
Dias 1

Verification of a Dynamic Channel Model using the
SPIN Model Checker

Rune M. Friborg and Brian Vinter
eScience center, University of Copenhagen

Introduction to PyCSP

• 2007 - PyCSP is presented. The synchronization model for
channel communications is based on JCSP.

• 2009 - A PyCSP with a new synchronization model is
presented. It is using the two-phase locking protocol to
allow any2any channels supporting both input and
output guards.

Python for eScience applications

• Python is widely accepted and used in the scientific
community.

• Scientists have access to parallel hardware, but need tools
to make their prototypes use this hardware

• Parallel hardware comes in many forms
• Multi-core
• Cluster
• Grid
• Net (XML) services

Communicating Sequential Processes

• Synchronized constructs for running a set of processes
• In parallel
• In sequence

• Synchronized communication through message passing
• One-way channels

• Complete Process Isolation
• No shared data-structures
• No side-effects from processes
• Compositional structure
• Reuse of processes

Current PyCSP features

• Channel() is an any2any channel
• Alt performs the read or write operation when a guard has

been selected
• Timeout and skip guards
• Controlled termination through poisoning and retiring
• Input and output guards can be combined in an alt

operation.

No support for distributed communication?

Run anywhere

import pycsp
@pycsp.process
def worker(cin, cout):

while(True):
data = cin()
partial_result = compute(data)
cout(partial_result)

workChan, resultChan = Channel(“work”), Channel(“result”)
pycsp.Parallel(
 master(data, workChan.writer(), resultChan.reader()),
 WORKERS * worker(workChan.reader(), resultChan.writer()
)

Control vs. flexibility

• More control – less flexibility
• @grid_process(vgrid=DIKU ..)
• @ssh_process(host=ip..)
• @mpi_process(mpirun .. , count)
• @process
• @coroutine

• Less control – more flexibility
• @process
• Parallel(processes..., hint=local | striped | blocked | auto)
• Spawn(processes..., hint=local | striped | blocked | auto)

• both approaches need one channel type.

The Dynamic Channel

• A hybrid synchronisation model
• Combine channel synchronisation mechanisms with different

specialities for better performance
• Co-routine – co-routine communication
• thread – thread communication
• single node – single node communication
• any node – any node communication

• Change synchronisation mechanism on-the-fly

• Finding a common approach to synchronisation

Classic approach : Two-phase commit
protocol (barrier)

• Acquire lock for resource C (enter barrier)
• update C
• Release lock for resource C (leave barrier)

PyCSP approach : Two-phase locking protocol

• Provide each process with a lock
• Acquire all process locks depending on resource C
• Update C
• Release all process locks depending on resource C

• Deadlocks are avoided using Roscoe's deadlock rule 7:
• Locks are acquired in a global order indexed by the set (node id,

memory address).

Two-phase locking protocol in use

Promela and the SPIN Model Checker

• Promela is a process modeling language
• SPIN performs an exhaustive state space exploration of

models written in Promela
• SPIN has been used to check for the presence of deadlocks,

livelocks, starvation, race conditions and correct channel
communication behaviour

• We present three models
• Local synchronisation model (current PyCSP implementation)
• Distributed synchronisation model
• Transition model

Dias 13

 D
is

tr
ib

ut
ed

 M
od

e
l

Automatic Exhaustive Verification of the
Distributed Model

The SPIN model checker did not find any errors for the above
process networks

The algorithm never backs down from a commit request

Some advantages of one channel type

• The programmer does not need to know anything about the
location of the hardware any process might run on.

• All channel ends can be mobile.
• It is simple to combine various hardware in one single

application.

Transition Model

• The Transition Model enables switching between
synchronisation mechanisms (levels) for channels

• The read, write and alt construct is split into three stages:
• enter
• wait
• leave

• Enter - retrieves the channel level, stores it inside the
channel request and posts the request to the channel(s)

• Wait – waits until notified. If the channel request has not yet
committed, it retrieves the channel level and activates
leave (old channel level) and enter (new channel level)

• Leave – Use the stored channel level inside the channel
request to leave the channel(s)

Transition Model – Activating a transition

• A transition is activated when there is a feature request,
that are not supported at the current synchronisation
level.

• Transition from level A to B
• The channel level is updated to B
• All posted channel requests on the channel is notified with a

transition signal
• done

Automatic Exhaustive Verification of the
Transition Model

Alt was removed from the transition model, to reduce
complexity

The SPIN model checker did not find any errors for the above
process networks

The algorithm never backs down from a commit request

Conclusion

• The synchronization mechanism in the current PyCSP is
model checked successfully

• We suggest that others may use these models as the basics
for implementing a CSP library

The full model of the dynamic channel has not been
verified, since the large state space may make it
unsuited for exhaustive verification using a model
checker

Future

The models will be the basis for a new PyCSP channel, that
can start out as a simple pipe and evolve into a distributed

channel spanning multiple nodes.

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

