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Abstract. This paper presents the central elements of a new dynamic channel leading
towards a flexible CSP design suited for high-level languages. This channel is sep-
arated into three models: a shared-memory channel, a distributed channel and a dy-
namic synchronisation layer. The models are described such that they may function as
a basis for implementing a CSP library, though many of the common features known
in available CSP libraries have been excluded from the models. The SPIN model
checker has been used to check for the presence of deadlocks, livelocks, starvation,
race conditions and correct channel communication behaviour. The three models are
separately verified for a variety of different process configurations. This verification is
performed automatically by doing an exhaustive verification of all possible transitions
using SPIN. The joint result of the models is a single dynamic channel type which
supports both local and distributed any-to-any communication. This model has not
been verified and the large state-space may make it unsuited for exhaustive verifica-
tion using a model checker. An implementation of the dynamic channel will be able to
change the internal synchronisation mechanisms on-the-fly, depending on the number
of channel-ends connected or their location.
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Introduction

Most middleware designers experience situations where they need to choose between gen-
erality and performance. To most experienced programmers this dilemma is natural since
high performance implementations are typically based on assumptions that from the usage
point translates into limitations. The PyCSP project has since the beginning had a strict fo-
cus on generality, attempting to present the programmer with only one channel type and one
process type. The single channel type has succeeded while the single process type has been
attempted through individual PyCSP packages with separate process types. These process
types are: greenlets (co-routines), threads and processes, as seen from the operating system
view. The reason for the three different packages were to enable PyCSP applications to have
up to 100,000 CSP processes (co-routines), posix threads for cross-platform support and OS
processes executing in parallel while not being limited by the CPython Global Interpreter
Lock [1].

We would like to reach the point of only one process type and one channel type, but
for this to be possible we need a channel type which preserves the qualities of the previous
channel type, i.e. be of the kind any-to-any and support external choice in both directions as
well as offer both channel poisoning and retirement like the existing PyCSP channels. The
new channel must support three possible process locations: within the same PyCSP process,
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on a different PyCSP process within the same compute-node and, finally, a different PyCSP
process on a different compute-node. It is of course trivial to make a common channel type
based on the lowest common denominator, i.e. a networked channel, since this will also
function within a compute-node and even within a process. However, the downside is self-
evident since the overhead of deploying an algorithm based on shared-nothing mechanisms
is much slower than algorithms that can employ shared state.

The solution to the proposed problem is a channel that can start out with the strongest
possible requirements, i.e. exist within a single process, and then dynamically decrease the
requirements as needed, while at the same time employing more complex, and more costly,
algorithms.

The present work is a presentation of such a dynamic channel type. The algorithms that
are employed grow quite complex to ensure maximum performance in any given scenario,
thus much work has been put into verifying the different levels a channel may reach. Using
the SPIN model checker, we perform an exhaustive verification of the local and distributed
channel levels for a closed set of process configurations. These include any-to-any channels
with input and output guards in six different combinations.

Background

PyCSP is currently a mix of four implementations providing one shared API, such that the
user can swap between them manually. The four implementations do not share any code and
the different channel implementations can not function as guards for a single external choice,
since they are not compatible.

Listing 1. A simple PyCSP example demonstrating the concurrent nature in CSP upholding to unbounded
non-determinism and protected against race conditions during termination.

# S e l e c t i m p l e m e n t a t i o n
i m p o r t pycsp . t h r e a d s as pycsp
# ( a l t e r n a t i v e s : pycsp . p r o c e s s e s , pycsp . g r e e n l e t s , pycsp . n e t )

@pycsp . p r o c e s s
d e f s o u r c e ( c h a n o u t , N ) :

f o r i i n r a n g e (N ) :
c h a n o u t ( ” H e l l o (%d )\ n ” % ( i ) )

pycsp . r e t i r e ( c h a n o u t ) # The c h a n n e l has one l e s s w r i t e r

@pycsp . p r o c e s s
d e f s i n k ( c h a n i n ) :

# The loop t e r m i n a t e s on t h e s i g n a l t h a t announces t h a t a l l
# w r i t e r s have r e t i r e d
w h i l e True :

s y s . s t d o u t . w r i t e ( c h a n i n ( ) )

ch = pycsp . Channel ( )
pycsp . P a r a l l e l ( # Run i n p a r a l l e l

5 * s o u r c e ( ch . w r i t e r ( ) , 1 0 ) , # F ive s o u r c e p r o c e s s e s
5 * s i n k ( ch . r e a d e r ( ) ) # F ive s i n k p r o c e s s e s

)

In listing 1, we show a simple application using the current PyCSP where channels are
any-to-any, synchronous and uni-directional. Processes can commit to reading or writing
from single channels or they can commit to a set of distinct channels using the alt (external
choice) construct. Committing to the alt construct means that exactly one of the channel



operations will be accepted and all others are ignored. The alt construct allow a mix of read
and write operations. The first model, which we present in section 2.1, is a model of the
current channel implementation for threads in PyCSP.

In [2] we presented PyCSP for scientific users as a means of creating scalable scientific
software. The users of a CSP library should not have to think about whether they might be
sending a channel-end to a process that might be running in a remote location. Or how they
work around an external choice on channels, that does not support it. One of the powerful
characteristics of CSP is that every process is isolated, which means that we can move it
anywhere and as long as the channels still work, the process will execute. Because of this,
processes can easily be reused, since all the inputs and outputs are known.

The network-enabled PyCSP implementation is a prototype and uses a single channel
server to handle all channel traffic. The single channel server runs the thread implementation
of PyCSP internally, which creates a temporary thread for every request. The server is a seri-
ous bottle-neck for the channel communication and has limited the type of parallel applica-
tions implemented in PyCSP. In this paper we present a distributed channel model and check
its correctness using the SPIN Model Checker.

