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Abstract. Modern embedded systems have multiple cores available. The CTC++ li-
brary is not able to make use of these cores, so a new framework is required to
control the robotic setups in our lab. This paper first looks into the available frame-
works and compares them to the requirements for controlling the setups. It concludes
that none of the available frameworks meet the requirements, so a new framework
is developed, called LUNA. The LUNA architecture is component based, resulting
in a modular structure. The core components take care of the platform related is-
sues. For each supported platform, these components have a different implementation,
effectively providing a platform abstraction layer. High-level components take care
of platform-independent tasks, using the core components. Execution engine compo-
nents implement the algorithms taking care of the execution flow, like a CSP imple-
mentation. The paper describes some interesting architectural challenges encountered
during the LUNA development and their solutions. It concludes with a comparison
between LUNA, C++CSP2 and CTC++. LUNA is shown to be more efficient than
CTC++ and C++CSP2 with respect to switching between threads. Also, running a
benchmark using CSP constructs, shows that LUNA is more efficient compared to
the other two. Furthermore, LUNA is also capable of controlling actual robotic setups
with good timing properties.

Keywords. CSP, framework architecture, hard real-time, performance comparison,
rendezvous communication, scheduling, threading.

Introduction

Context

Nowadays, many embedded systems have multiple cores at their disposal. In order to be able
to run more challenging (control) algorithms, embedded control software should be able to
make use of these extra cores. Developing complex concurrent software tends to become
tedious and error-prone. CSP [1] can ease such a task. Especially in combination with a
graphical modeling tool [2], designing such complex system becomes easier and the tool
could help in reusing earlier developed models. CTC++ [3] is a CSP based library, providing
a hard real-time execution framework for CSP based applications.

When controlling robotic setups, real-time is an important property. There are two levels
of real-time: hard real-time and soft real-time. According to Kopetz [4]: “If a result has utility
even after the deadline has passed, the deadline is classified as soft (. . . ) If a catastrophe could
result if a deadline is missed, the deadline is called hard”.

Figure 1 shows the layered design, used in our Control Engineering group, for embedded
software applications connected to actual hardware. Each layer supports a type of real-time,
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Figure 1. Software architecture for embedded systems [5].

varying from non real-time to hard real-time. The ‘Loop control’ is the part of the application
responsible for controlling the physical system and it is realised in a hard real-time layer.
The hard real-time layer has strict timing properties, guaranteeing that given deadlines are
always met. If this for whatever reason fails, the system is considered unsafe and catastrophic
accidents might happen with the physical system or its surroundings due to moving parts.
The soft real-time layer tries to meet its deadlines, without giving any hard guarantees. If
the design is correct nothing serious should happen in case such a deadline is not met. This
layer can be used for those parts of the application which are more complex and require more
time to run its tasks, like algorithms which map the environment, plan future tasks of the
physical system or communicate with other systems. The non real-time layer does not try to
meet any deadlines, but provides means for long running tasks or for an user interface. The
left-over resources of the system are used for these tasks, without giving any guarantees of
the availability of them.

Robotic and mechatronic setups like the ones in our lab require a hard real-time layer,
since it is undesirable for the actual setups to go haywire. The use of Model Driven Devel-
opment (MDD) tools makes developing for complex setups a less complex and more main-
tainable task [6]. For the multi-core or multi-CPU embedded platforms, we would like to
make use of these extra resources. Unfortunately, the CTC++ library, as it is, is not suitable
for these platforms, as it can only use one core or CPU. This paper evaluates possibilities to
overcome this problem.

The requirements for a suitable framework that can be used for robotic and mechatronic
setups are:

• Hard real-time. This incorporates that the resulting application needs to be determin-
istic, so it is possible to guarantee that deadlines are always met. The framework
should provide a layered approach for such hard real-time systems (see Figure 1).

• Multi-platform. The setups have different kind of hardware platforms to run on, like
PowerPC, ARM or x86 processors. Also different operating systems should be sup-
ported by the framework.

• Thread support. In order to take advantage of multi-core or multi-CPU capable target
systems.

• Scalability. All kind of setups should be controlled: From the big robotic humanoids
in our lab to small embedded platforms with limited computer resources.

• CSP execution engine. Although, it should not force the use of CSP constructs when
the developer does not want it, as this might result in not using the framework at all.

• Development time. The framework should decrease the development time for complex
concurrent software.

• Debugging and tracing. Provide good debugging and tracing functionality, so devel-
oped applications using the framework can be debugged easily and during develop-
ment unexpected behaviour of the framework can be detected and corrected. Real-
time logging functionalities could preserve the debug output for later inspection.



The CTC++ library meets most requirements, however as mentioned before, it does not
have thread support for multi-core target systems. It also has a tight integration with the CSP
execution engine, so it is not possible to use the library without being forced to use CSP as
well. This is an obstacle to use the library from a generic robotics point of view and results
in ignoring the CTC++ library altogether, as is experienced in our lab. A future framework
should prevent this tight integration. By adding a good MDD tool to the toolchain, the robotic
oriented people can gradually get used to CSP.

It might seem logical to perform a major update to CTC++. But unfortunately the ar-
chitecture and structure of the library became outdated over the years, making it virtually
impossible to make such major changes to it. So other solutions need to be found to solve our
needs.

Existing Solutions

This section describes other frameworks, which could replace the CTC++ library. For each
framework the list with requirements is discussed to get an idea of the usability of the frame-
work.

