
Towards a New Language for
Concurrent Programming

CPA-2011 Fringe Session

Fred Barnes

School of Computing, University of Kent, Canterbury

F.R.M.Barnes@kent.ac.uk

http://www.cs.kent.ac.uk/~frmb/

Introduction

Background

We’ve been knocking around ideas about a new occam for some
time..

Some issues with occam and occam-pi as they currently exist:

perceived as an “old” language (or even dead!)
upper-case keywords went out of fashion with BASIC
strict indentation annoys some

Occam-pi (as it stands) is essentially a “bolt-on” to occam

language is a little inconsistent or clunky in places
compiler breaks down easily (old code-base)

If we’re reinventing compilers, might as well reinvent the language
whilst we’re at it...

Introduction

Background

We’ve been knocking around ideas about a new occam for some
time..

Some issues with occam and occam-pi as they currently exist:

perceived as an “old” language (or even dead!)
upper-case keywords went out of fashion with BASIC
strict indentation annoys some

Occam-pi (as it stands) is essentially a “bolt-on” to occam

language is a little inconsistent or clunky in places
compiler breaks down easily (old code-base)

If we’re reinventing compilers, might as well reinvent the language
whilst we’re at it...

Introduction

Background

We’ve been knocking around ideas about a new occam for some
time..

Some issues with occam and occam-pi as they currently exist:

perceived as an “old” language (or even dead!)
upper-case keywords went out of fashion with BASIC
strict indentation annoys some

Occam-pi (as it stands) is essentially a “bolt-on” to occam

language is a little inconsistent or clunky in places
compiler breaks down easily (old code-base)

If we’re reinventing compilers, might as well reinvent the language
whilst we’re at it...

Introduction

Background

We’ve been knocking around ideas about a new occam for some
time..

Some issues with occam and occam-pi as they currently exist:

perceived as an “old” language (or even dead!)
upper-case keywords went out of fashion with BASIC
strict indentation annoys some

Occam-pi (as it stands) is essentially a “bolt-on” to occam

language is a little inconsistent or clunky in places
compiler breaks down easily (old code-base)

If we’re reinventing compilers, might as well reinvent the language
whilst we’re at it...

Introduction

Guppy

Introducing Guppy

deliberately not called ‘occam’
... although we’re going to use all the best bits :-)

Still looking for a decent logo ...

Introduction

What We Need ...

Preserving the useful features of occam/occam-pi:

embodiment of CSP based concurrency (though may not restrict to
that alone) in the language itself
strict parallel usage checks: zero aliasing

Preserving the fast execution of the resulting code:

no heavy run-time checks (e.g. expensive run-time typing, complex
garbage collection)
using existing CCSP

Targetable at just about any architecture in existence:

by compiling (ultimately) to LLVM (low-level virtual machine)

Introduction

What We Need ...

Preserving the useful features of occam/occam-pi:

embodiment of CSP based concurrency (though may not restrict to
that alone) in the language itself
strict parallel usage checks: zero aliasing

Preserving the fast execution of the resulting code:

no heavy run-time checks (e.g. expensive run-time typing, complex
garbage collection)
using existing CCSP

Targetable at just about any architecture in existence:

by compiling (ultimately) to LLVM (low-level virtual machine)

Introduction

What We Need ...

Preserving the useful features of occam/occam-pi:

embodiment of CSP based concurrency (though may not restrict to
that alone) in the language itself
strict parallel usage checks: zero aliasing

Preserving the fast execution of the resulting code:

no heavy run-time checks (e.g. expensive run-time typing, complex
garbage collection)
using existing CCSP

Targetable at just about any architecture in existence:

by compiling (ultimately) to LLVM (low-level virtual machine)

Introduction

What We Would Like ...

A language that other people would be happy to (and may even
want to) use:

successes of Python and Go suggest indentation-based layout and
concurrency are not distasteful

Rapid development – nothing overly cumbersome to program with
respect to other languages:

need some genericity/flexibility in the type system
automatic ‘SEQ’ behaviour (static checks can spot likely errors)
may need to sacrifice some of the purity of occam to make this work..

