
PERFORMANCE OF THE 
DISTRIBUTED CPA PROTOCOL 
AND ARCHITECTURE ON 
TRADITIONAL NETWORKS 
Kevin Chalmers 
Institute of Informatics and Digital Innovation 
Edinburgh Napier University 



Breakdown 
• Background 

•  And why we haven’t got occam-π networking working yet 

• Network performance 
•  Latency 
•  Throughput 

• Mandelbrot performance 

• Conclusion and future work 



What I hoped to be talking about today… 
•  occam-π talking to JCSP talking to PyCSP 

•  This is possible 
•  occam-π version very unstable 
•  occam-π version very inefficient 

• Something interesting using this setup on an HPC 
•  JCSP is good for user interfaces 
•  PyCSP good for scripting 
•  occam-π good for heavy lifting 



Background 
• On-going work on a unified protocol and architecture for 

CPA based distributed computing 
•  Once I have this, I can move back to getting mobility built into the 

protocol 

•  JCSP Net 2.0 package has been around for a few years 
now 
•  2008 

• Previously we have only looked at mobile device 
communication using JCSP Net 2.0 

• Upgrade to CSP for .NET 2.0 



Problem with occam 
• Networking architecture relies on a number of dynamically 

sizing lookup tables internally 
•  Channel lookup table 
•  Barrier lookup table 
•  Link lookup table 

• Channels and barriers are created with an indexing value 
in the range 0 to 232-1 
•  This can be defined by the application programmer 

•  occam currently doesn’t allow complex data structures 
easily 
•  Going into native code an option 



Tests Performed 
• We are looking at general network performance using the 

CPA architecture 
•  Network latency 
•  Network throughput (unidirectional and bidirectional) 

• Baseline network, CSP Sync and CSP Async gathered 

• We are also going to do a naïve (non-optimised) 
distributed Mandelbrot 

• Results gathered using both JCSP and CSP for .NET 2.0 



Experimental Framework 
• Experiments were performed in a standard computing lab 

• Machines specs 
•  Intel Core Duo E8400 3.0 GHz (no hyper-threading) 
•  2 GB RAM 
•  Windows 7 32-bit 
•  .NET 3.5, Java 6 

• Network 
•  100 Mbps switched Ethernet 



Ping Times 



Sending Times 



Throughput 



Send-Receive Times 



Send-Receive Throughput 



Mandelbrot 
• Producing 3500 x 2000 pixel bitmaps representing parts 

of the Mandelbrot set 

• Split a single image into multiple parts 

• Scaling the set to produce multiple bitmaps 
•  2 x scale = 4 parts (7000 x 4000 total image size) 
•  3 x scale = 9 parts (10500 x 6000 total image size) 
•  etc. 

• Using the escape time algorithm 



Mandelbrot Tiling 



Mandelbrot Architecture 



Mandelbrot Results 



Throughput 
Scale Data Points Bytes DP / s Bytes / s 
1 7 x 106 2.8 x 107 3.25 x 105 1.3 x 105 
2 2.8 x 107 1.12 x 108 6.67 x 105 2.66 x 106 
3 6.3 x 107 2.52 x 108 8.04 x 105 3.21 x 106 
4 1.12 x 107 4.48 x 108 8.04 x 105 3.22 x 106 
5 1.75 x 108 7 x 108 8.46 x 105 3.38 x 106 
6 2.52 x 108 1.01 x 109 8.65 x 105 3.46 x 106 
7 3.43 x 108 1.37 x 109 8.69 x 105 3.47 x 106 
8 4.48 x 108 1.79 x 109 8.71 x 105 3.48 x 106 



Future Work 
• Currently working on a C++CSP version of the network 

architecture 
•  All CSP based libraries can plug-in and use 
•  Hopefully finished towards the end of summer 
•  Will not be in an optimised state 

•  Tackle some good problems with this on an HPC 

• Comparison work against MPI, Erlang, etc. 

• Mobility built into the protocol 
•  Still no “ideal” solution 



Conclusion 
•  We have inter-framework communication 

•  Granted only between JCSP and CSP for .NET 

•  occam-π has a few problems when implementing the 
architecture we want 
•  C++CSP networking should solve this 

•  Distributed CPA protocol and architecture gives performance 
comparable to the baseline network 
•  Particularly at large data sizes and back and forth communication 

•  Some speedup when performing Mandelbrot – but not much 
•  Naïve Mandelbrot implementation 



QUESTIONS? 
Thanks to Julien Mateos for his work on CSP for .NET 
2.0, and his current work on implementing networking 
for C++CSP 