A good candidate is the C++CSP2 library [7] as it already has a multi-threaded CSP
engine available. Unfortunately it is not suitable for hard real-time applications controlling
setups. It actively makes use of exceptions to influence the execution flow, which makes a
application non deterministic. Exceptions are checked at run-time, by the C++ run-time en-
gine. Because the C++ run-time engine has no notion of custom context switches, exceptions
are considered unsafe for usage in hard real-time setups. Also as exceptions cannot be imple-
mented in a deterministic manner, as they might destroy the timing guarantees of the applica-
tion. Exceptions in normal control flow also do not provide priorities which could be set for
processes or groups of processes. This is essential to have hard, soft and non real-time layers
in a design in order to meet the scheduled deadlines of control loops. And last, it makes use
of features which are not commonly available on embedded systems. On such systems it is
common practice to use the microcontroller C library (uClibc) [8], in which only commonly
used functionality of the regular C library is included. Most notably, one of the functionalities
which is not commonly included in uClibc is Thread Local Storage, but is used by C++CSP2.

Since Java is not hard real-time, for example due to the garbage collector, we did not look
into the Java based libraries, like JCSP [9]. Although, there is a new Java virtual machine,
called JamaicaVM [10], which claims to be hard real-time and supporting multi-core targets.
Nonetheless, JCSP was designed without hard real-time constraints in mind and so may not
be suitable for hard real-time.

Besides these specific CSP frameworks, there are non-CSP-based frameworks to which
a CSP layer might be added. OROCOS [11] and ROS [12] are two of these frameworks and
both claim to be real-time. But both will not be able to run hard real-time 1KHz control
loops on embedded targets which are low on resources. Their claim about being real-time
is probably true when using dedicated hardware for the control loops, which are fed by the
framework with ‘setpoints’. Basically, the framework is operating at a soft real-time level,
since it does not matter if a setpoint arrives slightly late at the hardware control loop. In our
group we like to design the control loops ourselves and are not using such hardware control
loop solutions. Furthermore, it is impossible to use formal methods to confirm that a complex
application, using one of these frameworks, is deadlock or livelock free, because of the size
and complexity of these frameworks [13].

Based on the research performed on these frameworks, we have decided to start over
and implement a completely new framework. Available libraries, especially the CTC++ and
C++CSP2 libraries, are helpful for certain constructs, ideas and solutions. The new frame-
work can reuse these useful and sophisticated parts, to prevent redundant work and knowl-



edge being thrown away. After implementing the mentioned requirements, it should be able
to keep up with our future expansion ideas.

Outline

The next section describes the general idea behind the new framework, threading, the CSP
approach, channels and alternative functionality. Section 2 compares the framework with the
other related CSP frameworks mentioned earlier, for some timing tests and when actually
controlling real setups. In the next section, the conclusions about the new framework are
presented. And the last section discusses future work and possibilities.

1. LUNA Architecture

The new framework is called LUNA, which stands for ‘LUNA is a Universal Networking
Architecture’. A (new) graphical design and code generation tool, like gCSP [14], is also
planned, tailored to be compatible with the LUNA. This MDD tool will be called Twente
Embedded Real-time Robotic Application (TERRA). It is going to take care of model opti-
misations and by result generating more efficient code, in order to reduce the complexity and
needs of optimisations in LUNA itself.
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Figure 2. Overview of the LUNA architecture.

LUNA is a component based framework that supports multiple target platforms, cur-
rently planned are QNX, RTAI and Xenomai. To make development more straightforward,
Linux and Windows will also be supported as additional platforms. Figure 2 shows the
overview of the LUNA components and the levels they are on. The gray components are not
implemented yet, but are planned for future releases.

The Core Components (1) level contains basic components, mostly consisting of plat-
form supporting components, providing a generic interface for the platform specific features.
OS abstraction components are available to support the target operating system (OS), like
threading, mutexes, timers and timing. The architecture abstraction components provide sup-
port for features specific to an architecture (or hardware platform), like the support for (digi-
tal) input and output (I/O) possibilities. Other components can make use of these core compo-
nents to make use of platform specific features without knowledge of the actual chosen plat-
form. Another group of core components are the utility components, implementing features
like debugging, generic interfaces and data containers.

The next level contains the High-level Components (2). These are platform independent
by implementing functionality using the core components. An example is the Networking
component, providing networking functionality and protocols. This typically uses a socket
component as platform-dependent glue and build (high-level) protocols upon these sockets.



The Execution Engine Components (3) implement (complex) execution engines, which
are used to determine the flow of the application. For example a CSP component provides
constructs to have a CSP-based execution flow. The CSP component typically uses the core
components for threading, mutexes and so on and it uses high-level components like net-
working to implement networked rendezvous channels.

Components can be enabled or disabled in the framework depending on the type of
application one would like to develop, so unused features can be turned off in order to save
resources. Since building LUNA is complex due to the component based approach and the
variety of supported platforms, a dedicated build system is provided. It is heavily based on
the OpenWrt buildroot [15,16].

The initially supported platform is QNX [17], which is a real-time micro-kernel OS.
QNX natively supports hard real-time and rendezvous communication. This seemed ideal
to start with, relieving the development load for an initial version of LUNA. As QNX is
POSIX compliant, a QNX implementation of LUNA would result in supporting other POSIX
compliant operating systems as well. Or, at least it would support parts of the OS which are
compatible, as not many operating systems are fully POSIX compliant.