Promela and the SPIN Model Checker

Promela (Process Meta Language) is a process modeling language whose purpose is to verify
the logic in concurrent systems. In Promela models, processes can by created dynamically
and can communicate through synchronous or asynchronous message channels. Also the pro-
cesses are free to communicate through shared memory. If variables or channels are created
globally, then they are available through shared memory to all Promela processes. Promela
has a basic set of types for variables: bit, bool, byte, mtype (similar to enum), short and int.
The models presented in this paper use shared memory when modeling internal communica-
tion, and message channels when modeling distributed communication.

In Promela, every statement is evaluated to one of two states, it is either enabled or
blocked. Statements as assignments, declarations, skip or break are always enabled, while
conditions evaluated to false are blocked. When a statement is blocked, the execution for that
process halts until the statement becomes enabled. The following is an example of a blocked
statement following an enabled statement:

v a l u e = 1 ; / * e n a b l e d * /
v a l u e == 0 ; / * b l o c k e d * /

When executing (simulating) a Promela model, the statements in concurrent processes
are selected randomly to simulate a concurrent environment. To allow modeling synchroni-
sation mechanisms, a sequence of statements can be indicated as atomic, by using the atomic
keyword and enclosing the statements in curly brackets:

atomic {
/ * The f i r s t s t a t e m e n t i n an a t omi c r e g i o n i s a l l o w e d t o b l o c k . * /
p r o c e s s l o c k == 0 ;
p r o c e s s l o c k = 1 ;

}

To organise the code in Promela we use inline functions. When declaring inline func-
tions, the parameters in the parameter list have no types. The inline functions are exclusively
used as a replace-pattern, when generating the complete model with a single body for each
thread. All values passed to an inline function is pass-by-reference. There is no return con-
struct in Promela, thus values must be returned by updating variables through the parameter
list.



Control flows in Promela can be defined using either if .. fi or do ..od constructs. The
latter executes the former repeatedly until the break statement is executed. Listing 2 shows
two examples of the constructs. The first where else is taken only when there is no other
enabled guards and another where an always enabled condition might never be executed.

Listing 2. Example of control flows in Promela.

i f
: : (A == t rue ) −> p r i n t f ( ”A i s t r u e , B i s unknown ” ) ;
: : (B == t rue ) −> p r i n t f ( ”B i s t r u e , A i s unknown ” ) ;
: : e l s e −> p r i n t f ( ”A and B a r e f a l s e ” ) ;
f i

do
: : ( sk ip )−>

p r i n t f ( ” I f A i s a lways t r u e , t h e n t h i s may n e v e r p r i n t e d . ” ) ;
break ; / * b r e a k s t h e do loop * /

: : (A == t rue ) −>
p r i n t f ( ”A i s t r u e ” ) ;
i = i + 1 ;

od

If the SPIN model checker performs an automatic verification of the above code, then
it will visit every possible state until it aborts with the error: “max search depth too small”.
The reason is that, there is no deterministic set of values for i, thus the system state space
can never be completely explored. It is crucial that all control flows have a valid end-state
otherwise SPIN can not verify the model.

The SPIN model checker can verify models written in Promela. In 1986, Vardi and
Wolper [3] published the foundation for SPIN, an automata-theoretic approach to automatic
program verification. SPIN [4] can verify a model for correctness by generating a C program
that performs an exhaustive verification of the system state space. During simulation and ver-
ification SPIN checks for the absence of deadlocks, livelocks, race conditions, unspecified
receptions and unexecutable code.

The model checker can also be used to show the correctness of system invariants, find
non-progress execution cycles and linear time temporal constraints, though we have not used
any of those features for the model checking in this paper.

1. Related Work

Various possibilities for synchronous communication can be found in most network libraries,
but we focus exclusively on network-enabled communication libraries that support Hoare’s
CSP algebra [5,6]. Several projects have investigated how to do CSP in a distributed envi-
ronment. JCSP [7], Pony/occam-π [8] and C++CSP [9] provide network-enabled channels.
Common to all three is that they use a specific naming for the channels, such that channels are
reserved for one-to-one, one-to-any, network-enabled and so on. JCSP and C++CSP2 have
the limitation that they can only do external choice (alt) on some channel types.

Pony enables transparent network support for occam-π. Schweigler and Sampson [8]
write: “As long as the interface between components (i.e. processes) is clearly defined, the
programmer should not need to distinguish whether the process on the other side of the inter-
face is located on the same computer or on the other end of the globe”. Unfortunately the pony
implementation in occam-π is difficult to use as basis for a CSP library in languages like C++,
Java or Python, as it relies heavily on the internal workings of occam-π. Pony/occam-π does



not currently have support for networked buffered channels. The communication overhead in
Python is quite high, thus we are especially interested in fast one-to-one buffered networked
channels, because they have the potential to hide the latency of the network. This would, for
large parallel computations, make it possible to overlap computation with communication.

2. The Dynamic Channel

We present the basis for a dynamic channel type that combines multiple channel synchroni-
sation mechanisms. The interface of the dynamic channel resembles a single channel type.
When the channel is first created, it may be an any-to-any specialised for co-routines. The
channel is then upgraded on request, depending on whether it participates in an alt and on
the number of channel-ends connected. The next synchronisation level for the channel may
be an optimised network-enabled one-to-one with no support for alt. Every upgrade stalls
the communication on the channel momentarily while all active requests for a read or write
are transformed to a higher synchronisation level. The upgrades continue, until the lowest
common denominator (a network-enabled any-to-any with alt support) is reached.

This paper presents three models that are crucial parts in the dynamic channel design.
These are: a local channel synchronisation model for shared memory, a distributed synchro-
nisation model and the model for on-the-fly switching between synchronisation levels. We
have excluded the following features to avoid state-explosion during automatic verification:
mobility of channel ends, termination handling, buffered channels, skip / timeout guards and
a discovery service for channel homes. Basically, we have simplified a larger model as much
as possible and left out important parts, to focus on the synchronisation model handling the
communication.