Automatic mobility (largely a compiler thing), with a couple of
language hints thrown in to help the compiler when automatic static
analysis gets too complex (or wrong).

A proper ‘string’ type with UTF-8 support (32-bit ‘char’ probably).

Introduction

What We Would Like ...

A language that other people would be happy to (and may even
want to) use:

successes of Python and Go suggest indentation-based layout and
concurrency are not distasteful

Rapid development – nothing overly cumbersome to program with
respect to other languages:

need some genericity/flexibility in the type system
automatic ‘SEQ’ behaviour (static checks can spot likely errors)
may need to sacrifice some of the purity of occam to make this work..

Automatic mobility (largely a compiler thing), with a couple of
language hints thrown in to help the compiler when automatic static
analysis gets too complex (or wrong).

A proper ‘string’ type with UTF-8 support (32-bit ‘char’ probably).

Introduction

What We Would Like ...

A language that other people would be happy to (and may even
want to) use:

successes of Python and Go suggest indentation-based layout and
concurrency are not distasteful

Rapid development – nothing overly cumbersome to program with
respect to other languages:

need some genericity/flexibility in the type system
automatic ‘SEQ’ behaviour (static checks can spot likely errors)
may need to sacrifice some of the purity of occam to make this work..

Automatic mobility (largely a compiler thing), with a couple of
language hints thrown in to help the compiler when automatic static
analysis gets too complex (or wrong).

A proper ‘string’ type with UTF-8 support (32-bit ‘char’ probably).

Introduction

What We Would Like ...

A language that other people would be happy to (and may even
want to) use:

successes of Python and Go suggest indentation-based layout and
concurrency are not distasteful

Rapid development – nothing overly cumbersome to program with
respect to other languages:

need some genericity/flexibility in the type system
automatic ‘SEQ’ behaviour (static checks can spot likely errors)
may need to sacrifice some of the purity of occam to make this work..

Automatic mobility (largely a compiler thing), with a couple of
language hints thrown in to help the compiler when automatic static
analysis gets too complex (or wrong).

A proper ‘string’ type with UTF-8 support (32-bit ‘char’ probably).

Type System

Type System

Usual primitive types:

int x # simple signed integer
uint14 y # 14-bit unsigned integer
bool z # boolean
real64 f # floating-point
string s # string type
char c # unicode character
byte b # unsigned 8-bit

Structured (and optionally parameterised) types:

Named types:

Type System

Type System

Usual primitive types:

int x # simple signed integer
uint14 y # 14-bit unsigned integer
bool z # boolean
real64 f # floating-point
string s # string type
char c # unicode character
byte b # unsigned 8-bit

Structured (and optionally parameterised) types:

define type iCoord
int x, y

iCoord p, o = [0,0]

Named types:

Type System

Type System

Usual primitive types:

int x # simple signed integer
uint14 y # 14-bit unsigned integer
bool z # boolean
real64 f # floating-point
string s # string type
char c # unicode character
byte b # unsigned 8-bit

Structured (and optionally parameterised) types:

define type iCoord
int x, y

iCoord p, o = [0,0]

define type Coord (T)
T x, y

Coord(int) p, o = [0,0]

Named types:

Type System

Type System

Usual primitive types:

int x # simple signed integer
uint14 y # 14-bit unsigned integer
bool z # boolean
real64 f # floating-point
string s # string type
char c # unicode character
byte b # unsigned 8-bit

Structured (and optionally parameterised) types:

define type iCoord
int x, y

iCoord p, o = [0,0]

define type Coord (T)
T x, y

Coord(int) p, o = [0,0]

Named types:

define type NanoTime is uint128

Type System

Channels and Protocols

Channels are explicitly typed with a specific protocol (as they are in
occam), and sometimes with a direction

can be a ‘null’ protocol (what ‘SIGNAL’ is in occam-pi, more or less).

First-class types in the language, so can be used as protocols
themselves to define things like channel mobility.

