Towards a New Language for

Concurrent Programming
CPA-2011 Fringe Session

Fred Barnes
School of Computing, University of Kent, Canterbury

F.R.M.Barnes@kent.ac.uk
http://wuw.cs.kent.ac.uk/ frmb/

University of

Kent

N

~
Computing

Programming Languages and Systems

Introduction

Background

m We've been knocking around ideas about a new occam for some
time..

Introduction

Background

m We've been knocking around ideas about a new occam for some
time..
m Some issues with occam and occam-pi as they currently exist:

m perceived as an “old” language (or even dead!)
m upper-case keywords went out of fashion with BASIC
m strict indentation annoys some

Introduction

Background

m We've been knocking around ideas about a new occam for some
time..
m Some issues with occam and occam-pi as they currently exist:
m perceived as an “old” language (or even dead!)
m upper-case keywords went out of fashion with BASIC
m strict indentation annoys some
m Occam-pi (as it stands) is essentially a “bolt-on” to occam

m language is a little inconsistent or clunky in places
m compiler breaks down easily (old code-base)

Introduction

Background

m We've been knocking around ideas about a new occam for some
time..
m Some issues with occam and occam-pi as they currently exist:
m perceived as an “old” language (or even dead!)
m upper-case keywords went out of fashion with BASIC
m strict indentation annoys some
m Occam-pi (as it stands) is essentially a “bolt-on” to occam
m language is a little inconsistent or clunky in places
m compiler breaks down easily (old code-base)
m If we're reinventing compilers, might as well reinvent the language
whilst we're at it...

Introduction

m Introducing Guppy

m deliberately not called ‘occam’
m ... although we're going to use all the best bits :-)

m Still looking for a decent logo ...

Introduction

What We Need ...

m Preserving the useful features of occam/occam-pi:
m embodiment of CSP based concurrency (though may not restrict to
that alone) in the language itself
m strict parallel usage checks: zero aliasing

Introduction

What We Need ...

m Preserving the useful features of occam/occam-pi:
m embodiment of CSP based concurrency (though may not restrict to
that alone) in the language itself
m strict parallel usage checks: zero aliasing
m Preserving the fast execution of the resulting code:
m no heavy run-time checks (e.g. expensive run-time typing, complex
garbage collection)
m using existing CCSP

Introduction

What We Need ...

m Preserving the useful features of occam/occam-pi:
m embodiment of CSP based concurrency (though may not restrict to
that alone) in the language itself
m strict parallel usage checks: zero aliasing
m Preserving the fast execution of the resulting code:
m no heavy run-time checks (e.g. expensive run-time typing, complex
garbage collection)
m using existing CCSP
m Targetable at just about any architecture in existence:
m by compiling (ultimately) to LLVM (low-level virtual machine)

Introduction

What We Would Like ...

m A language that other people would be happy to (and may even
want to) use:
m successes of Python and Go suggest indentation-based layout and
concurrency are not distasteful

Introduction

What We Would Like ...

m A language that other people would be happy to (and may even
want to) use:
m successes of Python and Go suggest indentation-based layout and
concurrency are not distasteful
m Rapid development — nothing overly cumbersome to program with
respect to other languages:
m need some genericity/flexibility in the type system
m automatic ‘SEQ’ behaviour (static checks can spot likely errors)
m may need to sacrifice some of the purity of occam to make this work..

Introduction

What We Would Like ...

m A language that other people would be happy to (and may even
want to) use:

m successes of Python and Go suggest indentation-based layout and
concurrency are not distasteful

m Rapid development — nothing overly cumbersome to program with
respect to other languages:
m need some genericity/flexibility in the type system
m automatic ‘SEQ’ behaviour (static checks can spot likely errors)
m may need to sacrifice some of the purity of occam to make this work..

m Automatic mobility (largely a compiler thing), with a couple of

language hints thrown in to help the compiler when automatic static
analysis gets too complex (or wrong).

