
An Analysis of Programmer Productivity
versus Performance for High Level Data

Parallel Programming

Alex COLE a, Alistair McEWAN a and Satnam SINGH b

a Embedded Systems Lab, University Of Leicester
b Microsoft Research, Cambridge

Abstract. Data parallel programming provides an accessible model for exploiting the
power of parallel computing elements without resorting to the explicit use of low level
programming techniques based on locks, threads and monitors. The emergence of
Graphics Processing Units (GPUs) with hundreds or thousands of processing cores has
made data parallel computing available to a wider class of programmers. GPUs can be
used not only for accelerating the processing of computer graphics but also for general
purpose data-parallel programming. Low level data-parallel programming languages
based on the Compute Unified Device Architecture (CUDA) provide an approach for
developing programs for GPUs but these languages require explicit creation and coor-
dination of threads and careful data layout and movement. This has created a demand
for higher level programming languages and libraries which raise the abstraction level
of data-parallel programming and increase programmer productivity. The Accelerator
system was developed by Microsoft for writing data parallel code in a high level man-
ner which can execute on GPUs, multicore processors using SSE3 vector instructions
and FPGA chips. This paper compares the performance and development effort of the
high level Accelerator system against lower level systems which are more difficult to
use but may yield better results. Specifically, we compare against the NVIDIA CUDA
compiler and sequential C++ code considering both the level of abstraction in the im-
plementation code and the execution models. We compare the performance of these
systems using several case studies. For some classes of problems, Accelerator has a
performance comparable to CUDA, but for others its performance is significantly re-
duced; however in all cases it provides a model which is easier to use and enables
greater programmer productivity.

Keywords. GPGPU, Accelerator, CUDA, comparisons.

Introduction

The emergence of low cost and high performance GPUs has made data-parallel computing
widely accessible. The hundreds or thousands of processing cores on GPUs can be used not
only for rendering images but they may also be subverted for general purpose data-parallel
computations. To relieve the programmer for thinking in terms of graphics processing archi-
tectural features (e.g. textures, pixel shaders and vertex shaders) the manufacturers of GPUs
have developed C-like programming languages that raise the abstraction level for GPU pro-
gramming beyond pixel and vertex shaders to the level of data-parallel operations over arrays.
However, these languages still require the programmer to think in fairly low level terms e.g.
explicitly manage the creation and synchronization of threads as well as manage data layout
and movement and the programmer also has to write code for the host processor to manage
the movement of data to and from the graphics card and to correctly initiate a sequence of

operations. For some programmers it may be important to control every aspect of the com-
putation in order to achieve maximum performance and it is justifiable to expend significant
effort (weeks or months) to devise an extremely efficient solution. However, often one wishes
to trade programmer productivity against performance – i.e. implement a data-parallel com-
putation in a few minutes or hours and achieve around 80% of the performance that might be
available from a higher cost solution that takes more effort to develop.

Originally, writing data-parallel programs for execution on GPUs required knowledge of
graphics cards, graphics APIs and shaders to set up and pass the data and code correctly. Over
time, libraries and languages were developed to abstract these details away. The Accelerator
library from Microsoft [1] is one such library. Accelerator provides a high level interface to
writing data parallel code using parallel array objects and operations on those arrays. This
interface hides target details, with the array objects and operations representing generic data
so that Accelerator can be retargeted with little effort. Note that a “target” is the device on
which code is run and Accelerator supports more than just a GPU. A Just In Time compiler
(JIT) is used to convert high level descriptions to target-specific instructions at run time.

As the popularity of General Purpose GPU computing (GPGPU) increased, GPU manu-
facturers started to develop systems with dedicated hardware and associated GPGPU software
such as NVIDIA’s CUDA [2]. Older methods encoded data and code in graphics terms and
ran through the full graphics pipeline, including parts which were only relevant to graphics.
These newer systems provide direct access to the major processing elements of a Graphics
Processing Unit (GPU) and a native programming model.

Although these systems provide more direct access, they have returned to requiring lower
level knowledge of the (non-graphics specific) hardware. On the other hand, more abstract
systems still require no detailed knowledge. CUDA code is often tightly matched to a device
on which it is to run for optimisation purposes, Accelerator code can be retargeted to different
classes of hardware very quickly. The question is how do these systems compare, and how
do they compare to no data parallel code at all (i.e. sequential C++ code)? Are any penalties
incurred by using the JIT in Accelerator, and how do development efforts compare for similar
performances? Do the gains outweigh any penalties or is the abstraction simply too high?

This paper presents an overview of the history of data parallelism with a focus on
GPGPU in Section 1. It then examines Accelerator and compares it with CUDA on a GPU
and sequential C++ code on a multi-core Central Processing Unit (CPU). These comparisons
are performed for a number of case studies (Section 2), namely convolution (Section 3) and
electrostatic charge map estimation (Section 4). Each case study includes an introduction to
the algorithm, results and a conclusion; with the paper finished by a discussion on develop-
ment (Section 5) and conclusions (Section 6). The following contributions are made:

• A comparison of the programming models used in CUDA, Accelerator and C++ code
executed on a regular processor.

• A demonstration that very good speed-ups can be obtained using Accelerator from
descriptions that are high level and easier to write than their CUDA counterparts.

• A demonstration that the Accelerator model provides a higher level technique for
data-parallel computing that permits good performance gains with a greater degree of
programmer productivity than CUDA.

