
20110620, CPA2011, Parallel Usage Checking – An Observation, B M Cook, 4Links Limited

Parallel Usage Checking – An Observation

Barry M Cook

4Links Limited, UK

SpaceWire Designers, Consultants, Manufacturers

20110620, CPA2011, Parallel Usage Checking – An Observation, B M Cook, 4Links Limited

Parallel Usage Checking …

X: -- a “shared” variable
PAR
 A – a process that ‘uses’ X
 B – a process that ‘uses’ X

X:
 A B

… detects a possible problem if A or B or both write to X

Require: CREW – Concurrent Read, Exclusive Write

20110620, CPA2011, Parallel Usage Checking – An Observation, B M Cook, 4Links Limited

An acceptable program:

Give each parallel process its own variable and send data between processes
through a communication channel

C: -- a communication channel
 X:

A
Y:

B

X is local to A and Y is local to B and there is no conflict

20110620, CPA2011, Parallel Usage Checking – An Observation, B M Cook, 4Links Limited

A typical use:

Process A (say) places data in its variable, X, and – at some point – passes these
values to process B where they are stored in its local variable, Y, for use.

C: -- a communication channel
 X:

SEQ
 …
 -- fill X
 …
 C ! X
 …

Y:
SEQ
 …
 C ? Y
 …
-- use Y

 …

Note: the relative time of action is NOT accurately represented by the relative
positions of words in the above picture …
In fact, the communication synchronises the processes

20110620, CPA2011, Parallel Usage Checking – An Observation, B M Cook, 4Links Limited

Re-drawing the picture:

C: -- a communication channel
 X: Y:

 SEQ SEQ

 A1 B1

 C ! X C ? Y

 A2 B2

The synchronising communication divides each process into temporally distinct
parts – and we can see that it is perfectly safe for A1 and B2 (or B1 and A2) to use
a shared variable:

C: -- a synchronising channel (no data)
X: -- a shared variable

 SEQ SEQ

 A1 -- uses X B1

 C ! C ?

 A2 B2 -- uses X

20110620, CPA2011, Parallel Usage Checking – An Observation, B M Cook, 4Links Limited

Efficiency

Using separate variables and communicating (possibly a large amount of) data can
be slow.

Using a shared variable requires no data transfer and can be much more efficient.

20110620, CPA2011, Parallel Usage Checking – An Observation, B M Cook, 4Links Limited

Formalising the efficient version

We can re-write the shared variable version:

C: -- a synchronising channel (no data)
X: -- a shared variable

 SEQ SEQ

 A1 B1

 C ! C ?

 A2 B2

As:
C: -- a synchronising channel (no data)
X: -- a shared variable

SEQ

 A1 B1

-- communicate

 A2 B2

And parallel-usage check it in the usual way.

20110620, CPA2011, Parallel Usage Checking – An Observation, B M Cook, 4Links Limited

Or

X: -- variable
C: -- channel
PAR
 SEQ
 A 1
 C !
 A 2
 SEQ
 B 1
 C ?
 B 2

is equivalent to

X: -- variable
C: -- channel
SEQ
 PAR
 A 1
 B 1
 -- communicate
 PAR
 A 2
 B 2

Represents the required
solution

Proves that it is safe
- but is probably not a
good implementation

20110620, CPA2011, Parallel Usage Checking – An Observation, B M Cook, 4Links Limited

But …

We do need to make sure the behaviour is adequately controlled and the
transformation is valid.

e.g. a loop in the above example …

WHILE TRUE
 SEQ
 A 1
 C !
 A 2

… means that A1 is both before and after A2

(a solution is to use another communication to synchronise after A2/B2)

20110620, CPA2011, Parallel Usage Checking – An Observation, B M Cook, 4Links Limited

Why not just write the transformed version?

1.

It may be less efficient (see above)

2.

"There are two ways of constructing a software design: one way is to
make it so simple that there are obviously no deficiencies and the
other is to make it so complicated that there are no obvious
deficiencies."
 Professor Sir C.A.R "Tony" Hoare

It is better to write programs in a way that reflects the problem solution – and is
easily seen to be correct.

20110620, CPA2011, Parallel Usage Checking – An Observation, B M Cook, 4Links Limited

Conclusions

Parallel usage checking is required.

Program transformation before checking can allow a larger range of acceptable
programs
… that may be more efficiently implemented

We often think of program transformations as steps towards implementation

I suggest that we might also use (possibly different) transformations purely /
additionally as steps towards correctness checking

