Blood Platelet Model

keywatch - display

screen

| keyboard



Blood Platelet Model

keywatch - display

screen

| keyboard



Blood Platelet Model




Blood Platelet Model

keywatch - display

screen

| keyboard



Blood Platelet Model

en |-
: =

wyT g T ey Ty B oy

draw

keywatch - display

screen

| keyboard



Blood Platelet Model

cell eII eII fff

. 4 vy A
keywatch ,‘ display R
eeeeee

| keyboard



Blood Platelet Model

keywatch




Blood Platelet Model

keywatch




Blood Platelet Model

keywatch




Blood Platelet Model




Blood Platelet Model




Blood Platelet Model

| keyboard

i <o
‘i Show ..a
~.\ video




Blood Platelet Model

Show
video

nttps:/7/www.cs.kent.ac.uk/research/groups/plas/wiki/3D Blood Clotting
nttps://www.cs.kent.ac.uk/researcn/groups/plas/wiki/3D Blood Clotting Gallery




Working with Robots and Stuff

Lego Mindstorms and occam-w (Transterpreter)
—In Freshers’ Week (pre-term 1)




Working with Robots and Stuff

Lego Mindstorms and occam-w (Transterpreter)
—In Freshers’ Week (pre-term 1)




Working with Robots and Stuff

Lego Mindstorms and occam-w (Transterpreter)
—In Freshers’ Week (pre-term 1)




Working with Robots and Stuff

Lego Mindstorms and occam-w (Transterpreter)
—In Freshers’ Week (pre-term 1)

-

.\F"




Working with Robots and Stuff

Lego Mindstorms and occam-w (Transterpreter)
—In Freshers’ Week (pre-term 1)

Cylons and Life on Mars
— open-ended exercises (last 4 weeks of module)

Parrot Attack and Dining Philosophers Animation
— open-ended exercises (last 4 weeks of module)

occoids and complex system modelling / simulaton
— final year projects



Working with Robots and Stuff

Lego Mindstorms and # “cansterpreter)

—In Freshers’ Wer

Cylons and Life

— open-ended module)
Parrot Attack anc nimation
— open-ended ex\ 4 of module)

occoids and complex system modelling / simulaton
— final year projects



Working with Robots and Stuff

Nttp:/7/www . cosmos-researchn.org/demos (occoids and more)




Summary (1/4)

Concurrency is fundamental across all aspects of computer science
(and life).

Therefore, it should be taught at the same time as and a necessary
complement to sequential programming.

With the right concurrency model, this can be done. Going parallel
and looping (for example) are equally fundamental and important
structuring concepts for algorithms. Why would we teach one and
not the other? Why would we use one and not the other?!!

The compositional properties of CSP ensures no conflict between
sequential and concurrent logic. Our skills and intuition about serial
programming remain valid — directly supporting our concurrency.




Summary (2/4)

At Kent, we teach using occam-m. Students (and staff) should not be
concerned with learning another language, if the benefits are there.
occam-Tt has a careful blend of the €SP and m-calculus process
algebrae built in to its core. Going parallel is as simple as looping —
both syntactically and semantically. Race hazards are not possible.

KRoC is an occam-mt compiler and runtime for x86 architectures under
Linux, OS X or raw metal (RMoX). Coming soon, via LLVM, this will
target most things. Memory and processor overheads are ultra-low.
In current practice, hundreds of thousands of processes can be
managed on modern processors. It eats multicore for breakfast.

The Transterpreter is an occam-w interpreter, available stand-alone
or as a plugin for the jEdit IDE. Available for Windows, it runs almost
anywhere. It is easy to port to new platforms. It runs with a tiny
memory footprint (e.g. for the Lego Mindstorms).

KRoC and the Transterpreter are (GPL) open-source downloadable.



Summary (3/4)

We also teach using JCSP, usually after occam-m. It is certainly possible
and effective to teach JCSP first. There is an obvious advantage to those
already familiar with Java. Against this are the syntactic overheads of
Java (where going parallel, even with JCSP, is not quite so immediate as
looping), the runtime overheads of the underlying threads (on which JCSP
IS built) and the self-policing necessary against retaining references to
objects owned by other processes (which would result in race hazards).
Nevertheless, we have done this in the past and may do so again. Some
other universities — Surrey and Napier — are teaching now with JCSP.

Functional programmers may like to try CHP (Communicating Haskell
Processes). This is implemented on top of software transactional
memory, though the user need not know this.

There is also €SO (Communicating Scala Objects) from, and taught
at, Oxford. This is pretty much the same as JCSP — the benefit being
the more sympathetic syntax provided by Scala.

JCSP, C++CSP and CHP are (L-GPL) open-source downloadable.



Summary (4/4)

Our students seem to have fun. They are working with systems with
thirty (or so) synchronising and communicating processes within the
first three weeks ... and thousands by the end of the course. None of
the exercises have a heavy maths content. Working with robots (real
and virtual) and animations Is very motivating. Many students put in
extraordinary amounts of (their own) time ...

Feedback is, almost always, very positive. Grades are higher than
the norm — but the module is elective, taken by about one-third of the
cohort. We warned off those that don’t want to program ... sadly, CS
courses in the UK have lots of these ... it’s not their fault (but that’s
another story not for here and now).

All our teaching materials for occam-mt and JCSP are freely available
(under GPL). There’s quite a lot — follow the links from our position
paper to this workshop. Please let us know if you use them. We wiill
support you as best we can ... we want you to have fun as well!

And now to write the book ... © ©




p—— -