1. Background

1.1. Data Parallelism

Data-parallel programming is a model of computation where the same operation is performed
on every element of some data-structure. The operation to be performed on each element is

typically sequential although for nested data-parallel systems it may itself be a data-parallel
operation. We limit ourselves to sequential operations. Furthermore, we limit ourselves to
operations that are independent i.e. it does not matter in which order we apply the operation
over the data-structure. This allows us to exploit data-parallel hardware by performing sev-
eral data-parallel operations simultaneously. Key distinguishing features of such data-parallel
programs is that they are deterministic (i.e. every time you run them you get the same an-
swer); they do not require the programmer to explicitly write with threads and locks and syn-
chronization (this is done automatically by the compiler and run-time); and the programmer’s
model of the system in essence needs only a single ‘program counter’ i.e. this model facilities
debugging.

This technique allows us to perform data-parallel operations over large data sets quickly
but requires special hardware to exploit the parallel description. There are multiple types of
data parallel systems, including Single Instruction Multiple Data (SIMD) and Single Program
Multiple Data (SPMD). The former is a single instance of a program operating on multiple
sets of data at once; an example of this is the Streaming SIMD Extensions (SSE) instruction
set on modern x86 processors. The latter is multiple instances of the same program running
in parallel, with each instance operating on a subset of the data. The former performs mul-
tiple operations in lockstep, the latter may not. One important aspect of data parallel code
is the independence of the data—performing the required calculation on one section of the
data before another section should give the same results as performing the calculations in a
different order.

1.2. Graphics Processing Units

To render an image on a screen may require the processing of millions of pixels at a suffi-
ciently high rate to give a Frames Per Second (FPS) count which is smooth to the eye. For
example a 60Hz 1080p HDTV displays over 124 million pixels per second. This is a mas-
sively compute intensive task which involves converting 3D scene descriptions to 2D screen
projections. A GPU performs this task in parallel by utilising a highly specialised processing
pipeline which can apply custom rendering effects in the form of shaders to large numbers of
pixels. This GPU can be part of a dedicated graphics card or integrated on to the main board
of a PC, laptop or even now phones. The processing pipeline of the GPU, and the memory
in dedicated systems are well suited to high data throughput with emphasis on the number
of parallel operations rather than the time for one operation. The memory system may take
hundreds of clock cycles to complete a read request but then delivers a batch of data at once.
The memory system can have multiple requests in various stages of completion at once.

Older GPUs contained multiple user programmable stages within the pipeline for cus-
tom processing (called “shaders”). One for calculating custom lighting and colouring ef-
fects across a complete primitive (triangle) and another for calculating per-pixel effects. The
operations within these stages are relatively simple when compared to the capabilities of
many modern CPUs; however, one GPU will contain hundreds or thousands of these simple
cores (the NVIDIA GeForce GTX480 contains 480 [3], the ATI Radeon HD 5970 contains
3200 [4]). Each core is assigned a fraction of the total workload, leading to the desired high
throughput. More modern GPUs still contain this configurable ability but the range of oper-
ations available to each stage has increased, leading to a convergence allowing the stages to
be combined into a “unified shader”.

1.3. General Purpose Graphic Processing Unit Computing

GPGPU is using a GPU for calculations other than just graphics, i.e. general purpose calcula-
tions [5,6]. This field largely took off with the advent of configurable graphics cards, though
some work had been done as far back as 1978 [7] and more recently using fixed function

Memory
Access

Transform

Data Source 1

Operation

Memory
Access

Transform

Data Source 2

Memory
Access

Transform

Memory
Access

Transform

Operation

Memory
Access

Transform

Data Sink 1

Main Memory,
GPU Memory,
BlockRAM

Add,
Multiply,
Sine,
Drop Dimension

Shift,
Reverse,
Stride,
Rotate

Figure 1. Expression Graph

pipelines (those without shaders) [8,9,10]. These configurable cards allowed a great deal of
transformations to be applied to data, though only when presented as graphics data and graph-
ics shader operations. This involved converting data to textures and operations to shaders,
then passing both to a standard graphics pipeline to render an output which was saved as the
result. Many systems such as Sh [11], Brook [12] and Scout [13] were developed to abstract
the graphics APIs used for the processing. These systems meant that users were not required
to learn about the underlying hardware and this is where Microsoft’s Accelerator library [1]
is targeted.

More modern GPGPU developments use a unified shader architecture. As the capabil-
ities of the various pipeline shader stages increased their abilities largely converged, allow-
ing the physical hardware for the stages to be combined into a single block of cores. This
allowed for better load balancing and design optimisation, but also led to the development
of direct access systems which better utilised this shader for GPGPU. This model allows a
programmer to pass data and code to the GPU shaders more directly, removing the reliance
on the graphics pipeline and graphics concepts. Direct access systems include CUDA [2]
by NVIDIA, Close To Metal (CTM)/Stream by ATI (discontinued), DirectCompute by Mi-
crosoft and OpenCL by the Khronos group. These systems are still very low level. To get the
best performance requires writing code to take into account low level designs issues such as
memory location and thread layout.

1.4. Accelerator

Accelerator is based around a collection of data-parallel arrays and data-parallel operations
which are used in a direct and intuitive style to express data-parallel programs. The Accel-
erator system performs a significant number of powerful optimizations to produce efficient
code which is quickly JIT-ed into GPU code via DirectX or into SIMD SSE4 code using a
customized JIT-er. The data-parallel computation to be instantiated on a target like an FPGA
is represented as an expression tree that contains nodes for operations and memory trans-
forms (e.g. see Figure 1). The Accelerator system supports several types of data-parallel ar-
rays (floating point, integer, boolean and multi-dimensional arrays) and a rich collection of
data-parallel operations. These include element-wise operations, reduction operations and
rank changing operations. A very important aspect of Accelerator’s design is the provision of

Section (bi,ci,si,b j,c j,s j) Ri, j = Abi + si× i,b j + s j× j
Shift (m,n) Ri, j = Ai−m, j−n
Rotate (m,n) Ri, j = A(i−m)modM,(j−n)modN
Replicate (m,n) Ri, j = Ai mod m, j mod n
Expand (bi,ai,b j,a j) Ri, j = Ai−bimodM,(j−b j)modN

Pad (m,ai,m,a j,c) Ri, j =
{

Ai−m, j−n if in bounds
c otherwise

Transpose(1,0) Ri, j = A j,i

Figure 2. Examples of transform operations of size M×N arrays

operators that specify memory access patterns and these are exploited by each target to help
produce efficient vector code, GPU code or FPGA circuits. Examples of memory transform
operations are shown in Figure 2.

