
LUNA: Hard Real-Time,
Multi-Threaded, CSP-Capable
Execution Framework
M. M. Bezemer
R. J. W. Wilterdink
J. F. Broenink

Control Engineering, University of Twente, The Netherlands



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 2

Outline

 Context and Introduction

 Framework architecture
 Threading
 Channels
 CSP processes
 Alternative

 Results
 Measurements
 Comparison

 Conclusions



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 3

Context

 Controlling embedded set ups / robots
 Low resources
 Custom build (Linux) Operating System
 Guaranteed deadlines for updates for calculated motor signals

 Frameworks help with generic implementations / behaviour

 Multi core and/or distributed systems
 Requires extra support from framework
 CSP helps with organizing the execution flow

 Support multiple targets
 Also requires extra support from framework



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 4

Embedded Control SW

 Controlling actual set ups requires different layers
 Loop control - Control the physical system
 Sequence control - Provide 'setpoints'
 Supervisory control - Complex tasks: planning, mapping, …
 User Interface - Connection with user



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 5

Embedded Control SW

 Controlling actual set ups requires real-time levels
 Hard real-time - must meet deadlines
 Soft real-time - should meet deadlines
 Non real-time - everything else



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 6

Introduction

 Requirements for an embedded control software framework
 Hard real-time
 Multi-platform
 Thread support
 Scalability

 Other 'handy features'
 CSP execution engine
 Low development time for framework user
 Debugging and Tracing



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 7

Introduction

 Existing solutions do not meet all requirements
 C++CSP2 not hard real-time
 CTC++ not multi-threaded

 Develop a new framework to meet all the requirements

LUNA
LUNA is a Universal Networking Architecture



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 8

Architecture

 1) Core Components
 Platform support components + utility components

 2) High-level Components
 Platform independent components

 3) Execution Engine Components
 Components to determine the order of execution



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 9

Threading

 Hybrid threading support
 OS Threads – required for multi-core support
 User Threads – fast(er) switching between threads



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 10

Threading

 CSP implementation with separation of concerns
 Core components for platform-dependent threading components
 Execution engine component for CSP algorithm implementation



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 11

Channels

 Two types of channels
1) Rendez-vous communication between 2 OS threads

Blocks the complete OS thread, used for multi-core communication

2) Rendez-vous communication between User Threads
Faster and without blocking complete OS thread
Complete CSP functionality: buffered, guarded



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 12

CSP Execution Engine

 CSP Process
 Initialise process (pre run)
 Perform main operations
 Finalise (post run)

 Example of a sequential process



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 13

Alternative

 Naive Alternate implementation
 Possibility of 'high-jacking' the channel, blocks GuardedReader

 Example: 1 GuardedReader, 1 'regular' Reader



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 14

Alternative

 Solution for the high-jacking problem
 Added lock to channel, now Reader blocks



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 15

Results

 Context-switch speed
 Switch as fast as possible between two threads

 Commstime
 Determine CSP efficiency

 Real robotic set up
 Performance in real life situations 



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 16

Results

 Context-switch speed
 Switch as fast as possible between two threads
 10,000 switches, average time

 OS thread switch speed is comparable
 User thread switch speed is fast!

 LUNA has virtually no management overhead
 (high speeds only do not determine the framework efficiency)

Framework OS thread (µs) User thread (µs)

CTC++ 'original' - 4.275

C++CSP2 3.224 3.960

CTC++ QNX 3.213 -

LUNA QNX 3.226 1.569



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 17

Results

 Commstime Benchmark
 Measure the efficiency of the CSP execution
 10,000 cycles, average time



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 18

Results

 Commstime Benchmark

 OS thread cycle time somewhat faster
 Efficient way to block a OS thread (low management)

 User thread cycle time fast!
 Mainly due to efficient context-switching

 Naive code generation results in bad performance
 Design point of view versus execution point of view

Framework Thread type Cycle time (µs) # Context-switches

CTC++ 'original' User 40.76 5

C++CSP2 OS 44.59 -

User 18.60 4

CTC++ QNX OS 57.06 -

LUNA QNX OS 34.03 -

User 9.34 4



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 19

Results

 Simple 2 DOF pan-tilt robotic set up

 Used for educational purposes
 Practical assignments

 Easy platform for experimenting
 Vision-in-the-loop
 Spot tracking

 Courses
 Real-time software development
 Hardware/Software trade-offs



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 20

Results

 Real Robotic Set up
 Performance in real life situations
 Measurement runs of ~60 seconds
Framework Frequency 

(Hz)
Cycle time (ms) Standard 

deviation (µs)
Processing 
time (µs)Mean Min Max

CTC++ 'original' 100 11.00 10.90 11.11 14.8 199.0

1000 1.18 0.91 2.10 386.5 174.5

1000.15 1.00 0.91 1.10 20.7 172.5

LUNA QNX 100 10.00 9.93 11.00 39.6 111.6

(user threads) 1000 1.00 0.80 2.01 35.8 89.3

1000.15 1.00 0.79 1.21 33.2 87.3

LUNA QNX 100 10.00 9.97 11.00 39.1 214.3

(OS threads) 1000 1.00 0.96 2.00 14.4 185.6

1000.15 1.00 0.95 1.05 8.3 190.8



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 21

Results

 Real Robotic Set up

 LUNA user threads are faster than CTC++

 LUNA OS threads are slightly slower than CTC++ (user threads!)

Framework Frequency 
(Hz)

Cycle time (ms) Standard 
deviation (µs)

Processing 
time (µs)Mean Min Max

CTC++ 'original' 100 11.00 10.90 11.11 14.8 199.0

1000.15 1.00 0.91 1.10 20.7 172.5

LUNA QNX 100 10.00 9.93 11.00 39.6 111.6

(user threads) 1000.15 1.00 0.79 1.21 33.2 87.3

LUNA QNX 100 10.00 9.97 11.00 39.1 214.3

(OS threads) 1000.15 1.00 0.95 1.05 8.3 190.8



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 22

Conclusions

 LUNA meets all requirements
 Hard real-time
 Multi-platform
 Multi-threaded
 Scalable

 Fast and efficient compared to related frameworks

 Usable for controlling real robotic set ups

 Need model optimisation for code generation



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 23

Future work

 Develop controller for Production Cell with LUNA
 To show that complex set ups can also controlled using LUNA

 Support Linux, RTAI and/or Xenomai
 More drivers available to use webcams, joysticks, …

 Support for Windows
 Well known by (starting) developers
 Good (graphical) debugging facilities

 Graphical CSP modelling tool with code generation capabilities
 Replacement for gCSP
 Model optimisation algorithms included



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 24


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