1.1. Threading Implementation

LUNA supports OS threads (also called kernel threads) and User threads to be able to make
optimal use of multi-core environments. OS threads are resource-heavy, but are able to run
on different cores and User threads are light on resources, but must run in a OS thread and are
thus running on the same core as the OS thread. A big advantage of using OS threads is the
preemptive capabilities of these threads: Their execution can be forcefully paused anywhere
during its execution, for example due to a higher priority thread becoming ready. User threads
can only be paused at specified moments, if such a moment is not reached, for example due
to complex algorithm calculations, other User threads on the same OS thread will not get
activated. Combining resource-heavy OS threads and non preemptive capable User threads
results in a hybrid solution. This allows for constructing groups of threads which can be
preempted but are not too resource-heavy.

As the term already implies, the OS threads are provided and maintained by the OS. For
example, the QNX implementation uses the POSIX thread implementation provided by QNX
and for Windows LUNA would use the Windows Threads. Therefore, the behaviour of an OS
thread might not be the exactly the same for each platform.

The User threads are implemented and managed by LUNA, using the same principles
as [7,18], except the LUNA User threads are not run-time portable to other OS threads. There
is no need for it and this will break hard real-time constraints.

Figure 3 shows the LUNA threading architecture. Two of the components levels of Fig-
ure 2 are visible, showing the separation of the threading implementation and the CSP im-
plementation.

UThreadContainer (UTC) and OSThread are two of the available thread types, both im-
plementing the IThread interface. This IThread interface requires a Runnable, which acts as
a container to hold the actual code which will be executed on the thread. The CSP function-
ality, described in more detail in the next section, makes use of the Runnable to provide the
code for the actual CSP implementation.

To make the earlier mentioned hybrid solution work, each OS thread needs its own
scheduler to schedule the User threads. This scheduling mechanism is divided into two ob-
jects:

1. the UTC which handles the actual context switching in order to activate or stop a User
thread.
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2. the UScheduler which contains the ready and blocked queue and decides which User
thread is the next to become active.

The UTC also contains a list with UThreads, which are the objects containing the ‘context’
of a User thread: the stack, its size and other related information. Besides this context relation
data, it also contains a relation with the Runnable which should be executed on the User
thread.

For the CSP functionality a ‘separation of concerns’ approach is taken for the CSP pro-
cesses and the threads they run on. The CSP processes are indifferent whether the underly-
ing thread is an OS thread or a User thread, which is a major advantage when running on
multi-core targets. This approach can be taken a step further in a distributed CSP environment
where processes are activated on different nodes. This will also facilitate deployment, seen
from a supervisory control node. Due to this separation, it is also possible to easily implement
other execution models.

The figure shows that the Sequential, Parallel and Recursion processes are not inheriting
from CSProcess but from CSPConstruct. The CSPConstruct interface defines the activate,
done and exit functions and CSProcess defines the actual run functionality and context block-
ing mechanisms. Letting the processes inherit from CSPConstruct is an optimisation: This
way they do not require context-switches because their functionality is placed in the activate
and done functions, which is executed in the context of its parent respectively child threads.
The Alternative implementation still is a CSProcess, because it might need to wait on one
of its guards to become ready and therefore needs the context blocking functionality of the
CSProcess.

The UTC implements the Runnable interface so that it can be executed on an OS thread.
When the UTC threading mechanism starts, it switches to the first User thread as a kickstart
for the whole process. When the User thread is finished, yields or is explicitly blocked, the
UTC code switches to the next User thread which is ready for execution. Due to this archi-
tectural decision, the scheduling mechanism is not running on a separate thread, but makes
use of the original thread, in between the execution of two User threads.

During tests, the number of threads was increased to 10,000 without any problems. All
threads got created initially and they performed their task: increase a number and print it.
After executing its task, each thread was properly shutdown.



1.2. LUNA CSP

Since LUNA is component based, it is possible to add another layer on top of the threading
support. Such a layer is the support layer for a CSP-based execution engine. It is completely
separated from the threading model, so it will run on any platform that has threading support
within LUNA.

Each CSP process is mapped on a thread. Because of the separation of CSP and the
threading model, the CSP processes are indifferent whether the underlying thread is an OS
thread or a User thread, which is a major advantage when running on multi-core targets. This
will also facilitate code generation, since code generation needs to be able to decide how to
map the CSP processes on the available cores in an efficient way without being limited by
thread types.

Figure 4 shows the execution flow of three CSProcess components, being part of this
greater application:

P = Q || R || S

Q = T; U

Process P is a parallel process and has some child processes, of which process Q is one.
Process Q is a sequential process and also has some child processes. Process T is one of these
child processes and it does not have any child processes of its own.
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Figure 4. Flow diagram showing the conceptual execution flow of a CSProcess.

First, the pre run of all processes is executed, this can be used to initialise the process
just before running the actual semantics of the CSProcess. Next the processes are waiting in
wait for next iteration until they are allowed to start their run body. After all processes have



executed their pre run the application itself is really started, so the pre run does not have to
be deterministic yet. The post run of each process is executed, when the process is shutdown,
normally when the application itself is shutdown. It gives the processes a chance to clean up
the things they initialised in their pre run.

In this example, P will start when it is activated by its parent. Due to the parallel nature of
the process, all children are activated at once and next the process will wait until all children
are done before signalling the parent that the process is finished. Process Q is only one of
the processes that is activated by P. Q will activate only its first child process and waits for
it until it is finished, because Q is a sequential process. If there are more children available,
the next one is activated and so on. T is just a simple code blob which needs to be executed.
So at some point it is activated by Q, it executes its code and sends signal back to Q that it is
finished. Same goes for Q, when all its child processes are finished, it sends back a signal to
P, telling it is finished.