Borrow Adam’s two-way protocols for
defining complex communication
patterns (via state machines):

related to the idea of session types

Type System

Channels and Protocols

Channels are explicitly typed with a specific protocol (as they are in
occam), and sometimes with a direction

can be a ‘null’ protocol (what ‘SIGNAL’ is in occam-pi, more or less).

First-class types in the language, so can be used as protocols
themselves to define things like channel mobility.

chan?(chan!(int))
chan!(Link)

Borrow Adam’s two-way protocols for
defining complex communication
patterns (via state machines):

related to the idea of session types

Type System

Channels and Protocols

Channels are explicitly typed with a specific protocol (as they are in
occam), and sometimes with a direction

can be a ‘null’ protocol (what ‘SIGNAL’ is in occam-pi, more or less).

First-class types in the language, so can be used as protocols
themselves to define things like channel mobility.

chan?(chan!(int))
chan!(Link)

Borrow Adam’s two-way protocols for
defining complex communication
patterns (via state machines):

related to the idea of session types

define protocol Link
subprotocol State1
case

! start; int
State2

subprotocol State2
case

? starting
State3

? failed; int
State1

more states ...
State1

Type System

Tuples and Abstract Types

Anonymous structure (tuple) types (allowed generally as L-values):

chan({int,char}) c
par
c ! {42,’x’}
c ? {x,y}

Abstract types, which pro-
vide an equivalent of a union
and allow for recursive data
structures (without having
to abuse the forward-scoping
rules):

Must supply a ‘default’ variant that is used for initialisation.

Type System

Tuples and Abstract Types

Anonymous structure (tuple) types (allowed generally as L-values):

chan({int,char}) c
par
c ! {42,’x’}
c ? {x,y}

Abstract types, which pro-
vide an equivalent of a union
and allow for recursive data
structures (without having
to abuse the forward-scoping
rules):

define type Tree
define type Leaf is Tree
int value

define type SubTree is Tree
Tree left, right

define type Empty is default Tree

Must supply a ‘default’ variant that is used for initialisation.

Type System

Tuples and Abstract Types

Anonymous structure (tuple) types (allowed generally as L-values):

chan({int,char}) c
par
c ! {42,’x’}
c ? {x,y}

Abstract types, which pro-
vide an equivalent of a union
and allow for recursive data
structures (without having
to abuse the forward-scoping
rules):

define type Tree
define type Leaf is Tree
int value

define type SubTree is Tree
Tree left, right

define type Empty is default Tree

Tree t
case t
Leaf
t.value++

SubTree
par

do walk (t.left)
do walk (t.right)

Empty
skip # optional

Must supply a ‘default’ variant that is used for initialisation.

Type System

Tuples and Abstract Types

Anonymous structure (tuple) types (allowed generally as L-values):

chan({int,char}) c
par
c ! {42,’x’}
c ? {x,y}

Abstract types, which pro-
vide an equivalent of a union
and allow for recursive data
structures (without having
to abuse the forward-scoping
rules):

define type Tree
define type Leaf is Tree
int value

define type SubTree is Tree
Tree left, right

define type Empty is default Tree

Tree t
case t
Leaf
t.value++

SubTree
par

do walk (t.left)
do walk (t.right)

Empty
skip # optional

Must supply a ‘default’ variant that is used for initialisation.

Type System

Enumerated Types

A notable omission in occam/occam-pi ...

Type System

Enumerated Types

A notable omission in occam/occam-pi ...

define enum Colours
Red
Green
Blue

Type System

Arrays

Arrays treated like ‘mobile’ arrays in occam-pi, so zero elements by
default (for unsized array declarations).

[]uint128 data
data = [10]uint128

[8]int16 sdata

Array and structure elements accessed either with ‘dot’ or square
brackets.

constant constructors for both use square brackets:

Type System

Arrays

Arrays treated like ‘mobile’ arrays in occam-pi, so zero elements by
default (for unsized array declarations).