The different models are written in Promela to verify the design using the SPIN model
checker. The verification phase is presented in section 3 where the three models are model-
checked successfully. The full model-checked models are available at the PyCSP reposi-
tory [10]. After the following overview, the models are described in detail:

• the local synchronisation model is built around the two-phase locking protocol. It pro-
vides a single CSP channel type supporting any-to-any communication with basic read
/ write and external choice (alt).

• the distributed synchronisation model is developed from the local model, providing the
same set of constructs. The remote communication is similar to asynchronous sockets.

• the transition model enables the combination of a local (and faster) synchronisation
model with more advanced distributed models. Channels are able to change synchro-
nisation mechanisms, for example based on the location of channel ends, making it a
dynamic channel.

For all models presented we do not handle operating system errors that cause threads to
terminate or lose channel messages. We assume that all models are implemented on top of
systems that provide reliable threads and message protocols.

2.1. Channel Synchronisation with Two-Phase Locking

The channel model presented here is similar to the PyCSP implementation (threads and pro-
cesses) from 2009 [11] and will work as a verification of the method used in [11,12]. It is a
single CSP channel type supporting any-to-any communication with basic read / write and
external choice (alt).

In figure 1 we show an example of how the matching of channel operations comes about.
Four processes are shown communicating on two channels using the presented design for
negotiating read, write and external choice. Three requests have been posted to channel A



and two requests to channel B. During an external choice, a request is posted on multiple
channels. Process 2 has posted its request to multiple channels and has been been matched.
Process 1 is waiting for a successful match. Process 3 has been matched and is going to
remove its request. Process 4 is waiting for a successful match. In the future, process 1 and
process 4 are going to be matched. The matching is initiated by both, but only one process
marks the match as successful.

Channel A

Channel B

READY
Read queue

SUCCESS(B)
READY

Write queue

SUCCESS(B)
Read queue

SUCCESS
Write queue

Requests

1

2

4

3

Process 1
Read value from 
channel A

Process 4
Write value to 
channel A

Process 3
Write value to 
channel B

Process 2
External choice (alt) on 
the channel operations:
▪ Read from B
▪ Write value to A

Figure 1. Example of four processes matching channel operations on two channels.

Listing 3. Simple model of a mutex lock with a condition variable. This is the minimum functionality, which
can be expected from any multi-threading library.

t y p e d e f p r o c e s s t y p e {
mtype s t a t e ;
b i t l o c k ;
b i t waitX ;

} ;

p r o c e s s t y p e p roc [THREADS ] ;

i n l i n e a c q u i r e ( l o c k i d ) {
atomic { ( p roc [ l o c k i d ] . l o c k == 0 ) ; p roc [ l o c k i d ] . l o c k = 1 ; }

}
i n l i n e r e l e a s e ( l o c k i d ) {

p roc [ l o c k i d ] . l o c k = 0 ;
}
i n l i n e w a i t ( l o c k i d ) {

a s s e r t ( p roc [ l o c k i d ] . l o c k == 1 ) ; / * l o c k must be a c q u i r e d * /
atomic {

r e l e a s e ( l o c k i d ) ;
p roc [ l o c k i d ] . waitX = 0 ; / * r e s e t w a i t c o n d i t i o n * /

}
( p roc [ l o c k i d ] . waitX == 1 ) ; / * w a i t * /
a c q u i r e ( l o c k i d ) ;

}
i n l i n e n o t i f y ( l o c k i d ) {

a s s e r t ( p roc [ l o c k i d ] . l o c k == 1 ) ; / * l o c k must be a c q u i r e d * /
p roc [ l o c k i d ] . waitX = 1 ; / * wake up w a i t i n g p r o c e s s * /

}

We use the two-phase locking protocol for channel synchronisation. When two processes
are requesting to communicate on a channel, we accept the communication by first acquiring



the two locks, then checking the state of the two requests and if successful, updating and
finally the two locks are released. This method requires many lock requests resulting in a
large overhead, but it has the advantage that it never has to roll-back from trying to update a
shared resource.

To perform the local synchronisation between threads, we implement the simple lock
model shown in listing 3. This is straight-forward to model in Promela, as every statement in
Promela must be executable and will block the executing thread until it becomes executable.
The implemented lock model is restricted to single processes calling wait. If multiple pro-
cesses called wait, then the second could erase a recent notify . For the models in the paper,
we never have more than one waiting process on each lock.

Now that we can synchronise processes, the process state proc[ id ]. state can be protected
on read and update. When blocked, we wait on a condition lock instead of wasting cycles
using busy waiting, but the condition lock adds a little overhead. To avoid deadlocks, the
process lock must be acquired before a process initiates a wait on a condition lock and before
another process notifies the condition lock. The process calls wait in write (Listing 4) and is
blocked until notified by offer (Listing 6). The offer function is called by the matching algo-
rithm, which is initiated when a request is posted. To provide an overview, figure 2 shows a
pseudo call graph of the model with all inline functions and the call relationship. A process
can call read, write or alt to communicate on channels. These then posts the necessary re-
quests to the involved channels and the matching algorithm calls offer for all matching pairs.
Eventually a matching pair arrives at a success and the waiting process is notified.

Communicating process

Channel.read Channel.write

Channel.post_writeChannel.remove_write Channel.post_readChannel.remove_read

Initialise request and
then post the request to all 

involved channels

Alt

Channel.match -  
Read and write 

requests

Channel.offer - Test 
matched requests 

for possible success

Lock.notify - Wake up 
sleeping process

Request.state: SUCCESS

Lock.wait - Sleep if 
no match could be 

made

Remove request from all 
involved channels Request.state: READY

Set blocked condition 

to enabled

Figure 2. Pseudo call graph for the local channel synchronisation.

In write (Listing 4), a write request is posted to the write queue of the channel and again
removed after a successful match with a write request. The corresponding functions read,
post read and remove read are not shown since they are similar, except that remove read returns
the read value.