Due to this behaviour, the CSP constructs are implemented decentralised by the CSPro-
cesses, instead of implemented by a central scheduler. This results in a simple generic
scheduling mechanism, without any knowledge of the CSP constructs. Unlike CTC++, which
has a scheduler implemented that has knowledge of all CSP constructs in order to implement
them and run the processes in the correct order.
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Since the CSP processes are indifferent to the type of thread they run on and how they
are grouped on OS threads, LUNA needs to provide a mechanism to actually attach these
processes to threads. When looking at a gCSP model (left-most part of the figure), a compo-
sitional hierarchy can be identified in the form of a tree (middle part of the figure). The MDD
tool has to map the processes onto a mix of OS and User threads using the compositional
information and generate code. Because of the ‘separation of concerns’ code generation is
straightforward as the interoperation of OS and User threads is handled by LUNA. Figure 5
shows the required steps to map the model to OS threads.

First, the model needs to be converted to a model tree (number 1 in the figure). This
model-tree contains the compositional relations between all processes. Second, the user (or
the modeling tool) needs to group processes (2) which are put on the same OS thread, for
example criteria for grouping could be processes which heavily rely on communication or
try to balance the execution load. Each process is mapped to a UThread object (3). Except
for the compositional processes mentioned in the previous section, they are mapped onto
CSPConstructs. Next, each group of of UThreads is put in an UThreadContainer (UTC) (4).

Finally, each UTC is mapped to an OS thread (5), so the groups of processes can ac-
tually run in parallel and have preemption capabilities. It is clear that making good groups
of processes will influence the efficiency of the application, so using an automated tool is
recommended [19].



1.3. Channels

One of the initial reasons for supporting QNX was the availability of native rendezvous com-
munication support between QNX threads. This indeed made it easy to implement channels
for the OS threads, but unfortunately it was not for the User threads. Main problem is that
two User threads which want to communicate may be placed on the same OS thread. If one
User thread wants to communicate over a rendezvous channel and the other side is not ready,
the QNX channel blocks the thread. But QNX does not know about the LUNA implemented
scheduler and its User threads, so it blocks the OS thread instead. The other User thread
which is required for the communication now never becomes ready and a deadlock occurs.
So unfortunately, for communication between User threads on the same OS thread the QNX
rendezvous channels are not usable and the choice to initially support QNX became less
strong.

Figure 6 shows the 2 possible channel types. Channel 1 is a channel between two OS
threads. The QNX rendezvous mechanism can be used for this channel. Channel 2a and 2b
are communication channels between two User threads; it does not matter whether the User
threads are on the same OS thread or not. For this type of channel the QNX rendezvous
mechanisms cannot be used as explained earlier, as it could block the OS thread and therefore
prevent execution of other User threads on that OS thread. An exception could be made for

OS Thread
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User
Thread

OS Thread
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Thread

User
Thread
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OS
Thread

OS
Thread
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Figure 6. Overview of the different channel situations.

OS threads with one User thread, but such situations are undesired since it is more efficient
to directly run code on the OS thread without the User thread in between. Guarded channels
are also not supported by QNX, so for this type of channels a custom implementation is also
required.

UnbufferedChannel

ILockableAny2In Out2Any

ChannelOutChannelIn

Figure 7. Diagram showing the channel architecture.

Figure 7 shows the architecture of the channel implementation. A channel is constructed
modularly: The buffer, Any2In and Out2Any types can be exchanged with other compatible
types. The figure shows an unbuffered any-to-any channel, but a buffered any-to-one is also
possible, along with all kinds of other combinations.



write () {
ILockable.lock()
if (isReaderReady ()) {

IReader reader = findReadyReaderOrBuffer ()
transfer(writer , reader)
reader.unblockContext ()
ILockable.unlock ()

} else {
setWriterReady(writer)
ready_list.add(writer)
writer.blockContext(ILockable)

}
}

Listing 1. Pseudocode showing the channel behaviour for a write action.

Listing 1 shows the pseudocode for writing on a channel. The ILockable interface is used
to gain exclusive access to the channel, in order to make it ‘thread safe’. Basically, there
are two options: Either there is a reader (or buffer) ready to communicate or not. If the
reader is already waiting, the data transfer is performed and the reader is unblocked so it
can be scheduled again by its scheduler when possible. In the situation that the reader is not
available, the writer needs to be added to the ready list of the channel, so the channel knows
about the writers which are ready for communication. This list is ordered on process priority.
And, the writer needs to be blocked until a reader is present. The same goes for reading a
channel, but exactly the other way around.

The findReadyReaderOrBuffer() method checks if there is buffered data available, oth-
erwise it calls a findReadyReader() method to search for a reader which is ready. The is-
ReaderReady() and findReadyReader() methods are implemented by the Out2Any block or
by a similar block that is used. So depending on the input type of the channel, the imple-
mentation is quite simple when there is only one reader allowed on the channel or more
complex when multiple readers are allowed. The transfer() method is implemented by the
(Un)bufferedChannel and therefore is able to read from a buffer or from an actual reader
depending on the channel type.