[]uint128 data
data = [10]uint128

[8]int16 sdata

Array and structure elements accessed either with ‘dot’ or square
brackets.

constant constructors for both use square brackets:

[]int stuff = [1, 3, 6]

Type System

Barriers

Simple barrier types, as we already have in occam-pi:

barrier b
par # compiler figures out which
proc a (b) # processes are enrolled
proc b (b)
seq
sync b

Also phased barriers for safe (CREW) access to shared state:

Type System

Barriers

Simple barrier types, as we already have in occam-pi:

barrier b
par # compiler figures out which
proc a (b) # processes are enrolled
proc b (b)
seq
sync b

Also phased barriers for safe (CREW) access to shared state:

barrier(2) ph
par
sync ph(0)
sync ph(1) # deadlock

Type System

Barriers

Simple barrier types, as we already have in occam-pi:

barrier b
par # compiler figures out which
proc a (b) # processes are enrolled
proc b (b)
seq
sync b

Also phased barriers for safe (CREW) access to shared state:

barrier(2) ph
par
sync ph(0)
sync ph(1) # deadlock

define foo (barrier(2) x)
case sync x
0

in phase 0
1

in phase 1

Type System

Function and Process Types

For implementing (roughly) an equivalent of C’s function pointer
mechanism.

more than just a pointer in practice – memory usage, etc.

Type System

Function and Process Types

For implementing (roughly) an equivalent of C’s function pointer
mechanism.

more than just a pointer in practice – memory usage, etc.

(val int) -> int fcn
(val int, val int) -> int, int rand fcn
(barrier, chan!(char)) proc

define type i to i is (val int) -> int

Writing Code

Processes / Procedures

Straightforward named blocks of code:

define out 10 (val int x, chan!(int) out)
seq i = x for 10
out ! i

some more code here

Parameter passing uses a renaming semantics, so inlining has
(logically) no effect.

For convenience, allow the direction on channels to be specified
alongside the name:

Writing Code

Processes / Procedures

Straightforward named blocks of code:

define out 10 (val int x, chan!(int) out)
seq i = x for 10
out ! i

some more code here

Parameter passing uses a renaming semantics, so inlining has
(logically) no effect.

For convenience, allow the direction on channels to be specified
alongside the name:

Writing Code

Processes / Procedures

Straightforward named blocks of code:

define out 10 (val int x, chan!(int) out)
seq i = x for 10
out ! i

some more code here

Parameter passing uses a renaming semantics, so inlining has
(logically) no effect.

For convenience, allow the direction on channels to be specified
alongside the name:

define succ (chan(int) in?, out!)
while true
int x
in ? x
out ! x+1

Writing Code

Functions

Like occam, functions must be pure (no side-effects):

define sum (val int data[]) -> int
int res = 0
seq i = 0 for size(data)
res += data[i]

return res

We’ll allow functions to allocate and release memory, on the
assumption that the heap is passed-to and returned-from the
function.

Also allow multi-value/multi-typed functions:

Writing Code

Functions

Like occam, functions must be pure (no side-effects):

define sum (val int data[]) -> int
int res = 0
seq i = 0 for size(data)
res += data[i]

return res

We’ll allow functions to allocate and release memory, on the
assumption that the heap is passed-to and returned-from the
function.

Also allow multi-value/multi-typed functions:

Writing Code

Functions

Like occam, functions must be pure (no side-effects):

define sum (val int data[]) -> int
int res = 0
seq i = 0 for size(data)
res += data[i]

return res

We’ll allow functions to allocate and release memory, on the
assumption that the heap is passed-to and returned-from the
function.

Also allow multi-value/multi-typed functions:

define minmax (val int data[]) -> int, int
int min = 0, max = 0
... code
return min, max

Writing Code

Expressions

No operator precedence (like occam), so explicit bracketing:

however, to avoid painful bracketing, assume left-to-right evaluation
for the same operator

int x = (a + b) * (c + 42)

Arithmetic overflow (and underflow) still generate run-time errors.

Automatic type promotion where required (and obviously harmless),
but no automatic coercion or truncation.

