
LUNA: Hard Real-Time,
Multi-Threaded, CSP-Capable
Execution Framework
M. M. Bezemer
R. J. W. Wilterdink
J. F. Broenink

Control Engineering, University of Twente, The Netherlands



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 2

Outline

 Context and Introduction

 Framework architecture
 Threading
 Channels
 CSP processes
 Alternative

 Results
 Measurements
 Comparison

 Conclusions



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 3

Context

 Controlling embedded set ups / robots
 Low resources
 Custom build (Linux) Operating System
 Guaranteed deadlines for updates for calculated motor signals

 Frameworks help with generic implementations / behaviour

 Multi core and/or distributed systems
 Requires extra support from framework
 CSP helps with organizing the execution flow

 Support multiple targets
 Also requires extra support from framework



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 4

Embedded Control SW

 Controlling actual set ups requires different layers
 Loop control - Control the physical system
 Sequence control - Provide 'setpoints'
 Supervisory control - Complex tasks: planning, mapping, …
 User Interface - Connection with user



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 5

Embedded Control SW

 Controlling actual set ups requires real-time levels
 Hard real-time - must meet deadlines
 Soft real-time - should meet deadlines
 Non real-time - everything else



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 6

Introduction

 Requirements for an embedded control software framework
 Hard real-time
 Multi-platform
 Thread support
 Scalability

 Other 'handy features'
 CSP execution engine
 Low development time for framework user
 Debugging and Tracing



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 7

Introduction

 Existing solutions do not meet all requirements
 C++CSP2 not hard real-time
 CTC++ not multi-threaded

 Develop a new framework to meet all the requirements

LUNA
LUNA is a Universal Networking Architecture



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 8

Architecture

 1) Core Components
 Platform support components + utility components

 2) High-level Components
 Platform independent components

 3) Execution Engine Components
 Components to determine the order of execution



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 9

Threading

 Hybrid threading support
 OS Threads – required for multi-core support
 User Threads – fast(er) switching between threads



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 10

Threading

 CSP implementation with separation of concerns
 Core components for platform-dependent threading components
 Execution engine component for CSP algorithm implementation



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 11

Channels

 Two types of channels
1) Rendez-vous communication between 2 OS threads

Blocks the complete OS thread, used for multi-core communication

2) Rendez-vous communication between User Threads
Faster and without blocking complete OS thread
Complete CSP functionality: buffered, guarded



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 12

CSP Execution Engine

 CSP Process
 Initialise process (pre run)
 Perform main operations
 Finalise (post run)

 Example of a sequential process



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 13

Alternative

 Naive Alternate implementation
 Possibility of 'high-jacking' the channel, blocks GuardedReader

 Example: 1 GuardedReader, 1 'regular' Reader



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 14

Alternative

 Solution for the high-jacking problem
 Added lock to channel, now Reader blocks



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 15

Results

 Context-switch speed
 Switch as fast as possible between two threads

 Commstime
 Determine CSP efficiency

 Real robotic set up
 Performance in real life situations 



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 16

Results

 Context-switch speed
 Switch as fast as possible between two threads
 10,000 switches, average time

 OS thread switch speed is comparable
 User thread switch speed is fast!

 LUNA has virtually no management overhead
 (high speeds only do not determine the framework efficiency)

Framework OS thread (µs) User thread (µs)

CTC++ 'original' - 4.275

C++CSP2 3.224 3.960

CTC++ QNX 3.213 -

LUNA QNX 3.226 1.569



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 17

Results

 Commstime Benchmark
 Measure the efficiency of the CSP execution
 10,000 cycles, average time



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 18

Results

 Commstime Benchmark

 OS thread cycle time somewhat faster
 Efficient way to block a OS thread (low management)

 User thread cycle time fast!
 Mainly due to efficient context-switching

 Naive code generation results in bad performance
 Design point of view versus execution point of view

Framework Thread type Cycle time (µs) # Context-switches

CTC++ 'original' User 40.76 5

C++CSP2 OS 44.59 -

User 18.60 4

CTC++ QNX OS 57.06 -

LUNA QNX OS 34.03 -

User 9.34 4



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 19

Results

 Simple 2 DOF pan-tilt robotic set up

 Used for educational purposes
 Practical assignments

 Easy platform for experimenting
 Vision-in-the-loop
 Spot tracking

 Courses
 Real-time software development
 Hardware/Software trade-offs



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 20

Results

 Real Robotic Set up
 Performance in real life situations
 Measurement runs of ~60 seconds
Framework Frequency 

(Hz)
Cycle time (ms) Standard 

deviation (µs)
Processing 
time (µs)Mean Min Max

CTC++ 'original' 100 11.00 10.90 11.11 14.8 199.0

1000 1.18 0.91 2.10 386.5 174.5

1000.15 1.00 0.91 1.10 20.7 172.5

LUNA QNX 100 10.00 9.93 11.00 39.6 111.6

(user threads) 1000 1.00 0.80 2.01 35.8 89.3

1000.15 1.00 0.79 1.21 33.2 87.3

LUNA QNX 100 10.00 9.97 11.00 39.1 214.3

(OS threads) 1000 1.00 0.96 2.00 14.4 185.6

1000.15 1.00 0.95 1.05 8.3 190.8



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 21

Results

 Real Robotic Set up

 LUNA user threads are faster than CTC++

 LUNA OS threads are slightly slower than CTC++ (user threads!)

Framework Frequency 
(Hz)

Cycle time (ms) Standard 
deviation (µs)

Processing 
time (µs)Mean Min Max

CTC++ 'original' 100 11.00 10.90 11.11 14.8 199.0

1000.15 1.00 0.91 1.10 20.7 172.5

LUNA QNX 100 10.00 9.93 11.00 39.6 111.6

(user threads) 1000.15 1.00 0.79 1.21 33.2 87.3

LUNA QNX 100 10.00 9.97 11.00 39.1 214.3

(OS threads) 1000.15 1.00 0.95 1.05 8.3 190.8



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 22

Conclusions

 LUNA meets all requirements
 Hard real-time
 Multi-platform
 Multi-threaded
 Scalable

 Fast and efficient compared to related frameworks

 Usable for controlling real robotic set ups

 Need model optimisation for code generation



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 23

Future work

 Develop controller for Production Cell with LUNA
 To show that complex set ups can also controlled using LUNA

 Support Linux, RTAI and/or Xenomai
 More drivers available to use webcams, joysticks, …

 Support for Windows
 Well known by (starting) developers
 Good (graphical) debugging facilities

 Graphical CSP modelling tool with code generation capabilities
 Replacement for gCSP
 Model optimisation algorithms included



21-06-2011 LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Framework 24


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