Even on a low end graphics card, it is possible to get impressive results for a 2D con-
volver. All 24 cores of a 64-bit Windows 7 workstation are effectively exercised by the x64
multicore target, which exploits SIMD processor instructions and multithreading. Stencil-
style computations [14] are examples of problems that map well to Accelerator.

As a concrete example, we show a very simple F] Accelerator program that performs
the point-wise addition of two arrays using a GPU (Listing 1). When executed, this program
uses the GPU to compute a result array containing the elements 7; 9; 11; 13; 15. To perform
the same computation on a multicore processor system using vector instructions, we write
the same program but specify a different target (Listing 2).

open System
open Microsoft.ParallelArrays
[<EntryPoint >]
let main(args) =

let x = new FloatParallelArray
(Array.map float32 [|1; 2; 3; 4; 5 |])

let y = new FloatParallelArray
(Array.map float32 [|6; 7; 8; 9; 10 |])

let z = x + y
use dx9Target = new DX9Target ()
let zv = dx9Target.ToArray1D(z)
printf "%A\n" zv
0

Listing 1. F] Accelerator code targeting GPU.

use multicoreTarget = new X64MulticoreTarget ()
let zv = multicoreTarget.ToArray1D(z)

Listing 2. F] Accelerator code targeting X64 CPU (only the two changed lines are shown).

The FPGA target does not work in an on-line mode and does not return a result. Instead
it generates VHDL circuits which need to be implemented using FPGA vendor tools. A key
point here is that we can take the same computation and instantiate it on three wildly different
computational devices.

Accelerator running on the GPU currently uses DirectX 9, which introduces a number
of limitations to the target. First is the lack of data-type support, with only Float32 data-types
that are not quite compliant with IEEE 754 (the floating point number standard). Secondly the
code is quite limited in performance by both shader length limits, which restrict the amount of

code which can be run; and memory limitations. In DirectX 9 there is no local shared memory
as in CUDA, limited register files and limited numbers of textures in which to encode input
data.

1.5. CUDA

NVIDIA CUDA provides direct access to an NVIDIA GPU’s many hundreds or thousands
of parallel cores (termed the “streaming multiprocessor” in the context of GPGPU), rather
than being required to run code through the graphics pipeline.

In CUDA one writes programs as functions (called kernels) which operate on a single
element, equivalent to the code in the inner loop of sequential array code. Threads are then
spawned, one for every element, each running a single kernel instance. When a program
is executed through CUDA on the GPU the programmer first declares how many threads
to spawn and how they are grouped. This allows the system to execute more threads than
there are cores available by splitting the work up into “blocks”. The low level nature of
CUDA allows for code to be very highly tailored to the device it is running on, leading to
optimisations such as using thread local memory (which is faster than global memory), or
configuring exactly how much work each thread does. The CUDA kernel code to add two
arrays, equivalent to the code in Section 1.4, is shown in Listing 3. This code adds a single
set of elements together after first determining the current thread ID for use as an index.

__global__ void
DoAddition(float aCudaA[], float aCudaB[],

float aCudaTot[], int iSize)
{

const int
index = (blockIdx.x * blockDim.x) + threadIdx.x;

if (index < iSize)
{

aCudaTot[index] = aCudaA[index] + aCudaB[index];
}

}

void
main()

{
float

arrayOne [5] = {1, 2, 3, 4, 5 },
arrayTwo [5] = {6, 7, 8, 9, 10},
arrayOut [5];

Link(arrayOne , arrayTwo , arrayOut , 5);
}

extern "C" void
Link(float a1[], float a2[], float ao[], int size)

{
void *

cudaArrayOne = 0,
cudaArrayTwo = 0,
cudaArrayOut = 0;

// Allocate GPU memory for the arrays.
cudaMalloc (& cudaArrayOne , size);
cudaMalloc (& cudaArrayTwo , size);
cudaMalloc (& cudaArrayOut , size);

// Copy the input data over.
cudaMemcpy(cudaArrayOne , a1, size , cudaMemcpyHostToDevice);
cudaMemcpy(cudaArrayTwo , a2, size , cudaMemcpyHostToDevice);
// Call the GPU code from the host.
dim3

dimBlocks (1),
dimThreads(size);

DoAddition <<<dimBlocks , dimThreads >>>(
cudaArrayOne , cudaArrayTwo , cudaArrayOut , size);

// Save the result.
cudaMemcpy(ao, cudaArrayOut , size , cudaMemcpyDeviceToHost);

}

Listing 3. CUDA addition code

CUDA code has three parts—host code, which runs on the CPU and is regular C/C++;
link code, which invokes a kernel and has custom, C-based, syntax; and the kernel code itself,
which also has custom syntax. The example code shows the kernel first (“DoAddition”),
then the host code (“main”) and finally the link code (“Link”). In this instance the link
code initialises the CUDA arrays and spawns many instances of the kernel function, each
of which calculates a single output result based on it’s unique thread and block ID. The
“DoAddition<<<dimBlocks, dimThreads>>>” code is custom CUDA syntax and requires
a special compiler; however, everything else in that function is regular C code and could
equally be placed in the device code.