Casting required between different types (e.g. integer and real):

Writing Code

Expressions

No operator precedence (like occam), so explicit bracketing:

however, to avoid painful bracketing, assume left-to-right evaluation
for the same operator

int x = (a + b) * (c + 42)
a = b + c + x

Arithmetic overflow (and underflow) still generate run-time errors.

Automatic type promotion where required (and obviously harmless),
but no automatic coercion or truncation.

Casting required between different types (e.g. integer and real):

Writing Code

Expressions

No operator precedence (like occam), so explicit bracketing:

however, to avoid painful bracketing, assume left-to-right evaluation
for the same operator

int x = (a + b) * (c + 42)
a = b + c + x

Arithmetic overflow (and underflow) still generate run-time errors.

Automatic type promotion where required (and obviously harmless),
but no automatic coercion or truncation.

Casting required between different types (e.g. integer and real):

Writing Code

Expressions

No operator precedence (like occam), so explicit bracketing:

however, to avoid painful bracketing, assume left-to-right evaluation
for the same operator

int x = (a + b) * (c + 42)
a = b + c + x

Arithmetic overflow (and underflow) still generate run-time errors.

Automatic type promotion where required (and obviously harmless),
but no automatic coercion or truncation.

int16 x, y = 42
uint8 z = 0xff
x = z
z = int16 y

Casting required between different types (e.g. integer and real):

Writing Code

Expressions

No operator precedence (like occam), so explicit bracketing:

however, to avoid painful bracketing, assume left-to-right evaluation
for the same operator

int x = (a + b) * (c + 42)
a = b + c + x

Arithmetic overflow (and underflow) still generate run-time errors.

Automatic type promotion where required (and obviously harmless),
but no automatic coercion or truncation.

int16 x, y = 42
uint8 z = 0xff
x = z
z = int16 y

Casting required between different types (e.g. integer and real):

int128 p = some function (42)
real128 r = real128 trunc p

Writing Code

Expressions

Support for a conditional expression, as found in various languages:

int v = (y == 42) ? 99 : z

Also support for lambda abstractions, assignable to function types:

These are dealt with at compile-time, compiled into a named
function or inlined.

Writing Code

Expressions

Support for a conditional expression, as found in various languages:

int v = (y == 42) ? 99 : z

Also support for lambda abstractions, assignable to function types:

define type i to i is (val int) -> int

i to i fcn = \v.(v * v)

These are dealt with at compile-time, compiled into a named
function or inlined.

Writing Code

Expressions

Support for a conditional expression, as found in various languages:

int v = (y == 42) ? 99 : z

Also support for lambda abstractions, assignable to function types:

define type i to i is (val int) -> int

i to i fcn = \v.(v * v)

These are dealt with at compile-time, compiled into a named
function or inlined.

int v = \x.(x * y) 14

define generator (chan!(i to i) out)
out ! \x.(x * (x + 1))

Writing Code

Operators

The usual set of operators as found in occam/occam-pi, with a C
flavoured syntax.

Comparison: ‘<’, ‘<=’, ‘==’, ‘>=’, ‘>’, ‘!=’, ‘<>’

Boolean logic: ‘&&’, ‘||’, ‘><’, ‘!’

Bitwise: ‘&’, ‘|’, ‘^’, ‘~’

Arithmetic (checked): ‘+’, ‘-’, ‘*’, ‘/’, ‘\’, ‘<<’, ‘>>’

Arithmetic (unchecked): ‘plus’, ‘minus’, ‘times’

Writing Code

Operators

For convenience support for increment/decrement and similar
operators (really processes, as they cannot be used as R-values):

int x = 42

x++ # x = x + 1
x -= y # x = x - y
x *= 15 # x = x * 15

Writing Code

Flow Control

Allow ‘return’ from any point inside a procedure/function.

not a problem for modelling execution as always doable using
boolean flags and ‘if’s
restricted to sequential code (no outstanding parallel processes!)

Allow ‘break’ inside while-loops.

undecided: allowing labelled loops, etc. and targetted ‘break’.