LUNA supports communication between two User threads on the same OS thread by a
custom developed rendezvous mechanism. When a thread tries to communicate over a chan-
nel and the other side is not ready, it gets blocked using the IThreadBlocker (see Figure 3). By
using the IThreadBlocker interface, the thread type does not matter since the implementation
of this interface is dependent on the thread type. For User threads, the scheduler puts the cur-
rent thread on the blocked queue and activates a context-switch to another User thread which
is ready. This way the OS thread is still running and the User thread is blocked till the chan-
nel becomes ready and the scheduler activates it. And for OS threads, it uses a semaphore to
completely block the OS thread until the channel is ready.

As mentioned in the start of this section, there are different implementations of chan-
nels: the QNX implementation used for communication between OS threads and the LUNA
implementation for communication between User threads and/or OS threads. It would be
cumbersome for a developer to have to remember to choose between these types, especially
when the User threads are not yet mapped to their final OS threads. So a channel factory is
implemented in LUNA. When all CSP processes are mapped on their threads, this factory
can be used to determine what types of channels are required. Having the information of the
type of threads to map the CSP processes on is sufficient to determine the required channel
implementation. At run-time, before the threads are activated, the factory needs be invoked to
select a correct implementation for each channel. If a developer (or code generation) moves



a CSP process to another OS thread, the factory will adapt accordingly, using the correct
channel implementation for the new situation.

1.4. Alternative

The Alternative architecture is shown in Figure 8. It is a CSProcess itself, but it also has a list
of other CSProcesses which implement the IGuard interface. Alternative uses the list when
it is activated and will try to find a process which meets its IGuard conditions. Currently,
the only guarded processes that are available are the GuardedWriter and GuardedReader
processes. But others might be added, as long as they implement the IGuard interface.

CSProcess IGuard

Alternative

IReader

IWriter

GuardedReader

ChannelIn

Out2Any

UnbufferedChannel

0

0..11

1

GuardedReaderAny2AnyChannel

Figure 8. Diagram showing the relations for the Alternative architecture.

In the case of channel communication, it first checks if a reader or writer is guaranteed to
perform channel communication without blocking and makes sure this guarantee stays intact.
Next, it performs the communication itself. The Alternative implements a sophisticated pro-
tocol in order to make sure the communication is guaranteed, even though different threads
are part of the communication or some of the processes on the channel might be not guarded.

First in Figure 9 a situation is shown, where a guarded reader gains access on a channel,
but blocks when it should actually read the contents, as another reader came in-between.
Some of the objects in Figure 8 are grouped by the dashed boxes, they are shown in Figure 9
as a single object to keep things simple.

Alternative Reader GuardedReader Any2AnyChannel

isReady()

true

isReady()
true

activate()

read()

read()

setWriterReady()
1

2

3

4 blocked!

Writer

Figure 9. Sequence diagram showing a situation were a guarded reader blocks.

Assume we have an any-to-any channel, which has a writer waiting to communicate
(1 in the figure). The Alternative is activated (2) and checks if the GuardedReader is ready.
The GuardedReader is only ready if there is a writer or buffer waiting to communicate, so it
checks with the channel. When the GuardedReader indeed is ready, it gets activated so it can
be scheduled by the scheduler to actually perform the communication.



Unfortunately before the communication takes place, another Reader is activated and
wants to communicate on the channel as well (3), since there is a writer present the com-
munication takes place. Later, the GuardedReader is activated (4), but the writer is not avail-
able anymore and the GuardedReader is blocked, even though it gained access to the channel
through the Alternative.

To prevent such behaviour a more sophisticated method is used, shown in Figure 10. This
example describes a situation where both channel ends are guarded to be able to describe the
protocol completely. Whether this situation is used in real applications or not is out of scope.

Again the writer registers at the channel, telling that it is ready to write data (1). There
is no reader available yet, so the write is put in the ready list and gets a false as result. Next,
Alternate2 continues to look for a process which can be activated, but this is not interesting
for the current situation.

Alternative1 Reader GuardedReader Any2AnyChannel GuardedWriter Alternative2

blocked!

isReady()isReady()

if reader_ready = false
    ready_list.add(gw); false

isReady() isReady()

truetrue
if ready_list.has_items
    channel.lock();

confirm() confirm()
reconfirm()

reconfirm()

true

transfer()truetrue

activate()

1

2

lock();

Figure 10. Sequence diagram showing the correct situation.

Alternate1 checks whether the GuardedReader is ready or not, when it becomes active
(2). Since the ready list has items on it, the channel is ready for communication. To prevent
that other readers are interfering with our protocol, the channel gets locked. If Reader wants
to read from the channel it gets blocked due to the lock. This is in contrast with the previous
example, where the GuardedReader got wrongly blocked.

When the isReady() request returns positive, the Alternative1 checks whether another,
previously isReady() requested, guard has not been reconfirmed. If this is not the case, it will
lock() the Alternative for exclusive reconfirm request, preventing other guards taking over the
current communication.

Before the actual transfer, Alternative1 needs to check whether the GuardedWriter is
still ready to write. It might be possible that Alternate2 found another process to activate and
the GuardedWriter is not ready anymore. Using the confirm() method, Alternative1 asks the
channel for this and the channel forwards the question at Alternate2 via GuardedWriter with
the reconfirm() method. Assuming that the GuardedWriter is still ready, the channel directly
performs the transfer of data. This is not necessary, but is more efficient as the channel
becomes available for other communications earlier.

In the end, Alternative1 revokes the isReady() requests of its other guarded processes,
since a process was chosen, and it activates GuardedReader. For this example situation it is
unnecessary, since the transfer is completed already, but for other (non reader/writer) pro-
cesses it is required to run the guarded process code. Also, the GuardedReader might be used
to activate a chain of other processes.