Introduction

What We Would Like ...

m A language that other people would be happy to (and may even
want to) use:
m successes of Python and Go suggest indentation-based layout and
concurrency are not distasteful
m Rapid development — nothing overly cumbersome to program with
respect to other languages:
m need some genericity/flexibility in the type system
m automatic ‘SEQ’ behaviour (static checks can spot likely errors)
m may need to sacrifice some of the purity of occam to make this work..

m Automatic mobility (largely a compiler thing), with a couple of
language hints thrown in to help the compiler when automatic static
analysis gets too complex (or wrong).

m A proper ‘string’ type with UTF-8 support (32-bit ‘char’ probably).

Type System

m Usual primitive types:

int x
uint14 y
bool z
real64d f
string s
char c
byte b

HHEHHHF

simple signed integer
14-bit unsigned integer
boolean

floating-point

string type

unicode character
unsigned 8-bit

Type System

Type System

m Usual primitive types:

int x
uint14 y
bool z
real64d f
string s
char c
byte b

HHEHHHF

simple signed integer
14-bit unsigned integer
boolean

floating-point

string type

unicode character
unsigned 8-bit

m Structured (and optionally parameterised) types:

define type iCoord
int x, y

iCoord p, o = [0,0]

Type System

Type System

m Usual primitive types:

int x
uint14 y
bool z
real64d f
string s
char c
byte b

HHEHHHF

simple signed integer
14-bit unsigned integer
boolean

floating-point

string type

unicode character
unsigned 8-bit

m Structured (and optionally parameterised) types:

define type iCoord
int x, y

iCoord p, o = [0,0]

define type Coord (T)
Tx, vy

Coord(int) p, o = [0,0]

Type System

Type System

Type System

m Usual primitive types:

int x # simple signed integer
uint14 y # 14-bit unsigned integer
bool z # boolean

real64 f # floating-point

string s # string type

char c # unicode character

byte b # unsigned 8-bit

m Structured (and optionally parameterised) types:

define type iCoord define type Coord (T)
int x, y Tx, vy
iCoord p, o = [0,0] Coord(int) p, o = [0,0]

m Named types:

define type NanoTime is uint128

Type System

Channels and Protocols

m Channels are explicitly typed with a specific protocol (as they are in
occam), and sometimes with a direction

m can be a ‘null’ protocol (what ‘SIGNAL’ is in occam-pi, more or less).

Type System

Channels and Protocols

m Channels are explicitly typed with a specific protocol (as they are in
occam), and sometimes with a direction

m can be a ‘null’ protocol (what ‘SIGNAL’ is in occam-pi, more or less).

m First-class types in the language, so can be used as protocols
themselves to define things like channel mobility.

chan?(chan! (int))
chan! (Link)

Type System

Channels and Protocols

m Channels are explicitly typed with a specific protocol (as they are in
occam), and sometimes with a direction

m can be a ‘null’ protocol (what ‘SIGNAL’ is in occam-pi, more or less).

m First-class types in the language, so can be used as protocols
themselves to define things like channel mobility.

han?(chan! (int
gh:ﬁ' Ef.iiﬁ) () define protocol Link
) subprotocol Statel
case
! start; int
m Borrow Adam'’s two-way protocols for b EtatiQSt ten
. . . subprotoco ate
defining complex communication Cgse
patterns (via state machines): ? starting
. . State3
m related to the idea of session types ? Gefllods A
Statel

more states ...
Statel

Type System

Tuples and Abstract Types

m Anonymous structure (tuple) types (allowed generally as L-values):

chan({int,char}) c
par

c ! {42,°x°}

c ? {x,y}

Type System

Tuples and Abstract Types

m Anonymous structure (tuple) types (allowed generally as L-values):

chan({int,char}) c define type Tree
[PELS define type Leaf is Tree
c ! 142:”"} int value
c 7 X,y define type SubTree is Tree