Listing 4. The write construct and the functions for posting and removing write requests. The process index
pid contains the Promela thread id.

i n l i n e w r i t e ( c h i d , msg ) {
p roc [ p i d ] . s t a t e = READY;
p o s t w r i t e ( c h i d , msg ) ;
/ * i f no s u c c e s s , t h e n w a i t f o r s u c c e s s * /
a c q u i r e ( p i d ) ;
i f

: : ( p roc [ p i d ] . s t a t e == READY) −> w a i t ( p i d ) ;
: : e l s e sk ip ;

f i ;
r e l e a s e ( p i d ) ;
a s s e r t ( p roc [ p i d ] . s t a t e == SUCCESS ) ;
r e m o v e w r i t e ( c h i d )

}
i n l i n e p o s t w r i t e ( c h i d , m s g t o w r i t e ) {

/ * a c q u i r e c h a n n e l l o c k * /
atomic { ( ch [ c h i d ] . l o c k == 0) −> ch [ c h i d ] . l o c k = 1 ; }

<add p r o c e s s id , m s g t o w r i t e t o ch [ c h i d ] . wqueue>
match ( c h i d ) ;
ch [ c h i d ] . l o c k = 0 ; / * r e l e a s e c h a n n e l l o c k * /

}
i n l i n e r e m o v e w r i t e ( c h i d ) {

/ * a c q u i r e c h a n n e l l o c k * /
atomic { ( ch [ c h i d ] . l o c k == 0) −> ch [ c h i d ] . l o c k = 1 ; }

<remove p r o c e s s id , msg from ch [ c h i d ] . wqueue>
ch [ c h i d ] . l o c k = 0 ; / * r e l e a s e c h a n n e l l o c k * /

}

When matching read and write requests on a channel we use the two-phase locking
protocol where the locks of both involved processes are acquired before the system state is
changed. To handle specific cases where multiple processes have posted multiple read and
write requests, a global ordering of the locks (Roscoe’s deadlock rule 7 [13]) must be used to
make sure they are always acquired in the same order. In this local thread system we order the
locks based on their memory address. This is both quick and ensures that the ordering never
changes during execution. An alternative index for a distributed system would be to generate
an index as a combination of the node address and the memory address.

Listing 5. Matching pairs of read and write requests for the two-phase locking.

i n l i n e match ( c h i d ) {
w = 0 ; r = 0 ;
do / * Matching a l l r e a d s t o a l l w r i t e s * /
: : ( r<ch [ c h i d ] . r l e n ) −>

w = 0 ;
do
: : (w<ch [ c h i d ] . wlen ) −>

o f f e r ( c h i d , r , w ) ;
w = w+1;

: : e l s e break ;
od ;
r = r +1;

: : e l s e break ;
od ; }



The two-phase locking in offer (Listing 6) is executed for every possible pair of read and
write requests found by match (Listing 5). The first phase acquires locks and the second phase
releases locks. Between the two phases, updates can be made. Eventually when a matching
is successful, three things are updated: the condition lock of both processes is notified, the
message is transferred from the writer to the reader and proc[ id ]. state is updated.

One disadvantage of the two-phase locking is that we may have to acquire the locks
of many read and write requests that are not in a ready state. The impact of this problem
can easily be reduced by testing the state variable before acquiring the lock. Normally, this
behaviour results in a race condition. However, the request can never change back to the
ready state once it has been committed and remains posted on the channel. Because of this,
the state can be tested before acquiring the lock, in order to find out whether time should be
spent acquiring the lock. When the lock is acquired, the state must be checked again to ensure
the request is still in the ready state. PyCSP [10] uses this approach in a similar offer method
to reduce the number of acquired locks.

Listing 6. The offer function offering a possible successful match between two requests.

i n l i n e o f f e r ( c h i d , r , w) {
r p i d = ch [ c h i d ] . r q ue ue [ r ] . i d ;
w pid = ch [ c h i d ] . wqueue [w ] . i d ;
i f / * a c q u i r e l o c k s u s i n g g l o b a l o r d e r i n g * /
: : ( r p i d < w pid ) −>

a c q u i r e ( r p i d ) ; a c q u i r e ( w pid ) ;
: : e l s e sk ip −>

a c q u i r e ( w pid ) ; a c q u i r e ( r p i d ) ;
f i ;
i f / * Does t h e two p r o c e s s e s match ? * /
: : ( p roc [ r p i d ] . s t a t e == READY && proc [ w pid ] . s t a t e == READY) −>

p roc [ r p i d ] . s t a t e = SUCCESS ;
p roc [ w pid ] . s t a t e = SUCCESS ;

/ * T r a n s f e r message * /
ch [ c h i d ] . r q ue ue [ r ] . msg = ch [ c h i d ] . wqueue [w ] . msg ;
ch [ c h i d ] . wqueue [w ] . msg = NULL;
p roc [ r p i d ] . r e s u l t c h = c h i d ;
p roc [ w pid ] . r e s u l t c h = c h i d ;

n o t i f y ( r p i d ) ;
n o t i f y ( w pid ) ;

/ * break match loop by u p d a t i n g w and r * /
w = LEN; r = LEN;

: : e l s e sk ip ;
f i ;
i f / * r e l e a s e l o c k s u s i n g r e v e r s e g l o b a l o r d e r i n g * /
: : ( r p i d < w pid ) −>

r e l e a s e ( w pid ) ; r e l e a s e ( r p i d ) ;
: : e l s e sk ip −>

r e l e a s e ( r p i d ) ; r e l e a s e ( w pid ) ;
f i ;

}

The alt construct shown in listing 7 is basically the same as a read or write, except that
the same process state is posted to multiple channels, thus ensuring that only one will be
matched.

The alt construct should scale linearly with the number of guards. For the verification of
the model we simplify alt to only accept two guards. If the model is model-checked success-



fully with two guards we expect an extended model to model-check successfully with more
than two guards. Adding more guards to the alt construct in listing 7 is a very simple task, but
it enlarges the system state-space and is unnecessary for the results presented in this paper.