The described alternative sequence of Figure 10 has been tested for some basic use cases.
Although it is not formally proven, it is believed that this implementation will satisfy the CSP
requirements of the alternative construction.

2. Results

This section shows some of the results of the tests performed on/with the LUNA framework.
The tests compare LUNA with other CSP frameworks, to see how the LUNA implementation
performs.
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Figure 11. Overview of the used test setup.

All tests in this section are performed on a embedded PC/104 platform with 600 MHz
x86 CPU as shown in Figure 11. It is equipped with an FPGA based digital I/O board to
connect it with actual hardware when required for the test. While implementing and testing
LUNA, QNX seemed to be slower than Linux. To keep the test results comparable, all pre-
sented tests are executed under QNX (version 6.4.1) and compiled with with the correspond-
ing qcc (version 4.3.3) with the same flags (optimisation flag: -O2) enabled.

2.1. Context-switch Speed

After the threading model was implemented, a context-switch speed test was performed to
get an idea of the efficiency of the LUNA architecture and implementation. To measure this
speed, an application was developed consisting of two threads switching 10,000 times. The
execution times were measured and the average switching time was calculated to get a more
precise context-switching time. Table 1 shows these times.

Table 1. Context-switch speeds for different platforms.

Platform OS thread (µs) User thread(µs)
CTC++ ‘original’ - 4.275
C++CSP2 3.224 3.960
CTC++ QNX 3.213 -
LUNA QNX 3.226 1.569

The CTC++ ‘original’ row shows the test results of the original CTC++ library compiled
for QNX. It is not a complete QNX implementation, but only the required parts for the test
are made available. In order to be able to compile the CTC++ library for QNX, some things
needed to change:

• The setjmp/ longjmp implementation used when switching to another User thread.
The Stack Pointer (SP) was changed to use the correct field for QNX.

• Linux does not save the signal mask by default when executing setjmp and
longjmp. QNX does, which slows down the context switches considerable. There-

fore, the ‘ ’ versions of setjmp and longjmp are used for the QNX conversion.
• The compiler and its flags in order to use the QNX variants.
• The inclusions of the default Linux headers are replaced with their QNX counterparts.



• Some platform-dependent code did not compile and is not required to be able to run
the tests, so it was removed.

To use the C++CSP2 library with QNX, the same changes were made as for CTC++ li-
brary except the SP modification, as it was not required for C++CSP2. As mentioned the
setjmp/ longjmp are used for the quick conversion to QNX, although the library already

used longjmp, but not setjmp. This might indicate that the author knew of this difference
and intended different behaviour. The QNX implementation for the C++CSP2 library is also
not complete, only the required parts are tested, all other parts are not tested for compatibil-
ity. For the test a custom application was created as the provided C++CSP2 test suite did not
contain a pure context switching test.

CTC++ QNX [20] is an initial attempt to recreate the CTC++ library for QNX. It was
not completely finished, but all parts needed for the commstime benchmark are available.

LUNA QNX is the new LUNA framework compiled with the QNX platform support
enabled. For other platforms the results will be different, but the same goes for the other
libraries.

The OS thread column shows the time it takes to switch between two OS threads. The
User thread column shows the time it takes to switch between two User threads placed on
the same OS thread.

For LUNA it is clear that the OS thread context-switches are slower than the User thread
switches, which is expected and the reason for the availability of User threads. All 3 OS
thread implementations almost directly invoke the OS scheduler and therefore have roughly
the same context-switch times.

A surprising result is found for C++CSP2: The OS thread context-switch time is similar
with the User thread time. The User threads are switched by the custom scheduler, which
seems to contain a lot overhead, probably for the CSP implementation. Expected behaviour
is found in the next test, when CSP constructs are executed. In this test the custom scheduler
gets invoked for the OS threads as well, resulting in an increase of OS context switch time.
In this situation the User threads become much faster than the OS threads.

The context-switch time for the LUNA User threads is much lower compared to the
others. The LUNA scheduler has a simple design and implementation, as the actual CSP
constructs are in the CSProcess objects themselves. This approach pays off when purely
looking at context-switch speeds. The next section performs a test that actually runs CSP
constructs, showing whether it also pays off for such a situation.

2.2. Commstime Benchmark

To get an better idea of the scheduling overhead, the commstime benchmark [21] is imple-
mented, as shown in Figure 12. This test passes a token along a circular chain of processes.
The Prefix process starts the sequence by passing the token to Delta, which again passes it
on to the Prefix via the Successor process. The Delta process also signals the TimeAnalysis
process, so it is able to measure the time it took to pass the token around. The difference
between this benchmark and the context-switch speed test, is that in this situation a scheduler
is required to activate the correct CSP process depending on the position of the token.

Table 2 shows the cycle times for each library for the commstime benchmark. The
commstime tests are taken from the respective examples and assumed to be optimal for their
CSP implementation. LUNA QNX has two values: the first is for the LUNA channel imple-
mentation and the second value for the QNX channel implementation. It is remarkable that
the QNX channels are slower than the LUNA channels. This is probably due to the fact the
QNX channels are always any-to-any and the used LUNA channels one-to-one. The amount
of context-switches of OS threads is unknown, since the actual thread switching is handled
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Figure 12. Model of the commstime benchmark.

by the OS scheduler having preemption capabilities and there is no interface to retrieve this
data.