Tree left, right
. define type Empty is default Tree
m Abstract types, which pro-

vide an equivalent of a union
and allow for recursive data
structures (without having
to abuse the forward-scoping
rules):

Type System

Tuples and Abstract Types

m Anonymous structure (tuple) types (allowed generally as L-values):

chan({int,char}) c define type Tree
[PELS define type Leaf is Tree
c ! 142:”"} int value
c 7 X,y define type SubTree is Tree

Tree left, right
. define type Empty is default Tree
m Abstract types, which pro-

vide an equivalent of a union Zi:: E
and allow for recursive data Leaf
structures (without having t.valuet++
. SubTree
to abuse the forward-scoping par
rules): do_walk (t.left)
do_walk (t.right)
Empty

skip # optional

Type System

Tuples and Abstract Types

m Anonymous structure (tuple) types (allowed generally as L-values):

chan({int,char}) c define type Tree
[PELS define type Leaf is Tree
c ! 142:”"} int value
c 7 X,y define type SubTree is Tree

Tree left, right
. define type Empty is default Tree
m Abstract types, which pro-

vide an equivalent of a union | Tree t
. case t
and allow for recursive data Leaf
structures (without having t.valuet++
t b the f d . SubTree
o abuse the forward-scoping par
rules): do_walk (t.left)
do_walk (t.right)
Empty

skip # optional

m Must supply a ‘default’ variant that is used for initialisation.

Type System

Enumerated Types

m A notable omission in occam/occam-pi ...

Type System

Enumerated Types

m A notable omission in occam/occam-pi ...

define enum Colours
Red
Green
Blue

Type System

Arrays treated like ‘mobile’ arrays in occam-pi, so zero elements by
default (for unsized array declarations).

[Juint128 data
data = [10]Juint128

[8]int16 sdata

Type System

m Arrays treated like ‘mobile’ arrays in occam-pi, so zero elements by
default (for unsized array declarations).

[Juint128 data
data = [10]Juint128

[8]int16 sdata

m Array and structure elements accessed either with ‘dot’ or square
brackets.

m constant constructors for both use square brackets:

[Jint stuff = [1, 3, 6]

Type System

Barriers

m Simple barrier types, as we already have in occam-pi:

barrier b

par # compiler figures out which
proc_a (b) # processes are enrolled
proc_b (b)
seq

sync b

Type System

Barriers

m Simple barrier types, as we already have in occam-pi:

barrier b
par # compiler figures out which
proc_a (b) # processes are enrolled
proc_b (b)
seq
sync b

m Also phased barriers for safe (CREW) access to shared state:

barrier(2) ph
par
sync ph(0)
sync ph(1) # deadlock

Barriers

m Simple barrier types, as we already have in occam-pi:

barrier b
par
proc_a (b)
proc_b (b)
seq
sync b

compiler figures out which
processes are enrolled

m Also phased barriers for safe (CREW) access to shared state:

barrier(2) ph
par
sync ph(0)
sync ph(1)

deadlock

define foo (barrier(2) x)
case sync x
0
in phase O
1
in phase 1

Type System

Type System

Function and Process Types

m For implementing (roughly) an equivalent of C's function pointer
mechanism.

m more than just a pointer in practice — memory usage, etc.

Type System

Function and Process Types

m For implementing (roughly) an equivalent of C's function pointer
mechanism.

m more than just a pointer in practice — memory usage, etc.

(val int) -> int fcn
(val int, val int) -> int, int rand_fcn
(barrier, chan!(char)) proc

define type i_to_i is (val int) -> int

Writing Code

Processes / Procedures

m Straightforward named blocks of code:

define out_10 (val int x, chan!(int) out)
seq i = x for 10
out ! i
some more code here

Writing Code

Processes / Procedures

m Straightforward named blocks of code:

define out_10 (val int x, chan!(int) out)
seq i = x for 10
out ! i
some more code here

m Parameter passing uses a renaming semantics, so inlining has
(logically) no effect.