Listing 7. The alt construct.

i n l i n e a l t ( c h i d 1 , op1 , msg1 , c h i d 2 , op2 , msg2 , r e s u l t c h a n , r e s u l t ) {
p roc [ p i d ] . s t a t e = READY;
r e s u l t = NULL;
i f : : ( op1 == READ) −> p o s t r e a d ( c h i d 1 ) ;

: : e l s e p o s t w r i t e ( c h i d 1 , msg1 ) ;
f i ;
i f : : ( op2 == READ) −> p o s t r e a d ( c h i d 2 ) ;

: : e l s e p o s t w r i t e ( c h i d 2 , msg2 ) ;
f i ;
a c q u i r e ( p i d ) ; / * i f no s u c c e s s , t h e n w a i t f o r s u c c e s s * /
i f : : ( p roc [ p i d ] . s t a t e == READY) −> w a i t ( p i d ) ;

: : e l s e sk ip ;
f i ;
r e l e a s e ( p i d ) ;
a s s e r t ( p roc [ p i d ] . s t a t e == SUCCESS ) ;
i f : : ( op1 == READ) −> r e m o v e r e a d ( c h i d 1 , r e s u l t ) ;

: : e l s e r e m o v e w r i t e ( c h i d 1 ) ;
f i ;
i f : : ( op2 == READ) −> r e m o v e r e a d ( c h i d 2 , r e s u l t ) ;

: : e l s e r e m o v e w r i t e ( c h i d 2 ) ;
f i ;
r e s u l t c h a n = proc [ p i d ] . r e s u l t c h ;

}

2.2. Distributed Channel Synchronisation

The local channel synchronisation described in the previous section has a process waiting
until a match has been made. The matching protocol performs a continuous two-phase lock-
ing for all pairs, thus the waiting process is constantly being tried even though it is passive.
This method is not possible in a distributed model with no shared memory, instead an ex-
tra process is created to function as a remote lock, protecting updates of the posted channel
requests. Similar to the local channel synchronisation, we must lock both processes in the
offer function and retrieve the current process state from the process. Finally, when a match
is found, both processes are notified and their process states are updated.

In figure 3, an overview of the distributed model is shown. The communicating pro-
cess can call read, write or alt to communicate on channels. These then post the necessary
requests to the involved channels through a Promela message channel. The channel home
(channelThread) receives the request and initiates the matching algorithm to search for a suc-
cessful offer amongst all matching pairs. During an offer, the channel home communicates
with the lock processes (lockThread) to ensure that no other channel home conflicts. Finally, a
matching pair arrives at a success and the lock process can notify the waiting process.

In listing 8 all Promela channels are created with a buffer size of 10 to model an asyn-
chronous connection. We have chosen a buffer size of 10, as this is large enough to never get
filled during verification in section 3. Every process communicating on a channel is required
to have a lock process (Listing 9) associated, to handle the socket communication going in
on proc * chan types.
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Figure 3. Pseudo call graph for the distributed channel synchronisation.

Listing 8. Modeling asynchronous sockets.

/ * D i r e c t i o n : communica t ing p r o c e s s −> channe lThread * /
chan ch cmd chan [C] = [ 1 0 ] of {byte , byte , byte } ; / * cmd , pid , msg * /
# d e f i n e POST WRITE 1
# d e f i n e POST READ 2
# d e f i n e REMOVE WRITE 3
# d e f i n e REMOVE READ 4

/ * D i r e c t i o n : channe lThread −> communica t ing p r o c e s s * /
chan proc cmd chan [ P ] = [ 1 0 ] of {byte , byte , byte } ; / * cmd , ch , msg * /
# d e f i n e REMOVE ACK 9

/ * D i r e c t i o n : channe lThread −> l o c k T h r e a d * /
chan p r o c a c q u i r e l o c k c h a n [ P ] = [ 1 0 ] of {byte } ; / * ch * /

/ * D i r e c t i o n : l o c k T h r e a d −> channe lThread * /
chan c h a c c e p t l o c k c h a n [C] = [ 1 0 ] of {byte , byte } ; / * pid , p r o c s t a t e * /

/ * D i r e c t i o n : channe lThread −> l o c k T h r e a d * /
chan p r o c r e l e a s e l o c k c h a n [ P ] = [ 1 0 ] of {byte , byte , byte } / * cmd , ch , msg * /
# d e f i n e RELEASE LOCK 7
# d e f i n e NOTIFY SUCCESS 8



The lockThread in listing 9 handles the remote locks for reading and updating the process
state from the channel home thread. The two functions remote acquire and remote release are
called from the channel home process during the offer procedure. The lockThread and the
communicating process use the mutex lock operations from listing 3 for synchronisation.

Listing 9. The lock process for a communicating process.

proctype l o c k T h r e a d ( byte i d ) {
byte c h i d , cmd , msg ;
byte c h i d 2 ;
b i t l o c k e d ;
do
: : p r o c a c q u i r e l o c k c h a n [ i d ] ? c h i d −>

c h a c c e p t l o c k c h a n [ c h i d ] ! id , p roc [ i d ] . s t a t e ;
l o c k e d = 1 ;
do
: : p r o c r e l e a s e l o c k c h a n [ i d ] ? cmd , c h i d 2 , msg ; −>

i f
: : cmd == RELEASE LOCK −>

a s s e r t ( c h i d == c h i d 2 ) ;
break ;

: : cmd == NOTIFY SUCCESS −>
a s s e r t ( c h i d == c h i d 2 ) ;
a c q u i r e ( i d ) ; / * mutex l o c k op * /
p roc [ i d ] . s t a t e = SUCCESS ;
p roc [ i d ] . r e s u l t c h = c h i d 2 ;
p roc [ i d ] . r e s u l t m s g = msg ;
n o t i f y ( i d ) ; / * mutex l o c k op * /
r e l e a s e ( i d ) ; / * mutex l o c k op * /

f i ;
od ;
l o c k e d = 0 ;