Table 2. Overhead of the schedulers implemented by the libraries for their supported thread types.

Thread
Platform type Cycle time (µs) # Context-switches # Threads
CTC++ ‘original’ User 40.76 5 4
C++CSP2 OS 44.59 - 4

User 18.60 4 4
CTC++ QNX OS 57.06 - 4
LUNA QNX OS 28.02 / 34.03 - 4

User 9.34 4 4

Normally, the library is used with modeling tools in combination with code generation.
This would result in a different implementation of the commstime benchmark. In general, the
readers and the writers become separate processes, instead of integrated within the Prefix,
Delta, Successor and TimeAnalysis processes. For example, in this situation the Successor
is implemented using a sequential process containing a reader, an increment and a writer
process.

Table 3 shows the results when gCSP in combination with code generation is used to
design the commstime benchmark application. gCSP code generation is only available for
CTC++, so for LUNA the CTC++ code is rewritten manually as if it would have been gener-
ated.

Table 3. Commstime results when using MDD tools to create the test.

Thread
Platform type Cycle time (µs) # Context-switches # Threads
CTC++ ‘original’ User 88.89 10 6
C++CSP2 OS 12554.95 - +15

User 12896.22 19 +15
CTC++ QNX OS 219.71 - 6
LUNA QNX OS 93.23 / 99.62 - 10

User 29.87 14 10

The implementation of the C++CSP2 test was somewhat different compared to the other
implementations. Since C++CSP2 threads are destroyed when one cycle is done, they need
to be recreated for each cycle. The processes added to sequential process, for example in
the Successor, cannot contain a loop, since this would prevent the execution of the second
and the third process because those processes need to wait on preceding processes. Due to
this limitation, the C+CSP2 implementation needs to recreate 15 threads each cycle, hence
the +15 in the table. The construction and destruction of these threads generates a lot of
overhead, resulting in the high cycle times around 12.5ms. It was not possible to prevent
this behaviour when using the ‘code generated’ code, due to differences in the design ideas
behind the libraries.



The table also shows that the close result of the CTC++ ‘original’ and the CTC++ QNX
libraries were accidental. Now the difference is bigger, which is expected since the CTC++
QNX library uses OS threads which have much more overhead compared to the User threads.
For the first results, the optimised channels of the QNX variant probably resulted in the small
difference between the two.

The benchmark results of LUNA are much better compared to the CTC++ library. Fur-
thermore the LUNA results are better than the C++CSP2 results when looking at Table2. This
is due to the efficient context-switches, as described in the previous section. When compen-
sating for the required context-switch times, the results for C++CSP2 and LUNA are similar.

When comparing both tables, it is clear that using MDD tools with code generation re-
sults in slower code. For simple applications it is advisable to manually create the code, es-
pecially for low-resource embedded systems. When creating a complex application to con-
trol a large setup, like a humanoid robot, it saves a lot of development time to make use
of the MMD tools. For this ‘code generated’ results, the LUNA framework has good cycle
times, which is encouraging since the planning of TERRA, the new MDD tool, which will
feature code generation for LUNA. It is advisable for such an MDD tool to invest effort into
optimising code generation to get good performance on the target system.

2.3. Real Robotic Setup

Next, an implementation for a real robotic setup was developed with LUNA, to see whether
it is usable in a practical way. To keep things easy for a first experiment, a simple pan-tilt
setup is used, with 2 motors and 2 encoders. These 2 degrees of freedom can be controlled
using a joystick. The control algorithm of this setup requires about 50 context switches to
completely run one cycle.

The CTC++ library already has an implementation for this setup available and a similar
implementation was made for LUNA to keep the comparison fair. Real-time logging func-
tionality was added in order to be able to measure timing information and to compare LUNA
with the CTC++ library.

Table 4 shows the timing results of LUNA and the CTC++ implementation. The experi-
ments have been performed with 100Hz and 1kHz sample frequencies, so each control loop
cycle should be respectively 10ms and 1ms long. As the measurements were performed for
about 60 seconds, the 100Hz measurements resulted in about 6,000 samples and the 1 kHz
resulted in about 60,000 samples. The processing time is found by subtracting the idle time
from the cycle time. The idle time is calculated by measuring the time between the point
where the control code is finished and the point where the timer fires an event for the next
cycle.

Table 4. Timing results of the robotic implementation.

Frequency Cycle time (ms) Standard Processing
Platform (Hz) Mean Min Max deviation (µs) time (µs)
CTC++ ‘original’ 100 11.00 10.90 11.11 14.8 199.0

1000 1.18 0.91 2.10 386.5 174.5
1000.15 1.00 0.91 1.10 20.7 172.5

LUNA QNX User threads 100 10.00 9.93 11.00 39.6 111.6
1000 1.00 0.80 2.01 35.8 89.3

1000.15 1.00 0.79 1.21 33.2 87.3
LUNA QNX OS threads 100 10.00 9.97 11.00 39.1 214.3

1000 1.00 0.96 2.00 14.4 185.6
1000.15 1.00 0.95 1.05 8.3 190.8



The results show that LUNA performs well within hard real-time boundaries. The mean
values are a good match compared to the used frequencies and a low standard deviation value
shows that the amount of missed deadlines is negligible.

Due to periodically missed clock ticks, the maximum cycle time of the 1kHz measure-
ments is twice the sample time. This phenomenon can be explained by the mismatch between
the requested timer interval and the PC/104’s hardware timer [22]. The timer can not fire
exactly every 1ms, but instead it fires every 0.999847ms and for every 6535 instances the
timer will not fire. In the 100Hz case this will not be noticed, because the cycle time is large
enough and these kind of errors are relatively small.