Writing Code

Processes / Procedures

m Straightforward named blocks of code:

define out_10 (val int x, chan!(int) out)
seq i = x for 10
out ! i
some more code here

m Parameter passing uses a renaming semantics, so inlining has
(logically) no effect.

m For convenience, allow the direction on channels to be specified
alongside the name:

define succ (chan(int) in?, out!)
while true
int x
in 7 x
out ! x+1

Functions

m Like occam, functions must be pure (no side-effects):

define sum (val int data[]) -> int
int res = 0
seq 1 = 0 for size(data)
res += datalil
return res

Writing Code

Writing Code

Functions

m Like occam, functions must be pure (no side-effects):

define sum (val int data[]) -> int
int res = 0
seq 1 = 0 for size(data)
res += datalil
return res

m We'll allow functions to allocate and release memory, on the
assumption that the heap is passed-to and returned-from the
function.

Writing Code

Functions

m Like occam, functions must be pure (no side-effects):

define sum (val int data[]) -> int
int res = 0
seq 1 = 0 for size(data)
res += datalil
return res

m We'll allow functions to allocate and release memory, on the
assumption that the heap is passed-to and returned-from the
function.

m Also allow multi-value/multi-typed functions:

define minmax (val int datal[]) -> int, int
int min = 0, max = 0
code
return min, max

Writing Code

Expressions

m No operator precedence (like occam), so explicit bracketing:

int x = (a + b) * (c + 42)

Writing Code

Expressions

m No operator precedence (like occam), so explicit bracketing:
m however, to avoid painful bracketing, assume left-to-right evaluation

for the same operator

(a+b)*(c+42)
C

+ 1

int x
a=b

Writing Code

Expressions

m No operator precedence (like occam), so explicit bracketing:
m however, to avoid painful bracketing, assume left-to-right evaluation

for the same operator

(a+b)*(c+42)
C

+ 1

int x
a=b

m Arithmetic overflow (and underflow) still generate run-time errors.

Writing Code

Expressions

m No operator precedence (like occam), so explicit bracketing:
m however, to avoid painful bracketing, assume left-to-right evaluation
for the same operator

(a+b)*(c+42)
C

+ 1

int x
a = b

m Arithmetic overflow (and underflow) still generate run-time errors.

m Automatic type promotion where required (and obviously harmless),
but no automatic coercion or truncation.

intl6 x, y = 42
uint8 z = Oxff
X
z

z
intl6 y

Writing Code

Expressions

m No operator precedence (like occam), so explicit bracketing:

m however, to avoid painful bracketing, assume left-to-right evaluation
for the same operator

+ 1

(a+b)*(c+42)
C

int x
a = b

m Arithmetic overflow (and underflow) still generate run-time errors.

m Automatic type promotion where required (and obviously harmless),
but no automatic coercion or truncation.

intl6 x, y = 42
uint8 z = Oxff
X
z

z
intl6 y

m Casting required between different types (e.g. integer and real):

int128 p = some_function (42)
reall28 r = reall28 trunc p

Writing Code

Expressions

m Support for a conditional expression, as found in various languages:

int v = (y == 42) 7 99 : z

Writing Code

Expressions

m Support for a conditional expression, as found in various languages:

int v = (y == 42) 7 99 : z

m Also support for lambda abstractions, assignable to function types:

define type i_to_i is (val int) -> int

i_to_i fen = \v.(v * v)

Writing Code

Expressions

m Support for a conditional expression, as found in various languages:

int v = (y == 42) 7 99 : z

m Also support for lambda abstractions, assignable to function types:

define type i_to_i is (val int) -> int

i_to_i fen = \v.(v * v)

m These are dealt with at compile-time, compiled into a named
function or inlined.

int v = \x.(x * y) 14

define generator (chan!(i_to_i) out)
out ! \x.(x * (x + 1))

Writing Code

Operators

m The usual set of operators as found in occam/occam-pi, with a C
flavoured syntax.