2. Case Studies

The CUDA programming model is designed to allow maximum flexibility in code, requiring
in-depth target knowledge but allowing for lots of optimizations. Conversely the Accelera-
tor programming model provides easy to use, high-level access to data but includes a JIT,
which is an overhead not present in CUDA. We believe that despite this Accelerator gives
reasonable speed for many classes of problems and we have instrumented the overhead of the
JIT and found it to be very small (less than 3%) for realistic workloads. We also believe that
the development effort involved is lower in Accelerator and so justifies some reduced perfor-
mance. Indeed, it may be possible for the JIT-bases scheme to produce faster code because
it can exploit extra information about the execution environment which is only available at
run-time. The motivation behind this work was to find out just how much of an improvement
or overhead Accelerator has compared to other data parallel and sequential programming
models.

Two case studies were used to test Accelerator’s performance against other systems:
convolution and electrostatic charge map generation. Each algorithm was run in CUDA on
a GPU, C++ code on a CPU and Accelerator on both a GPU and a CPU. The Accelerator
tests were run on both platforms using the same code for two different implementations. The
CUDA tests were run for two different implementations and the C++ tests for three. These
studies were run in a common framework to share as much code as possible and reduce
the areas which could affect timings. The experiments were run on an AMD 1055T CPU at
2.8GHz (the Phenom II X6) with 8Gb of DDR3 RAM and an NVIDIA GTX 460 GPU (the
Palit Sonic) with 2Gb of GDDR5 RAM. Every individual test was run ten times for every
target with the results displaying the totals for all ten runs. Memory and initialisations were
all reset between every run.

The case studies are aimed at determining the speed ups available for a reasonable
amount of effort. While it is technically possible to write code by hand that will match any-

thing generated by a compiler the effort involved is unreasonable. JIT compilers can use ad-
vanced knowledge of the data to be processed through techniques such as branch prediction
and memory layout optimisation, writing generic code by hand to exploit such dynamic in-
formation is very difficult although some optimisations can still be applied. The optimisa-
tions applied to CUDA code were limited to those found in the Programming Massively Par-
allel Processors [15] book. This was assumed to be a reasonable estimation of the ability of
a non-specialist.

3. Convolution Case Study

3.1. Introduction

Convolution is the combination of two signals to form a third signal. In image processing
a blur function is a weighted average of a pixel and its surrounding pixels. This is the con-
volution of two 2D signals—an input image and a blur filter which contains the weightings.
In a continuous setting both signals are theoretically infinite. In a discrete setting such as
image processing both signals are clipped. Figure 3 shows a 1D convolution example. The
filter (a) is applied to the current element “7” of the input (m) and its surrounding elements
(highlighted). These are multiplied to give array ma and all the elements are summed together
to give the current element in the output array (n). This is shown generically in Equation (1)
where mt and nt are the current input and output points respectively, N is the filter radius and
a is the filter.

Figure 3. Convolution of a radius 1 1D filter and an 8 element input array with one operation highlighted.

The filter (Equation (2)) used in this study is a discretised Gaussian curve, rounded
to zero beyond the stated radius (generally very small values). The “radius” of the filter
represents the number of non-zero values—a 1D filter with a radius of 5 will yield 11 total
non-zero values, a (square) 2D filter of radius 5 will yield 121. As it is a constant for every
element in the input signal, the filter values are pre-computed prior to running any timed
code. This is a part of the previously discussed common test framework and ensures that all
the implementations run off the same initial data.

nt =
2N+1

∑
k=0

akm(t+k−N) (1)

ak =
(

(k−N)2

2σ2

)
/

(
2N+1

∑
i=0

(i−N)2

2σ2

)
(2)

Figure 4. Convolution case study GPU results for a radius 5 filter on grids from 2048× 64 to 2048× 2048
elements.

A 2D convolver has a 2D input and a 2D filter (in this case a square of width 2N + 1).
A separable convolver is a special case of 2D convolver in which the result is the same as
applying a 1D convolution to every row of original input and to every column of those results
applying a second 1D convolution. A radius five filter on a 2D input array implemented as
a separable convolver would require only 11+11 = 22 calculations per output, compared to
11×11 = 121 for basic 2D convolution.

When calculating results close to the edge of the input data the radius of the filter may
extend beyond the limits of known data, in this case the nearest known value is used. This
zone is called the “apron”, as is the zone of input data loaded but not processed by CUDA
when splitting the data up into processing chunks [16]. Accelerator does not permit explicit
array indexing so convolution is implemented as whole array operations using array shifts
where every element in the input array has the effect of one element in the filter calculated in
parallel.

3.2. Results

Figures 4 and 5 show the results for a 2D separable convolver using a radius five Gaussian
filter (Equation (2)) on grids of size 2048× 64 to 2048× 2048. Figure 4 shows the results
for the various GPU targets (“Acc” is “Accelerator”). Both Accelerator and CUDA ran two
different implementations. Figure 5 shows the CPU target results with “C++” using three
different implementations of varying complexity.

3.3. Discussion

For the convolver the Accelerator GPU version is only marginally slower than the CUDA
version. The CUDA code used here was based on public documentation [16] which included
optimisations based on loop unrolling and usage of low latency shared memory. While the

Figure 5. Convolution case study CPU results for a radius 5 filter on grids from 2048× 64 to 2048× 2048
elements.

speed is slower the development efforts here are significantly different. Examples of the code
required to implement a convolver in Accelerator, C++ and CUDA can be found in Appendix
A. Additional examples can be found in the Accelerator user guide [17] and CUDA convo-
lution white paper [16]. One point to note, clearly visible on the GPU graph, is the constant
overhead from the Accelerator JIT.