Exception handling: kept straightforward – basic try/catch/finally.

again, restricted to purely sequential code.

Writing Code

Flow Control

Allow ‘return’ from any point inside a procedure/function.

not a problem for modelling execution as always doable using
boolean flags and ‘if’s
restricted to sequential code (no outstanding parallel processes!)

Allow ‘break’ inside while-loops.

undecided: allowing labelled loops, etc. and targetted ‘break’.

Exception handling: kept straightforward – basic try/catch/finally.

again, restricted to purely sequential code.

Writing Code

Flow Control

Allow ‘return’ from any point inside a procedure/function.

not a problem for modelling execution as always doable using
boolean flags and ‘if’s
restricted to sequential code (no outstanding parallel processes!)

Allow ‘break’ inside while-loops.

undecided: allowing labelled loops, etc. and targetted ‘break’.

Exception handling: kept straightforward – basic try/catch/finally.

again, restricted to purely sequential code.

try
some routine (x, y, 42)
some other routine (z)
int8 v = int8 trunc 3.14159

catch
report error ()

finally
cleanup ()

Writing Code

Primitive Processes

Usual two suspects, ‘skip’ and ‘stop’:

use of ‘skip’ is largely optional — indentation rules mean it’s
obvious when it’s missing.
‘stop’ is the traditional self deadlock.

Also ‘abort’, which is captured within a ‘try’ block, else run-time
error.

Built-in ‘assert’ primitive produces a run-time error if triggered,
uncatchable.

Writing Code

Primitive Processes

Usual two suspects, ‘skip’ and ‘stop’:

use of ‘skip’ is largely optional — indentation rules mean it’s
obvious when it’s missing.
‘stop’ is the traditional self deadlock.

Also ‘abort’, which is captured within a ‘try’ block, else run-time
error.

Built-in ‘assert’ primitive produces a run-time error if triggered,
uncatchable.

Writing Code

Primitive Processes

Usual two suspects, ‘skip’ and ‘stop’:

use of ‘skip’ is largely optional — indentation rules mean it’s
obvious when it’s missing.
‘stop’ is the traditional self deadlock.

Also ‘abort’, which is captured within a ‘try’ block, else run-time
error.

Built-in ‘assert’ primitive produces a run-time error if triggered,
uncatchable.

Writing Code

Structured Processes

‘if’, ‘alt’, ‘seq’ and ‘par’ almost as they are in occam.

‘case’ and ‘while’ too.

if
x == 42
do something ()

x < y
do something else ()

true
assert x >= y

Can nest and replicate the first four in the same way as occam.

‘seq’ and ‘par’ can omit replicator name if not needed:

Writing Code

Structured Processes

‘if’, ‘alt’, ‘seq’ and ‘par’ almost as they are in occam.

‘case’ and ‘while’ too.

if
x == 42
do something ()

x < y
do something else ()

true
assert x >= y

alt
in[0] ? x
out ! x

in[1] ? x
out ! x

(n > 16) & c ? x
out ! x

Can nest and replicate the first four in the same way as occam.

‘seq’ and ‘par’ can omit replicator name if not needed:

Writing Code

Structured Processes

‘if’, ‘alt’, ‘seq’ and ‘par’ almost as they are in occam.

‘case’ and ‘while’ too.

if
x == 42
do something ()

x < y
do something else ()

true
assert x >= y

alt
in[0] ? x
out ! x

in[1] ? x
out ! x

(n > 16) & c ? x
out ! x

seq
do this ()
then that ()

Can nest and replicate the first four in the same way as occam.

‘seq’ and ‘par’ can omit replicator name if not needed:

Writing Code

Structured Processes

‘if’, ‘alt’, ‘seq’ and ‘par’ almost as they are in occam.

‘case’ and ‘while’ too.

if
x == 42
do something ()

x < y
do something else ()

true
assert x >= y

alt
in[0] ? x
out ! x

in[1] ? x
out ! x

(n > 16) & c ? x
out ! x

seq
do this ()
then that ()

par
receiver (c?)
sender (c!)