LS T S T PR B SN |

m Comparison: ‘<, ‘<=, '==", '>=", > ‘1= ‘<>

m Boolean logic: ‘&', ‘I1", ‘><', ‘1’

m Bitwise: ‘&', 'I", "',

m Arithmetic (checked): ‘+', ‘=", '*', /", '\, ‘<<’, '>>'
m Arithmetic (unchecked): ‘plus’, 'minus’, ‘times’

Writing Code

Operators

m For convenience support for increment/decrement and similar
operators (really processes, as they cannot be used as R-values):

int x = 42

x++ #x=x+1
X -=y #x=x-y
x *x= 15 #x =x x 15

Writing Code

Flow Control

m Allow ‘return’ from any point inside a procedure/function.
m not a problem for modelling execution as always doable using
boolean flags and ‘if's
m restricted to sequential code (no outstanding parallel processes!)

Writing Code

Flow Control

m Allow ‘return’ from any point inside a procedure/function.

m not a problem for modelling execution as always doable using
boolean flags and ‘if's
m restricted to sequential code (no outstanding parallel processes!)

m Allow ‘break’ inside while-loops.
m undecided: allowing labelled loops, etc. and targetted ‘break’.

Writing Code

Flow Control

m Allow ‘return’ from any point inside a procedure/function.

m not a problem for modelling execution as always doable using
boolean flags and ‘if's

m restricted to sequential code (no outstanding parallel processes!)
m Allow ‘break’ inside while-loops.
m undecided: allowing labelled loops, etc. and targetted ‘break’.
m Exception handling: kept straightforward — basic try/catch/finally.
m again, restricted to purely sequential code.

try
some_routine (x, y, 42)
some_other_routine (z)
int8 v = int8 trunc 3.14159
catch
report_error ()
finally
cleanup ()

Writing Code

Primitive Processes

m Usual two suspects, ‘skip’ and ‘stop’:
m use of ‘skip’ is largely optional — indentation rules mean it's
obvious when it's missing.
m ‘stop’ is the traditional self deadlock.

Writing Code

Primitive Processes

m Usual two suspects, ‘skip’ and ‘stop’:

m use of ‘skip’ is largely optional — indentation rules mean it's
obvious when it's missing.
m ‘stop’ is the traditional self deadlock.

m Also ‘abort’, which is captured within a ‘try’ block, else run-time
error.

Writing Code

Primitive Processes

m Usual two suspects, ‘skip’ and ‘stop’:

m use of ‘skip’ is largely optional — indentation rules mean it's
obvious when it's missing.
m ‘stop’ is the traditional self deadlock.

m Also ‘abort’, which is captured within a ‘try’ block, else run-time
error.

m Built-in ‘assert’ primitive produces a run-time error if triggered,
uncatchable.

Writing Code

Structured Processes

m ‘if', ‘alt’, ‘'seq’ and ‘par’' almost as they are in occam.

m ‘case’ and ‘while’ too.

if
x == 42
do_something ()
x <
do_something_else ()
true
assert x >=y

Writing Code

Structured Processes

m ‘if', ‘alt’, ‘'seq’ and ‘par’' almost as they are in occam.

m ‘case’ and ‘while’ too.

if alt
x == 42 in[0] 7 x
do_something () out ! x
x <y in[1] 7 x
do_something_else () out ! x
true (n>16) & c ? x
assert x >=y out ! x

Writing Code

Structured Processes

m ‘if', ‘alt’, ‘'seq’ and ‘par’' almost as they are in occam.

m ‘case’ and ‘while’ too.

if alt
x == 42 in[0] 7 x
do_something () out ! x
x <y in[1] 7 x
do_something_else () out ! x
true (n>16) & c ? x
assert x >=y out ! x
seq
do_this ()
then_that ()

Structured Processes

m ‘if', ‘alt’, ‘'seq’ and ‘par’' almost as they are in occam.

m ‘case’ and ‘while’ too.

if alt
x == 42 in[0] 7 x
do_something () out ! x
x < in[1] 7 x
do_something_else () out ! x
true (n>16) & c ? x
assert x >=y out ! x
seq par
do_this () receiver (c?7)
then_that () sender (c!)