The performance of Accelerator on the CPU was significantly better than the original
C++ sequential code (“C++ 1”) and slightly better than the more advanced versions (“C++
2” and “C++ 3”). These versions performed the apron calculations separately from the main
calculations, rather than using a single piece of generic code. Generic code requires branches
to clamp the requested input data to within the bounds of the available data. The Accelerator
code here was between two and four times faster than the C++ versions, and with signif-
icantly less development effort than “C++ 2” and “C++ 3”. Both Accelerator CPU imple-
mentations display a very interesting and consistent oscillating graph which requires further
investigation.

All the alternate code versions (“Acc 2”, “CUDA 2”, “C++ 2” and “C++ 3”) rely on the
fact that the filter in use (a Gaussian curve) was symmetrical and so performed multiple filter
points using common code. The only place where the alternate code gives significant speed
improvements over the original is in the “C++” implementations and the number of other
optimisations applied there implies that using symmetry made little difference.

4. Charge Map Case Study

4.1. Introduction

Electrostatic charge maps are used to approximate the field of charge generated by a set of
atoms in space. The space in question is split up into a 3D grid and the charge at every point

Figure 6. Grid of points showing the full calculation for charge at one point.

in that grid is calculated by dividing the charge of every atom by their distance from the
point and summing all the results. The finer the grid the better the approximation as space is
continuous in reality. The basic calculation is given in Equation (3), where N is the number
of atoms, Ci is the charge of atom i and dist(i, xyz) is the distance between atom i and
grid point xyz. The total (Gxyz) is the final charge at that point in space. The 3D world grid
is divided up into slices with each 2D layer calculated independently. For this test only one
slice was calculated but all the atoms were used, regardless of their location in 3D space.
This is demonstrated in Figure 6 for one point (circled). The large circles with numbers in
are atoms with their charges, the numbers by the lines are the distance between one atom and
the currently calculated point and the sum in the corner is the overall calculation.

Gxyz =
N

∑
i=1

Ci

dist(i,xyz)
(3)

There are two obvious methods for parallelising this algorithm. The first is to loop
through the atoms sequentially and calculate the current atom’s effect on every point in the
grid in parallel. The second is the reverse—loop through grid points and calculate every
atom’s effect on that point in parallel. This latter option would require a parallel addition,
such as a sum-reduce algorithm and would also generate very long code in Accelerator, due
to loops being unrolled by the compiler. The number of atoms should be small compared to
the number of grid points being calculated and may be small compared to the number of GPU
processing elements available. The lack of parallel addition, shorter programs and greater
resource usage makes the former option the only realistic option. A third option, calculating
every atom’s effect on every grid point simultaneously, is not possible as at present Acceler-
ator does not provide the 3D arrays required to store all the atom offsets from all the points
in the 2D grid.

DirectX 9, upon which the Accelerator GPU target is currently based, has relatively
low limits on shader lengths; however, the Accelerator JIT can split programs into multiple
shaders to bypass this limit. New Accelerator GPU targets are alleviating this restriction. The
original algorithm was found in the Programming Massively Parallel Processors book [15]
and the CUDA code is based on the most advanced version of the code in there. Two Accel-
erator implementations were produced, the second pre-computing a number of constants to
simplify the distance calculations based on the fact that the distance between two atoms is

Figure 7. Electrostatic charge map case study GPU results for 4-200 atoms with a grid size 1024 x 1024.

constant. This fact was used with a rearrangement of the standard Pythagorean equation to
get the distance to one atom based on the distance to the last atom.

4.2. Results

Figures 7 and 8 show the results for the electrostatic charge map experiment. These are for
a range of atom counts placed in a constant size grid. Both graphs were generated with the
same set of randomly placed input atoms for consistency. The grid was a single 1024×1024
slice containing just over 1,000,000 points. Results were run for 4 to 200 atoms in 4 atom
steps with results re-run for the “Accelerator 1 GPU” target between 106 and 114 atoms in 1
atom intervals (not shown). The experiments were only run to 200 atoms because the CUDA
target stopped running beyond that point.

“Acc 1” is a basic Accelerator implementation performing the full distance calculation on
the GPU for every point in parallel. “Acc 2” is the alternate distance calculation, the timings
here include the longer expression generation phase for pre-computing constants. Similarly
“C++ 1”, “C++ 2”, “CUDA 1” etc. show the results for different implementations run on a
given target.

4.3. Discussion

Figure 8 show the results for Accelerator and C++ running on a CPU. Here the optimised
C++ versions (“C++ 2” and “C++ 3”) were the fastest. Although they were very slightly
faster than the basic Accelerator CPU version far more effort was used to write them. In terms
of development effort “Accelerator 1” was on a par with “C++ 1”, and the benefits there are
clear to see. The CPU results for “Accelerator 2” are also interesting. Extra effort was put into
this version to attempt to make the calculations run on the GPU (or multi-core CPU) faster
at the expense of running more calculations at code generation time (see electrostatic charge

Figure 8. Electrostatic charge map case study CPU results for 4-200 atoms with a grid size 1024 x 1024.

map introduction). This was not worth the effort as the results there are significantly slower
than the basic Accelerator version.