Can nest and replicate the first four in the same way as occam.

‘seq’ and ‘par’ can omit replicator name if not needed:

Writing Code

Structured Processes

‘if’, ‘alt’, ‘seq’ and ‘par’ almost as they are in occam.

‘case’ and ‘while’ too.

if
x == 42
do something ()

x < y
do something else ()

true
assert x >= y

alt
in[0] ? x
out ! x

in[1] ? x
out ! x

(n > 16) & c ? x
out ! x

seq
do this ()
then that ()

par
receiver (c?)
sender (c!)

Can nest and replicate the first four in the same way as occam.

‘seq’ and ‘par’ can omit replicator name if not needed:

seq for 10
do something ()

Writing Code

Structured Processes

Allow a shorter version of ‘if’ for more convenient uses:

if x == 42
do something ()

Also inline versions of ‘seq’ and ‘par’:

Inline ‘seq’ (‘->’ read then) can also be used in ‘alt’ constructs for
brevity:

Writing Code

Structured Processes

Allow a shorter version of ‘if’ for more convenient uses:

if x == 42
do something ()

Also inline versions of ‘seq’ and ‘par’:

c ! 42 ||| c ? y
screen ! ’c’ -> screen ! ’\n’

Inline ‘seq’ (‘->’ read then) can also be used in ‘alt’ constructs for
brevity:

Writing Code

Structured Processes

Allow a shorter version of ‘if’ for more convenient uses:

if x == 42
do something ()

Also inline versions of ‘seq’ and ‘par’:

c ! 42 ||| c ? y
screen ! ’c’ -> screen ! ’\n’

Inline ‘seq’ (‘->’ read then) can also be used in ‘alt’ constructs for
brevity:

pri alt
c ? x -> out ! x+1
d ? y -> stop -> skip

Writing Code

Channel Mobility

An important feature for many applications

least not complex systems simulations!

Ordinary channels cannot have their ends pulled apart; mobile
channels must be constructed explicitly:

Higher-order channels are straightforward (and consistent) :-)

Writing Code

Channel Mobility

An important feature for many applications

least not complex systems simulations!

Ordinary channels cannot have their ends pulled apart; mobile
channels must be constructed explicitly:

chan?(int) c
chan!(int) d
bind c?, d!

bind chan(char) e?, f!

Higher-order channels are straightforward (and consistent) :-)

Writing Code

Channel Mobility

An important feature for many applications

least not complex systems simulations!

Ordinary channels cannot have their ends pulled apart; mobile
channels must be constructed explicitly:

chan?(int) c
chan!(int) d
bind c?, d!

bind chan(char) e?, f!

Higher-order channels are straightforward (and consistent) :-)

chan?(int) c
chan!(chan?(int)) d
chan?(chan!(chan?(int))) e
e ? d
d ! c

Extras

User Defined Operators

Essentially operator overloading, generally a useful language
feature (added to occam by Jim Moores).

allowed as part of type definitions for that type (as well as
stand-alone).
must follow rules for functions (no side-effects!).

define type ICoord
int x, y

Extras

User Defined Operators

Essentially operator overloading, generally a useful language
feature (added to occam by Jim Moores).

allowed as part of type definitions for that type (as well as
stand-alone).
must follow rules for functions (no side-effects!).

define type ICoord
int x, y

"+" (val a, b) -> ICoord
ICoord r
r.x = a.x + b.x
r.y = a.y + b.y
return r

Extras

User Defined Operators

Essentially operator overloading, generally a useful language
feature (added to occam by Jim Moores).

allowed as part of type definitions for that type (as well as
stand-alone).
must follow rules for functions (no side-effects!).

define type ICoord
int x, y

"+" (val a, b) -> ICoord
ICoord r
r.x = a.x + b.x
r.y = a.y + b.y
return r

"-" (val a, b) -> ICoord = [a.x - b.x, a.y - b.y]

Extras

User Defined Operators

Essentially operator overloading, generally a useful language
feature (added to occam by Jim Moores).