: : p roc cmd chan [ i d ] ? cmd , c h i d , msg −>
i f
: : cmd == REMOVE ACK −>

p roc [ i d ] . w a i t i n g r e m o v e s −−;
f i ;

: : t imeout −>
a s s e r t ( l o c k e d == 0 ) ;
a s s e r t ( p roc [ i d ] . w a i t i n g r e m o v e s == 0 ) ;
break ;

od ;
}
i n l i n e r e m o t e a c q u i r e ( c h i d , l o c k p i d , g e t s t a t e ) {

p r o c a c q u i r e l o c k c h a n [ l o c k p i d ] ! c h i d ;
c h a c c e p t l o c k c h a n [ c h i d ] ? id , g e t s t a t e ;
a s s e r t ( l o c k p i d == i d ) ;

}
i n l i n e r e m o t e r e l e a s e ( c h i d , l o c k p i d ) {

p r o c r e l e a s e l o c k c h a n [ l o c k p i d ] ! RELEASE LOCK , c h i d , NULL;
}



The offer function in listing 10 performs a distributed version of the function in listing 6.
In this model we exchange the message from the write request to the read request, update
the process state to SUCCESS, notifies the condition lock and release the lock process, all in
one transmission to the Promela channel proc release lock chan . We may still have to acquire
the locks of many read and write requests that are not in ready state. Acquiring the locks are
now more expensive than for the local channel model and it would happen more often, due
to the latency of getting old requests removed. If an extra flag is added to a request the offer
function can update the flag on success. If the flag is set, we know that the request has already
been accepted and we avoid the extra remote lock operations. If the flag is not set, the request
may still be old and not ready, as it might have been accepted by another process.

Listing 10. The offer function for distributed channel communication.

i n l i n e o f f e r ( c h i d , r , w) {
r p i d = ch [ c h i d ] . r q ue ue [ r ] . i d ;
w pid = ch [ c h i d ] . wqueue [w ] . i d ;
i f / * a c q u i r e l o c k s u s i n g g l o b a l o r d e r i n g * /
: : ( r p i d < w pid ) −>

r e m o t e a c q u i r e ( c h i d , r p i d , r s t a t e ) ;
r e m o t e a c q u i r e ( c h i d , w pid , w s t a t e ) ;

: : e l s e sk ip −>
r e m o t e a c q u i r e ( c h i d , w pid , w s t a t e ) ;
r e m o t e a c q u i r e ( c h i d , r p i d , r s t a t e ) ;

f i ;
i f / * Does t h e two p r o c e s s e s match ? * /
: : ( r s t a t e == READY && w s t a t e == READY) −>

p r o c r e l e a s e l o c k c h a n [ r p i d ] !
NOTIFY SUCCESS , c h i d , ch [ c h i d ] . wqueue [w ] . msg ;

p r o c r e l e a s e l o c k c h a n [ w pid ] !
NOTIFY SUCCESS , c h i d ,NULL;

w = LEN; r = LEN; / * break match loop * /
: : e l s e sk ip ;
f i ;
i f / * r e l e a s e l o c k s u s i n g r e v e r s e g l o b a l o r d e r i n g * /
: : ( r p i d < w pid ) −>

r e m o t e r e l e a s e ( c h i d , w pid ) ;
r e m o t e r e l e a s e ( c h i d , r p i d ) ;

: : e l s e sk ip −>
r e m o t e r e l e a s e ( c h i d , r p i d ) ;
r e m o t e r e l e a s e ( c h i d , w pid ) ;

f i ;
}

Every channel must have a channel home, where the read and write requests for com-
munication are held and the offers are made. The channel home invokes the matching algo-
rithm for every posted request, as the post * functions did in the local channel model. In this
model every channel home is a process (Listing 11). In another implementation there might
only be one process per node maintaining multiple channel homes through a simple channel
dictionary.



Listing 11. The channel home process.

proctype c h a n n e l T h r e a d ( byte c h i d ) {
DECLARE LOCAL CHANNEL VARS
do
: : ch cmd chan [ c h i d ] ? cmd , id , msg −>

i f
: : cmd == POST WRITE −>
<add p r o c e s s id , msg t o ch [ c h i d ] . wqueue>
match ( c h i d ) ;

: : cmd == POST READ −>
<add p r o c e s s id , msg t o ch [ c h i d ] . rqueue>
match ( c h i d ) ;

: : cmd == REMOVE WRITE −>
<remove p r o c e s s id , msg from ch [ c h i d ] . wqueue>
proc cmd chan [ i d ] !REMOVE ACK, c h i d , NULL;

: : cmd == REMOVE READ −>
<remove p r o c e s s id , msg from ch [ c h i d ] . rqueue>
proc cmd chan [ i d ] !REMOVE ACK, c h i d , NULL;

f i ;
: : t imeout −> / * c o n t r o l l e d shutdown * /

/ * read and w r i t e queues must be empty * /
a s s e r t ( ch [ c h i d ] . r l e n == 0 && ch [ c h i d ] . wlen == 0 ) ;
break ;

od ;
}

The functions read, write and alt are for the distributed channel model identical to the
local channel model. We can now transfer a message locally using the local channel model
or between nodes using the distributed channel model.

2.3. Dynamic Synchronisation Layer

The following model will allow channels to change the synchronisation mechanism on-the-
fly. This means that a local channel can be upgraded to become a distributed channel. Acti-
vation of the upgrade may be caused by a remote process requesting to connect to the local
channel. The model presented in this section can not detect which synchronisation mech-
anism to use, it must be set explicitly. If channel-ends were part of the implementation, a
channel could keep track of the location of all channel-ends and thus it would know what
mechanism to use.

A feature of the dynamic synchronisation mechanism is that specialised channels can be
used, such as a low-latency one-to-one channel resulting in improved communication time
and lower latency. The specialised channels may not support constructs like external-choice
(alt), but if an external-choice occurs the channel is upgraded. The upgrade procedure adds
an overhead, but since channels are often used more than once this is an acceptable overhead.