For the GPU results (Figure 7) CUDA is unparalleled in speed—almost parallel to the
x axis but it is important to note that far more development effort was used in that version
compared to the Accelerator version. For Accelerator the results again show the JIT over-
head seen in the Convolution study, and for “Accelerator 1” also show a discontinuity be-
tween 108 and 112 atoms. The gradient of “Accelerator 1” before this discontinuity is around
seven times greater than the gradient of “CUDA” and after is around ten times greater, with
“Accelerator 2” consistent throughout.

The discontinuity between 108 and 112 atoms, which more fine-grained testing revealed
to be located between 111 and 112 atoms, is consistent and repeatable. Accelerator is limited
by DirectX 9’s shader length limit but has the ability to split long programs up into multiple
shaders to bypass this limit. The length of generated program in this case study depends on
the number of atoms being processed; atoms are processed sequentially in an unrolled loop
as Accelerator does not generate loops. It is believed that 112 atoms is the point at which this
splitting occurs as the length of generated code exceeds the maximum. The time jump in the
discontinuity is very close in size to the JIT overhead displayed earlier (less than twice the
height), most likely resulting from multiple compilation stages or program transfer stages.
The increase in gradient can be explained by requiring multiple data transfers between GPU
and host (the computer in which the GPU is located).

5. Development

An important consideration for any program is the ease of development. The code in Ap-
pendix A helps demonstrate the differences in development efforts between CUDA, C++ and
Accelerator, metrics were unavailable as portions of the code were based on existing exam-
ples. Even when an algorithm implementation is relatively constant between the various lan-

guages, for example convolution, much more work is required in CUDA before the operation
can begin in terms of low-level data shifting between global and local memory. Due to its
model the CUDA version does have more options for manual improvement—with Acceler-
ator the user is entirely bound by the layout decisions of the JIT. This is not always a bad
thing, however. It is always possible to write code at the assembly level but compilers for
high-level languages exist because they are seen as an acceptable trade-off: Accelerator is no
different.

CUDA uses a separate language with a separate compiler. Accelerator is embedded in
C++; it is usable from languages with C extensions and can use operator overloading, making
it possible to interchange Accelerator and sequential code with very little effort.

Listing 4 shows a function to add two values of type “float t” together and defines two
C input arrays and one C output array.

Listing 5 shows C code which defines the “float t” type and uses the generic code
wrapped in a loop to add the two input arrays together sequentially.

Similarly, Listing 6 shows Accelerator using the same generic function and input data,
this time defining the type as an Accelerator array object and performing the calculation in
parallel on the GPU.

float
gInputArrayA [4] = {10, 20, 30, 40},
gInputArrayB [4] = {9, 8, 7, 6},
gOutputArray [4];

float_t DoCalculation(float_t a, float_t b)
{

// More complex calculations can be used here with operators.
return a + b;

}

Listing 4. Generic addition code

// Set the data to float.
typedef float float_t;

void main()
{

// Loop over the data.
for (int i = 0; i != 4; ++i)
{

gOutputArray[i] =
DoCalculation(gInputArrayA , gInputArrayB);

}
}

Listing 5. C++ use of generic addition code

// Set the data to FloatParallelArray.
typedef float FloatParallelArray;

void main()
{

// Set up the target.

Target *
target = CreateDX9Target ();

// Convert the data.
FloatParallelArray

aParA(gInputArrayA , 4),
aParB(gInputArrayB , 4),
// Build expression tree.
aParTot = DoCalculation(aParA , aParB);

// Run expression and save.
target ->ToArray(aParTot , gOutputArray , 4);
// Clean up.
target ->Delete ();

}

Listing 6. Accelerator use of generic addition code

6. Conclusions and Future Work

We compared the programming models used in CUDA, the Accelerator library and C++ code
and demonstrate that Accelerator provides an attractive trade-off between programmer pro-
ductivity and performance. Accelerator allows us to implement a 2D convolver using high
level data-parallel arrays and data-parallel array operations without mentioning detailed in-
formation about threads, scheduling and data layout yet it delivers almost the same perfor-
mance as the hand written CUDA implementation.

Section 5 looked at the code for convolution using the Accelerator, CUDA and C++ sys-
tems. The CUDA code is the most complex, regardless of the advantages afforded by that
additional complexity. The Accelerator code did introduce some restrictions (e.g. the use of
whole array operations) but these restrictions allow the system to efficiently implement data-
parallel operations on various targets like GPUs. Additionally the model means the code is
complete—all further optimisation work is left to the compiler. Once past the few overheads
the programming model is very similar to C++ code, providing operations on arrays in a
manner similar to operations on individual elements. This is also shown in the development
discussion by the example using common code for both systems (Listings 4, 5 and 6). The
sequential C++ was the simplest to write, but offered no additional acceleration. The CUDA
implementation was the fastest to run, though not always by much; so we believe that Accel-
erator gives a good balance between development and speed.

We also demonstrated reasonable speed ups can be obtained using the Accelerator li-
brary. The graphs of CPU results (Figures 5 and 8) show how Accelerator performed com-
pared to C++ code. The only time where Accelerator was slower than the C++ code was
within the electrostatic charge map implementation, and only when compared to heavily opti-
mised and tweaked implementations. The GPU and CPU used for the tests were both around
£200 which makes comparing their results directly justifiable from a performance/pound
point of view. Given that the CPU and GPU Accelerator tests ran from the same implementa-
tions with different targets the GPU results show how much of an advantage is available over
the CPU for these case studies. When these tests were first run Accelerator was significantly
behind CUDA on the GPU, but re-runs with the latest versions of both have brought the two
sets of results much closer together as the JIT in Accelerator improves to give better and
better code outputs.