When looking at the CTC++ ‘original’ implementation, it is seen that the 100Hz results
are good as well, although the mean cycle time, shows that the obtained frequency is 90.9Hz
instead of 100Hz. Same goes for the 1kHz measurement where a 847.5Hz frequency was
obtained instead. From this it can be concluded that CTC++ has problems to closely provide
the requested frequencies. For a frequency of 1kHz, the standard deviation becomes very
large.

A third frequency was also measured, 1000.15Hz, which is an exact match with the
available frequency of the setup. This solves the very large standard deviation and the incor-
rect mean cycle times for the CTC++ library. It should be noted that this frequency is setup
dependent and therefore needs to be measured for each setup separately, in order to gain these
good results.

The frequency of 1000.15Hz indeed solves the maximum cycle times of LUNA being
two periods long. For setups which needs to be extremely accurate this is important, as it can
make the difference between an industrial robot moving smoothly or scratching your car. The
other values are not much different, showing that LUNA is more robust for all frequencies
than the CTC++ library and frequency tuning is not required to get reasonable hard real-time
properties.

It is also noticeable that the processing times for the LUNA User threads are lower com-
pared to the CTC++ processing times. Suggesting that the overhead is much lower and that
more resources are available for the controlling code. Even the LUNA OS threads processing
times are comparable with the CTC++ User thread processing times.

3. Conclusions

Good results are obtained using LUNA, it has fast context-switches and the commstime
benchmark is faster than the C++CSP2 and CTC++ implementations.

These benchmark results are good but the main requirement, the real-time behaviour of
the library, is much more important when controlling robotic setups. The simple robotic setup
indeed performed as expected; it reacts smoothly on the joystick commands. The maximum
and minimum cycle time values are close to the (requested) mean cycle time and the standard
deviation values are low, showing that the hard real-time properties of LUNA are good.

The choice for QNX is not that obvious anymore when the provided rendezvous channels
are only usable between OS threads. Nonetheless, QNX provides a good platform to build
a real-time framework, there is enough support from the OS to keep implementation tasks
maintainable.

All requirements mentioned in the introduction are met. The first three of them are ob-
vious: LUNA is a hard real-time, multi-platform, multi-threaded framework.

Scalability is also met, even though LUNA was not yet tested with a big (robotic) setup,
early scalability tests showed that having 10,000 processes poses no problem.

The CSP execution engine is the only implemented execution engine at the moment. But
the requirement to not be dependent on it is met, as it is possible to turn it off and use the User



and OS threads in a non CSP related way. Using the provided interface it is also possible to
add other execution engines like a state machine execution engine.

Developing applications using LUNA is straightforward, for example one does not need
to keep the type of threads and channels in mind while designing the control application. It
is possible to just create the CSP processes, connect them with channels and let the LUNA
factories decide on the actual implementation types.

Finally, Debugging and Tracing is also not a problem – it is possible to enable the de-
bugging component if required. This component contains means for debugging and tracing
the other components as well as the application is being developed. It is also possible to send
the debug and trace information over a (local) network to a development PC, in order to have
run-time analysis or to store it for off-line analysis.

The required logger does not influence the executing application noticeable as it is a real-
time logger. It has predefined buffers to store the debug information and only when there is
idle CPU time available, it sends the buffered content over the network freeing up the buffer
for new data.

Especially logging the activation of processes is interesting, as this could provide valu-
able timing information, like the cycle time of a control loop or the jitter during execution.
So it is possible to influence the application with external events and directly see the results
of such actions. It is also possible to following the execution of the application by monitoring
the states (running, ready, blocked, finished) of the processes. This information could also
be fed back to the MDD tool, in order to show these states in the designed model of the
application.

For future work an implementation for Linux (and Windows) would be convenient. It is
much faster to try out new implementation on the development PC than on a target. Of course
this requires more work, hence the choice to support QNX first, but it certainly pays off by
reducing development time. The flexibility to easily move processes between the groups of
OS and User threads reduces development time even more, as the developer does not required
to change his code when moving processes.

Building the simple robotic setup took some time. There are only about 51 processes
to control this setup. Of course this could be less, but it takes too much time to develop
controller applications by hand, so code generation for LUNA is required. In order to attract
users to start using LUNA – and also for educational purposes – code generation is required.
So, soon after LUNA evolves into an initial and stable version, TERRA needs to be built as
well to gain these advantages and properly use LUNA.

When TERRA and code generation are available, algorithms to optimise the model for
a specified target with known resources can be implemented. Before code generation, these
algorithms [19] can schedule the processes automatically in an optimal manner for the avail-
able resources. These scheduling algorithms are also interesting for performing timing anal-
ysis of the model, in order to estimate whether the model will be able to run real-time with
the available resources.

To see whether LUNA is capable of controlling setups larger than the example setup, it
is planned to control the Production Cell [23] with it. It is already partially implemented, but
the work is not completely finished yet.

Performing similar tests, as done in Section 2.3, really shows the advantages of using
LUNA. Another planned test with the Production Cell is to control it with Arduinos [24].
The Production Cell has 6 separate production cell units (PCUs), each PCU is almost a sep-
arate part of the setup. Using one Arduino for each PCU seems like a nice experiment for
distributed usage of LUNA. This would require support for a new platform within LUNA,
which does not use operating system related functionalities.
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