allowed as part of type definitions for that type (as well as
stand-alone).
must follow rules for functions (no side-effects!).

define type ICoord
int x, y

"+" (val a, b) -> ICoord
ICoord r
r.x = a.x + b.x
r.y = a.y + b.y
return r

"-" (val a, b) -> ICoord = [a.x - b.x, a.y - b.y]

define sq (val int v) -> int = (v * v)
define "<->" (val ICoord x, y) -> int
return sq (x.x-y.x) + sq (x.y-y.y)

Extras

Type Inference and Polymorphism

Allow the compiler to figure out the return type of a function (less
typing for the programmer):

define foo (val int a, b)
int pl, mi
pl = a + b ||| mi = a - b
return pl, mi

Functions and procedures may have generic types.

specialised by the compiler for specific types:

Extras

Type Inference and Polymorphism

Allow the compiler to figure out the return type of a function (less
typing for the programmer):

define foo (val int a, b)
int pl, mi
pl = a + b ||| mi = a - b
return pl, mi

define foo (val int a, b) = a + b, a - b

Functions and procedures may have generic types.

specialised by the compiler for specific types:

Extras

Type Inference and Polymorphism

Allow the compiler to figure out the return type of a function (less
typing for the programmer):

define foo (val int a, b)
int pl, mi
pl = a + b ||| mi = a - b
return pl, mi

define foo (val int a, b) = a + b, a - b

Functions and procedures may have generic types.

specialised by the compiler for specific types:

define id (chan(T) in?, out!)
while true
T v
in ? v -> out ! v

Extras

Var-Args and Run-Time Type Selection

Disclaimer: this is not necessarily concrete yet!

Support an explicit ‘type’ type, useful for run-time decision making:

define typeset vararg is int, byte, uint, string

define printf (chan!(char) out, string fmt, []vararg args)
... stuff
seq i = 0 for size args
case typeof args[i]

int
... code for integer

string
... code for string

else
... unhandled cases

Code Example

Dining Philosophers

Code Example

Dining Philosophers

define main (chan!(char) screen)
par
display stuff here...
secure college ()

Code Example

Dining Philosophers

define main (chan!(char) screen)
par
display stuff here...
secure college ()

define secure college ()
[5]chan() left, right
[5]chan() up, down
par
par i = 0 for 5
philosopher (up[i]!, down[i]!, left[i]!, right[i]!)

par i = 0 for 5
fork (left[i]?, right[(i+1)\5]?)

security (down?, up?)

Code Example

Dining Philosophers

define fork (chan() left?, right?)
while true
alt
left? -> left?
right? -> right?

Code Example

Dining Philosophers

define fork (chan() left?, right?)
while true
alt
left? -> left?
right? -> right?

define philosopher (chan() up!, down!, fork left!, fork right!)
while true
think ...
down!
fork left! ||| fork right!
eat ...
fork left! ||| fork right!
up!

Code Example

Dining Philosophers

define security ([]chan() downs?, ups?)
int sat = 0
val int limit = 4
while true
alt
alt i = 0 for size(downs)
(sat < limit) & downs[i]?
sat++

alt i = 0 for size(ups)
ups[i]?
sat--

Epilogue

Other Things

For two-way protocols specifically, ‘chan+’ and ‘chan-’ for client and
server sides.

Compiler extensions to allow experimentation with language
structure and similar.

A sensible module system for building libraries.

Bindings to interface with existing C and occam-pi code.

Low-level things such as ‘placed’ data and ‘port’s.

And probably a whole lot of other things...!

Epilogue

State of Things

Mostly ideas at the moment, but slowly forming into something
concrete and reasonable

suggestions for things to add, remove or modify very welcome!
goal is to produce a safe concurrent language that is quick and easy
to use (without compromising existing run-time performance)

Some bits of a compiler in place in the NOCC compiler framework

generating mostly empty LLVM files at the moment, but in progress!

	Introduction
	Type System
	Writing Code
	Extras
	Code Example
	Epilogue