A range of algorithms were looked at for different classes of problems showing speed-
ups in some. While a more in-depth study looking at categories such as “The Seven
Dwarfs” [18], or the updated and more comprehensive “Thirteen Dwarfs” [19], is required;
this work shows that some areas are well suited to Accelerator and that a comprehensive re-

view of algorithm classes would be useful work. In the cases where Accelerator can be used,
further work is required to give a more complete picture of the situations to which it is well
suited. The results for the electrostatic charge map case study are vastly in CUDA’s favour,
but the convolution results are arguably in Accelerator’s favour as the performance gap is
minimal and the development gap is huge. For this reason we believe that Accelerator is a
useful system, but more work is required to determine problem classes that it is not suitable
for.

One major optimisation method for CUDA is the use of shared memory, of which Accel-
erator has no knowledge currently. One possible avenue for speed up investigation is an auto-
mated analysis of the algorithm to group calculations together in order to utilise said shared
memory. The GPU results were also produced despite the limitations caused by DirectX 9
listed in Section 1.4.

Several of the results have shown the overheads due to Accelerator’s JIT. These tests
were run without using Accelerator’s “parameters” feature which can pre-compile an expres-
sion using placeholders (called “parameters”) for input data and store the result. Every run in
the results was repeated ten times and summed, however as it uses off-line compilation the
CUDA code was only ever built once.

Acknowledgements

This work was carried out during an internship at Microsoft Research in Cambridge. The stu-
dentship is jointly funded by Microsoft Research and the Engineering and Physical Sciences
Research Council (EPSRC) through the Systems Engineering Doctorate Centre (SEDC).

References

[1] David Tarditi, Sidd Puri, and Jose Oglesby. Accelerator: Using Data Parallelism to Program GPUs for
General-Purpose Uses. In ASPLOS-XII: Proceedings of the 12th international conference on Architectural
support for programming languages and operating systems, pages 325–335, New York, NY, USA, 2006.
ACM.

[2] NVIDIA. CUDA homepage. http://www.nvidia.com/object/cuda_home.html, 2010.
[3] NVIDIA. GeForce GTX 480 Specifications, 2010.
[4] ATI. ATI Radeon HD 5970 Specifications, 2011.
[5] John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and James C. Phillips. GPU

Computing. Proceedings of the IEEE, 96(5):879–899, 2008.
[6] John D. Owens, David Luebke, Naga Govindaraju, Mark Harris, Jens Krger, Aaron E. Lefohn, and Tim-

othy J. Purcell. A Survey of General-Purpose Computation on Graphics Hardware. Computer Graphics
Forum, 26(1):80–113, 2007.

[7] J. N. England. A system for interactive modeling of physical curved surface objects. SIGGRAPH Comput.
Graph., 12(3):336–340, 1978.

[8] Christian A. Bohn. Kohonen Feature Mapping through Graphics Hardware. In In Proceedings of Int.
Conf. on Compu. Intelligence and Neurosciences, pages 64–67, 1998.

[9] Jed Lengyel, Mark Reichert, Bruce R. Donald, and Donald P. Greenberg. Real-Time Robot Motion
Planning Using Rasterizing Computer Graphics Hardware. SIGGRAPH Comput. Graph., 24(4):327–335,
1990.

[10] Kenneth E. Hoff, III, John Keyser, Ming Lin, Dinesh Manocha, and Tim Culver. Fast Computation of
Generalized Voronoi Diagrams Using Graphics Hardware. In SIGGRAPH ’99: Proceedings of the 26th
annual conference on Computer graphics and interactive techniques, pages 277–286, New York, NY,
USA, 1999. ACM Press/Addison-Wesley Publishing Co.

[11] Michael McCool and Stefanus Du Toit. Metaprogramming GPUs with Sh. http://libsh.org/
brochure.pdf, 2004.

[12] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike Houston, and Pat Hanra-
han. Brook for GPUs: Stream Computing on Graphics Hardware. ACM Trans. Graph., 23(3):777–786,
2004.

[13] Patrick S. McCormick, Jeff Inman, James P. Ahrens, Charles Hansen, and Greg Roth. Scout: A Hardware-
Accelerated System for Quantitatively Driven Visualization and Analysis. In VIS ’04: Proceedings of the
conference on Visualization ’04, pages 171–178, Washington, DC, USA, 2004. IEEE Computer Society.

[14] M. Lesniak. PASTHA - parallelizing stencil calculations in Haskell. Declarative Aspects of Muilticore
Programming, Jan 2010.

[15] David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A Hands-on Ap-
proach. Morgan Kaufmann, 1 edition, 2010.

[16] Victor Podlozhnyuk. Image Convolution with CUDA. http://developer.download.nvidia.com/
compute/cuda/sdk/website/C/src/convolutionSeparable/doc/convolutionSeparable.
pdf, 2007.

[17] Accelerator Team. Microsoft Accelerator v2 Programming Guide. Microsoft Research, 2010.
[18] Phillip Colella. Defining Software Requirements for Scientific Computing. Presentation, 2004.
[19] Krste Asanovic, Ras Bodik, Bryan C. Catanzaro, Joseph J. Gebis, Parry Husbands, Kurt Keutzer, David A.

Patterson, William L. Plishker, John Shalf, Samuel W. Williams, and Katherine A. Yelick. The Landscape
of Parallel Computing Research: A View from Berkeley. Technical report, Electrical Engineering and
Computer Sciences, University of California at Berkeley, 2006.

A. Convolution Code

Presented here is the main “kernel” code used to perform a 1D convolution in CUDA, Accel-
erator and sequential C++. Code to set up and destroy data arrays and target interactions has
been omitted. The code used for the case studies in Section 3 is based on multiples calls to
the code presented here.