Writing Code

Writing Code

Structured Processes

m ‘if', ‘alt’, ‘'seq’ and ‘par’' almost as they are in occam.

m ‘case’ and ‘while’ too.

if alt
x == 42 in[0] 7 x
do_something () out ! x
x <y in[1] 7 x
do_something_else () out ! x
true (n>16) & c ? x
assert x >=y out ! x
seq par
do_this () receiver (c?7)
then_that () sender (c!)

m Can nest and replicate the first four in the same way as occam.
m ‘'seq’ and ‘par’ can omit replicator name if not needed:

seq for 10
do_something ()

Writing Code

Structured Processes

m Allow a shorter version of ‘if’ for more convenient uses:

if x == 42
do_something ()

Writing Code

Structured Processes

m Allow a shorter version of ‘if’ for more convenient uses:

if x == 42
do_something ()

Also inline versions of ‘seq’ and ‘par’:

c! 42 |llc?y
screen ! ’c’ -> screen ! ’\n’

Writing Code

Structured Processes

m Allow a shorter version of ‘if’ for more convenient uses:

if x == 42
do_something ()

Also inline versions of ‘seq’ and ‘par’:

c! 42 |llc?y
screen ! ’c’ -> screen ! ’\n’

m Inline 'seq’ (‘->' read then) can also be used in ‘alt’ constructs for
brevity:

pri alt
c ?7x ->out ! x+1
d ? y -> stop -> skip

Writing Code

Channel Mobility

m An important feature for many applications

m least not complex systems simulations!

Writing Code

Channel Mobility

m An important feature for many applications
m least not complex systems simulations!

m Ordinary channels cannot have their ends pulled apart; mobile
channels must be constructed explicitly:

chan?(int) c
chan! (int) d
bind c?7, d!

bind chan(char) e?, f!

Writing Code

Channel Mobility

m An important feature for many applications

m least not complex systems simulations!

m Ordinary channels cannot have their ends pulled apart; mobile
channels must be constructed explicitly:

chan?(int) c
chan! (int) d
bind c?, 4!

bind chan(char) e?, f!

m Higher-order channels are straightforward (and consistent) :-)

chan?(int) c

chan! (chan?(int)) d
chan?(chan! (chan?(int))) e
e ?7d

d!c

Extras

User Defined Operators

m Essentially operator overloading, generally a useful language
feature (added to occam by Jim Moores).
m allowed as part of type definitions for that type (as well as
stand-alone).
m must follow rules for functions (no side-effects!).

define type ICoord
int x, y

Extras

User Defined Operators

m Essentially operator overloading, generally a useful language
feature (added to occam by Jim Moores).
m allowed as part of type definitions for that type (as well as
stand-alone).
m must follow rules for functions (no side-effects!).

define type ICoord
int x, y

"+" (val a, b) -> ICoord
ICoord r
r.x = a.x + b.x
r.y =a.y + b.y
return r

Extras

User Defined Operators

m Essentially operator overloading, generally a useful language
feature (added to occam by Jim Moores).
m allowed as part of type definitions for that type (as well as
stand-alone).
m must follow rules for functions (no side-effects!).

define type ICoord
int x, y

"+" (val a, b) -> ICoord
ICoord r
r.x = a.x + b.x
r.y =a.y + b.y
return r

"-" (val a, b) -> ICoord = [a.x - b.x, a.y - b.y]

Extras

User Defined Operators

m Essentially operator overloading, generally a useful language
feature (added to occam by Jim Moores).
m allowed as part of type definitions for that type (as well as
stand-alone).
m must follow rules for functions (no side-effects!).