Figure 4 shows an overview of the transition model. In the figure, the communicating
process calls read or write to communicate on channels. These then call the functions enter ,
wait and leave functions. The enter function posts the request to the channel. The wait func-
tion ensures that the post is posted at the correct synchronisation level, otherwise it calls the
transcend function. The leave function is called, when the request has been matched success-
fully. The model includes a thread that at any time activates a switch in synchronisation level
and thus may force a call to the transcend function.
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To model the transition between two levels (layers) we set up two groups of channel re-
quest queues and a synchronisation level variable per channel. Every access to a channel vari-
able includes the channel id and the new synchronisation level variable sync level . Every com-
municating process is viewed as a single channel-end and is provided with a proc sync level .
This way the communicating process will know the synchronisation level that it is currently
at, even though the sync level variable for the channel changes. The synchronisation level of
a channel may change at any time using the switch sync level function in listing 12.

The match and offer functions from section 2.1 have been extended with a sync level
parameter used to access the channel container. The post * functions update the proc sync level
variable to the channel synchronisation level before posting a request, while the remove *
functions read the proc sync level variable and uses the methods of that level to remove the
request. Other than that, the functions match, offer , post * and remove * are similar to the ones
from the local channel model.

The switching of synchronisation level in listing 12 works by notifying all processes
with a request for communication posted to the channel. The channel sync level variable is
changed before notifying processes. In listing 14 when a process either tries to enter wait
or is awoken by the notification, it will check that the proc sync level variable of the posted
request still matches the sync level variable of the channel. If these do not match, we activate
the transcend (Listing 13) function. During a transition, the proc state variable is temporarily
changed to SYNC, so that the request is not matched by another process between release and
leave read . The leave read function calls remove read which uses the proc sync level variable to
remove the request and enter read calls post read which uses the updated channel sync level
variable.



Listing 12. Switching the synchronisation level of a channel.

i n l i n e s w i t c h s y n c l e v e l ( c h i d , t o l e v e l ) {
byte SL ;
byte r , w, r p i d , w pid ;
SL = ch [ c h i d ] . s y n c l e v e l ;
atomic { ( ch [ c h i d ] . l v l [ SL ] . l o c k == 0) −>

ch [ c h i d ] . l v l [ SL ] . l o c k = 1 ; } / * a c q u i r e * /
ch [ c h i d ] . s y n c l e v e l = t o l e v e l ;

/ * N o t i f y c o n n e c t e d p r o c e s s e s * /
r = 0 ;
do
: : ( r<ch [ c h i d ] . l v l [ SL ] . r l e n ) −>

r p i d = ch [ c h i d ] . l v l [ SL ] . rq ue u e [ r ] ;
a c q u i r e ( r p i d ) ;
i f
: : p r o c s t a t e [ r p i d ] == READY −>

n o t i f y ( r p i d ) ; / * N o t i f y p r o c e s s t o t r a n s c e n d * /
: : e l s e −> sk ip ;
f i ;
r e l e a s e ( r p i d ) ;
r = r +1;

: : e l s e break ;
od ;
w = 0 ;
do
: : (w<ch [ c h i d ] . l v l [ SL ] . wlen ) −>

w pid = ch [ c h i d ] . l v l [ SL ] . wqueue [w ] ;
a c q u i r e ( w pid ) ;
i f
: : p r o c s t a t e [ w pid ] == READY −>

n o t i f y ( w pid ) ; / * N o t i f y p r o c e s s t o t r a n s c e n d * /
: : e l s e −> sk ip ;
f i ;
r e l e a s e ( w pid ) ;
w = w+1;

: : e l s e break ;
od ;
ch [ c h i d ] . l v l [ SL ] . l o c k = 0 ; / * r e l e a s e * /

}

Listing 13. The transition mechanism for upgrading posted requests.

i n l i n e t r a n s c e n d r e a d ( c h i d ) {
p r o c s t a t e [ p i d ] = SYNC;
r e l e a s e ( p i d ) ;
l e a v e r e a d ( c h i d ) ;
e n t e r r e a d ( c h i d ) ;
a c q u i r e ( p i d ) ;

}

In listing 14 the read function from the local channel model (Section 2.1) is split into an
enter, wait and leave part. To upgrade blocking processes we use the transition mechanism
in listing 13 which can only be used between an enter and a leave part. We require that all
synchronisation levels must have an enter part, a wait / notify state and a leave part.



Listing 14. The read function is split into an enter, wait and leave part.

i n l i n e e n t e r r e a d ( c h i d ) {
p r o c s t a t e [ p i d ] = READY;
p o s t r e a d ( c h i d ) ;

}
i n l i n e w a i t r e a d ( c h i d ) {

/ * i f no s u c c e s s , t h e n w a i t f o r s u c c e s s * /
a c q u i r e ( p i d ) ;
do
: : ( p r o c s y n c l e v e l [ p i d ] == ch [ c h i d ] . s y n c l e v e l ) &&

( p r o c s t a t e [ p i d ] == READY) −>
w a i t ( p i d ) ;

: : ( p r o c s y n c l e v e l [ p i d ] != ch [ c h i d ] . s y n c l e v e l ) &&
( p r o c s t a t e [ p i d ] == READY) −>

t r a n s c e n d r e a d ( c h i d ) ;
: : e l s e break ;
od ;
r e l e a s e ( p i d ) ;

}
i n l i n e l e a v e r e a d ( c h i d ){

a s s e r t ( p r o c s t a t e [ p i d ] == SUCCESS | |
p r o c s t a t e [ p i d ] == SYNC ) ;

r e m o v e r e a d ( c h i d ) ;
}
i n l i n e r e a d ( c h i d ) {

e n t e r r e a d ( c h i d ) ;
w a i t r e a d ( c h i d ) ;
l e a v e r e a d ( c h i d ) ;

}

The three models presented can be used separately for new projects or they can be com-
bined to the following: a CSP library for a high-level programming language where channel-
ends are mobile and can be sent to remote locations. The channel is automatically upgraded,
which means that the communicating processes can exist as co-routines, threads and nodes.
Specialised channel implementations can be used without the awareness of the communi-
cating processes. Any channel implementation working at a synchronisation level in the dy-
namic channel, must provide six functions to the dynamic synchronisation layer: enter read ,
wait read , leave read , enter write , wait write and leave write .