A.1. C++ code

Listing 7 is the reference C++ code for a 1D convolver. This code is presented first as it
most clearly demonstrates the basic convolution algorithm. “arrayInput” is the input data
as a C array, “arrayOutput” is the resulting C array, “filter” is an array containing the
full filter (a “filterRadius” value of five results in eleven filter values). The code loops
through every element in the input array (of which there are “arrayWidth”), for each one
calculating the result according to all filter values and surrounding elements (clipped to the
array size). The operation of “Clamp” (Listing 8) is the main basis of the two improved C++
implementations which separate the loops into three loops to deal with start, middle and end
of array values separately and do away with branching in “Clamp”.

for (int j = 0; j != arrayWidth; ++j)
{

float
sum = 0;

for (int u = -filterRadius , p = 0; u <= filterRadius; ++u, ++p)
{

int
J = Clamp(j + u, 0, arrayWidth - 1);

sum += arrayInput[J] * filter[p];
}
arrayOutput[j] = sum;

}

Listing 7. C++ convolution code

int
Clamp(int x, int min , int max)

{
return (x < min) ? min : (x > max) ? max : x;

}

Listing 8. Additional C++ code

A.2. Accelerator code

Listing 9 is the code to perform a 1D convolution in Accelerator. The C++ sequential code
loops over every input element in turn, calculating the effect of each surrounding element
before moving on to the next. In contrast this code calculates the effect of one offset on every
element using Accelerators “Shift” function which behaves much like the clamped array
lookup in the C++ code, but for every element in parallel. Because Accelerator is a JIT system
the main loop builds a large unrolled expression tree which is evaluated when “ToArray”
is called for a specified target (here DirectX 9). This has the effect that all the filter values
are known at compile time and become constants in the executed GPU code. In this code
“arrayTemp” and “arrayInput” are Accelerator objects representing arrays on the GPU,
the former is declared and initialised to 0 in the code given. “arrayOutput” is a C array to
which the final result is saved after GPU execution.

size_t
dims[] = {arrayWidth };

intptr_t
shifts [] = {0};

FloatParallelArray
arrayTemp (0.0f, dims , 1);

for (int u = -filterRadius , p = 0; u <= filterRadius; ++u, ++p)
{

shifts [0] = u;
arrayTemp += Shift(arrayInput , shifts , 1) * filter[p];

}
ParallelArrays :: Target *

target = MicrosoftTargets :: CreateDX9Target ();
target.ToArray(arrayTemp , arrayOutput , height ,

width , width * sizeof (float));

Listing 9. Accelerator convolution code

A.3. CUDA code

The CUDA code equivalent to the previous two examples is shown in Listing 10. This code
is by far the most complex and its development is well documented in the “Image Convo-
lution with CUDA” white paper by Victor Podlozhnyuk [16]. The code within the function
“DoOneRow” does a 1D convolution, or part of one according to the number of available
processing units on the GPU—if the input is larger the data is partitioned into blocks in
“DoRows”. “Part 1” (see in-code comments) is responsible for determining the limits of data
for which the current block is responsible, including aprons which may be beyond the input
data limits or may be beyond the processing limits of the current block. “Part 2” uses every
thread in the current block to load one value from global memory to faster memory and waits
for all other threads to complete. “Part 3” performs the actual convolution algorithm on one
element, with many threads running at once. Unlike the C++ and Accelerator code listings,
this version does not save its result to a C array, requiring explicit conversion after the main
calculation.

__global__ void
DoOneRow(float * const arrayOutput ,

const float * const arrayInput , const int width ,
const int pitch , const int radius)

{
// Part 1. Load all values for calculations into variables.
__shared__ float

fRowData [1280];
const float * const

filter = &gc_fFilter[radius];
const int

dataStart = blockIdx.x * blockDim.x,
apronStart = dataStart - radius ,
apronClamp = max(apronStart , 0),
alignedStart = apronStart & (-HALF_WARP),
dataEnd = dataStart + blockDim.x,
apronEnd = dataEnd + radius ,
dataEndClamp = min(dataEnd , width),
apronEndClamp = min(apronEnd , width),
apronOffset = apronStart & (HALF_WARP - 1),
maxX = width - 1;

int

load = threadIdx.x + alignedStart ,
pos = threadIdx.x - apronOffset;

// Part 2. Copy data from global to local memory , clamped.
while (load < apronEnd)
{

if (load >= apronEndClamp)
{

fRowData[pos] = arrayInput[maxX];
}
else if (load >= apronClamp)
{

fRowData[pos] = arrayInput[load];
}
else if (load >= apronStart)
{

fRowData[pos] = arrayInput [0];
}
load += blockDim.x;
pos += blockDim.x;

}
__syncthreads ();
// Part 3. All data is loaded locally , do the calculation.
const int

pixel = dataStart + threadIdx.x;
if (pixel < dataEndClamp)
{

float * const
dd = fRowData + threadIdx.x + radius;

float
total = 0;

for (int i = -radius; i <= radius; ++i)
{

total += filter[i] * dd[i];
}
arrayOutput[pixel] = total;

}
}

// Non -truncating integer division.
#define CEILDIV(m,n) \

(((m) + (n) - 1) / (n))

extern "C" void
DoRows(float * arrayOutput , float * arrayInput , int width ,

int threads , int pitch , int radius)
{

// Call the GPU code from the host.
dim3

dimBlocks(CEILDIV(width , threads)),
dimThreads(threads);

DoOneRow <<<dimBlocks , dimThreads >>>(
arrayOutput , arrayInput , width , pitch , radius);

}

Listing 10. CUDA convolution code