define type ICoord
int x, y

"+" (val a, b) -> ICoord
ICoord r
r.x = a.x + b.x
r.y =a.y + b.y
return r
"-" (val a, b) -> ICoord = [a.x - b.x, a.y - b.y]

define sq (val int v) -> int = (v * v)
define "<->" (val ICoord x, y) -> int
return sq (x.x-y.x) + sq (x.y-y.y)

Extras

Type Inference and Polymorphism

m Allow the compiler to figure out the return type of a function (less
typing for the programmer):

define foo (val int a, b)
int pl, mi
pl=a+Db ||l mi=a-b
return pl, mi

Extras

Type Inference and Polymorphism

m Allow the compiler to figure out the return type of a function (less
typing for the programmer):

define foo (val int a, b)
int pl, mi
pl=a+Db ||l mi=a-b
return pl, mi

define foo (val int a, b) =a + b, a - b

Extras

Type Inference and Polymorphism

m Allow the compiler to figure out the return type of a function (less
typing for the programmer):

define foo (val int a, b)
int pl, mi
pl=a+b|llmi=a-b
return pl, mi

define foo (val int a, b) =a + b, a - b

m Functions and procedures may have generic types.
m specialised by the compiler for specific types:

define id (chan(T) in?, out!)
while true
Tv
in ? v -> out ! v

Extras

Var-Args and Run-Time Type Selection

m Disclaimer: this is not necessarily concrete yet!

m Support an explicit ‘type’ type, useful for run-time decision making:

define typeset vararg is int, byte, uint, string

define printf (chan!(char) out, string fmt, [Jvararg args)
stuff
seq i = 0 for size args
case typeof argsl[il

int
code for integer

string
code for string

else
unhandled cases

Code Example

Dining Philosophers

Code Example

Dining Philosophers

define main (chan!(char) screen)
par
display stuff here...
secure_college ()

Dining Philosophers

Code Example

define main (chan!(char) screen)
par
display stuff here...
secure_college ()

define secure_college ()
[6]chan() left, right
[5]chan() up, down
par
par i = 0 for 5
philosopher (up[il!, down[i]!, left[il!, right[i]!)
par i = 0 for 5
fork (left[il?, right[(i+1)\5]7)
security (down?, up?)

Code Example

Dining Philosophers

define fork (chan() left?, right?)
while true
alt
left? -> left?
right? -> right?

Code Example

Dining Philosophers

define fork (chan() left?, right?)
while true
alt
left? -> left?
right? -> right?

define philosopher (chan() up!, down!, fork_left!, fork_right!)
while true

think ...

down!

fork_left! ||| fork_right!
eat ...

fork_left! ||| fork_right!

up!

Code Example

Dining Philosophers

define security ([Jchan() downs?, ups?)
int sat = 0
val int limit = 4
while true
alt
alt i = 0 for size(downs)
(sat < limit) & downs[i]?
sat++
alt i = 0 for size(ups)
ups[i]?
sat--

Epilogue

Other Things

m For two-way protocols specifically, ‘chan+’ and ‘chan-' for client and
server sides.

Compiler extensions to allow experimentation with language
structure and similar.

A sensible module system for building libraries.
Bindings to interface with existing C and occam-pi code.

Low-level things such as ‘placed’ data and ‘port's.

And probably a whole lot of other things...!

Epilogue

State of Things

m Mostly ideas at the moment, but slowly forming into something
concrete and reasonable

m suggestions for things to add, remove or modify very welcome!
m goal is to produce a safe concurrent language that is quick and easy
to use (without compromising existing run-time performance)

m Some bits of a compiler in place in the NOCC compiler framework
m generating mostly empty LLVM files at the moment, but in progress!

	Introduction
	Type System
	Writing Code
	Extras
	Code Example
	Epilogue