3. Verification Using SPIN

The commands in listing 15 verify the state-space system of a SPIN model written in Promela.
The verification process checks for the absence of deadlocks, livelocks, race conditions,
unspecified receptions, unexecutable code and user-specified assertions. One of these user-
specified assertions checks that the message is correctly transferred for a channel commu-
nication. All verifications were run in a single thread on an Intel Xeon E5520 with 24 Gb
DDR3 memory with ECC.

Listing 15. The commands for running an automatic verification of the models.

s p i n −a model . p
gcc −o pan −O2 −DVECTORSZ=4196 −DMEMLIM=24000 −DSAFETY \\

−DCOLLAPSE −DMA=1112 pan . c
. / pan



The local and the distributed channel models are verified for six process configurations
and the transition model is verified for three process configurations. The results from running
the SPIN model checker to verify models is listed in table 1. The automatic verification of
the models found no errors. The “threads in model” column shows the threads needed for
running the configuration in the specific model. The number of transitions in table 1 does
not relate to how a real implementation of the model performs, but is the total amount of
different transitions between states. If the number of transitions is high, then the model allows
a large number of statements to happen in parallel. The SPIN model checker tries every
transition possible, and if all transitions are legal the model is verified successfully for a
process configuration. This means that for the verified configuration, the model has no dead-
locks, no livelocks, no starvation, no race-conditions and do not fail with a wrong end-state.

The longest running verification which completed was the distributed model for the con-
figuration in figure 5(f). This configuration completed after verifying the full state-space in 9
days. This means that adding an extra process to the model would multiply the total number
of states to a level where we would not be able to complete a verification of the full state-
space. The DiVinE model checker [14] is a parallel LTL model checker that should be able
to handle larger models than SPIN, by performing a distributed verification. DiVinE has not
been used with the models presented in this paper.

Table 1. The results from using the SPIN model checker to verify models.

Model Configuration Threads in model Depth Transitions
Local Fig. 5(a) 2 91 1217
Local Fig. 5(b) 2 163 10828
Local Fig. 5(c) 3 227 149774
Local Fig. 5(d) 4 261 2820315
Local Fig. 5(e) 3 267 420946
Local Fig. 5(f) 3 336 2056700
Distributed Fig. 5(a) 5 151 90260
Distributed Fig. 5(b) 6 245 28042640
Distributed Fig. 5(c) 7 326 18901677
Distributed Fig. 5(d) 9 446 1.1157292e+09
Distributed Fig. 5(e) 8 406 6.771875e+08
Distributed Fig. 5(f) 8 532 1.2102407e+10
Transition sync layer Fig. 5(a) 3 162 43277
Transition sync layer Fig. 5(c) 4 346 18567457
Transition sync layer Fig. 5(d) 5 467 3.9206391e+09

The process configurations in figure 5 cover a wide variety of possible transitions for the
local and distributed models. None of the configurations check a construct with more than
two processes, but we expect the configurations to be correct for more than two processes.
The synchronisation mechanisms are the same for a reading process and a writing process
in the presented models. Based on this, we can expect that all the configurations in figure 5
can be mirrored and model-checked successfully. The local one-to-one communication is
handled by the configuration in figure 5(a). Configurations in figure 5(c) and figure 5(d)
cover the one-to-any and any-to-any cases, and we expect any-to-one to also be correct since
it is a mirrored version of a one-to-any. The alt construct supports both input and output
guards, thus figure 5(b) presents an obvious configuration to verify. In CSP networks this
configuration does not make sense, but the verification of the configuration in figure 5(b)
shows that two competing alts configured with the worst-case priority do not cause any live-
locks. We must also model-check when alt communicates with reads or writes (Figure 5(e)).
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Figure 5. Process configurations used for verification.

Finally, the configuration in figure 5(f) verify when alts are communicating on one-to-any
and any-to-one. These configurations cover most situations for up to two processes.

4. Conclusions

We have presented three building blocks for a dynamic channel capable of transforming
the internal synchronisation mechanisms during execution. The change in synchronisation
mechanism is a basic part of the channel and can come about at any time. In the worst case,
the communicating processes will see a delay caused by having to repost a communication
request to the channel.

Three models have been presented and model-checked: the shared memory channel syn-
chronisation model, the distributed channel synchronisation model and the dynamic synchro-
nisation layer. The SPIN model checker has been used to perform an automatic verification
of these models separately. During the verification it was checked that the communicated
messages were transferred correctly using assertions. All models were found to verify with
no errors for a variety of configurations with communicating sequential processes. The full
model of the dynamic channel has not been verified, since the large state-space may make it
unsuited for exhaustive verification using a model checker.

With the results from this paper, we can also conclude that the synchronisation mecha-
nism in the current PyCSP [11,12] can be model-checked succesfully by SPIN. The current
PyCSP uses the two-phase locking approach with total ordering of locks, which has now been
shown to work correctly for both the shared memory model and the distributed model.

4.1. Future Work

The equivalence between the dynamic channel presented in this paper and CSP channels, as
defined in the CSP algebra, needs to be shown. Through equivalence, it can also be shown
that networks of dynamic channels function correctly.

The models presented in this paper will be the basis for a new PyCSP channel, that can
start out as a simple pipe and evolve into a distributed channel spanning multiple nodes. This
channel will support mobility of channel ends, termination handling, buffering, scheduling
of lightweight processes, skip and timeout guards and a discovery service for channel homes.
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