The Flying Gator: Towards Aerial Robotics in occam- π

Ian Armstrong, Drew Pirrone-Brusse, Anthony Smith, Matthew Jadud

Summary

- Introduction/ The Gator UAV
- Flight
- Challenges
- Future work

What is a UAV?

- <u>U</u>nmanned <u>A</u>erial <u>V</u>ehicle
 - Our definition: An unmanned, autonomous, aircraft capable of navigating a predetermined course, acquiring data, and safely operating within FAA regulations
- Why are these aircraft useful?
 - Agriculture
 - Oil pipeline surveys
 - Search and rescue
 - Military
- Consistent acquisition of data/images

Why waste our time?

Full scale aircraft

- Aviation fuel in the US = 7 10 USD per gallon
- Rental Prices for a Cessna 172 = 80 − 120 USD for 1 hour
- Who is going to fly it?

The Flying Gator

- Budget was 800 USD
- Designed and built using lightweight foam insulation
- Airframe cost is < 20 USD

Build Log

Summary

- Introduction/ The Gator UAV
- Flight
- Challenges
- Future work

A "Crash course"

- Air moves over wing creating lift
- Pitch, Roll, Yaw (x, y, z)
- Control surfaces alter airflow over the aircraft for course adjustment
- One Control Surface linked to each axis
 - Elevator (x)
 - Aileron (y)
 - Rudder (z)
- Throttle
- Three Dimensional Challenge

Ideally..

Our "Pilot"

- ArduPilot Mega
 - Developed for the ArduPilot project
 - 16 mHz Atmega 1280 processor
 - 128k Flash
 - 8k Ram
 - 4 serial ports
 - 16 analog pins
 - 40 digital pins

Sensing Package

- Razor 6DOF IMU
 - 3 Axis Accelerometer
 - Angle from horizon
 - 3 Axis Gyroscope
 - Angular velocity
- Venus GPS Receiver

Test flight

Summary

- Introduction/ The Gator UAV
- Flight
- Challenges
- Future Work

Process Network

Challenges

- Obtaining data from the accelerometer without trig functions
 - Solution: Direct ADC value to angle mapping (Lookup Table)
- Lack of Decimal Precision
 - Solution: Use of Integer math in creative ways
- Filtering Complexity
 - Solution: Simplified complementary filter
- How to best achieve Level Flight?
 - Solution: Reflex type leveling reaction
- Fine Tuning of Level Flight
 - Solution: Inflight Adjustment with data link?

Obtaining Meaningful Data

- In reality sensors output noisy/unreliable data
 - Gyroscopes drift over time
 - Accelerometers lose accuracy in turns
- Aerial platforms experience rapid changes in environment
 - Wind Gusts
 - Temperature Variation
- Vibration
- Solution is Filtering
 - Kalman
 - Directional Cosine Matrices
 - Complementary

A Simpler Approach

• Due to the complexity involved in Kalman, Complementary filtering was pursued.

```
PROC comp.filter (CHAN INT gyro?, accelerometer?, theta!, VAL INT gain, dt)
   INT gyr, accel:
   INITIAL INT angle IS 0:
   WHILE TRUE
   SEQ
      gyro ? gyr
   accelerometer ? accel

   accel := accel * (-1)

   angle := (((gain * (angle + (gyr * dt))) + (( 100 - gain) * accel))/100)
   theta ! angle
:
```


An Involuntary Reflex

Simple instinct level reaction is to bring the aircraft level with the horizon

```
PROC level.flight (CHAN IMU.DATA imu?, CHAN SERVO s, s2)
   INT servo.pos.pitch, servo.pos.roll:
   IMU.DATA pos:
   SEQ
   WHILE TRUE
   SEQ
   imu ? pos

   servo.pos.pitch := (pos[pitch] * ((-1) * PITCH.SERVO.MULTIPLIER))+(90)
   s ! pos ; servo.pos.pitch

   servo.pos.roll := (pos[roll] * ((-1) * ROLL.SERVO.MULTIPLIER))+(90)
   s2 ! pos ; servo.pos.roll
:
```


Leveling Reflex

Summary

- Introduction/ The Gator UAV
- Flight
- Challenges
- Future Work

Next Steps

- In Flight Telemetry
- GPS Navigation
- Integration of airspeed, heading, and altitude
- Holding Pattern implementation
- Subsumption Architecture
- Aerial Reconaissance

Awknowledgements

The authors would like to acknowledge the following individuals and groups for their support in our endeavor:

- Allegheny College Computer Science Department (Lab Space, and Travel funding)
- Allegheny College Office Of the Dean (Project and Travel Funding)
- Allegheny College Center for Experiential Learning (Travel Funding)

Questions?

E-mail: armstri@allegheny.edu

Project Blog: http://rockalypse.org/blogs/flyinggator

