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Processors as a resource

I Current parallel programming models provide little support for
management of processors.

I Many are closely coupled to the machine and parameterised by the
number of processors.

I The programmer is left responsible for scheduling processes on
the underlying system.

I As the level of parallelism increases (106 processes at exascale), it
is clear that we require a means to automatically allocate
processors.

I We don’t expect to have to write our own memory allocation
routines!



Scalable parallel programming

I For parallel computations to scale it will be necessary to express
programs in an intrinsically parallel manner, focusing on
dependencies between processes.

I Excess parallelism enables scalability (parallel slackness hides
communication latency).

I It is also more expressive:
I For irregular and unbounded structures.
I Allows composite structures and construction of parallel

subroutines.

I The scheduling of processes and allocation of processors is then a
property of the language and runtime.

I But this requires the ability to rapidly initiate processes and collect
results from them as they terminate.



Contributions

1. The design of an explicit, lightweight scheme for distributed
dynamic processor allocation.

2. A convincing proof-of-concept implementation on a sympathetic
architecture.

3. Predictions for larger systems based on accurate performance
models.



Platform

I XMOS XS1 architecture:
I General-purpose, multi-threaded, message-passing and scalable.
I Primitives for threading, synchronisation and communication

execute in same time as standard load/store, branch and arithmetic
operations.

I Support for position independent code.
I Predictable.

I XK-XMP-64:
I Experimental board with 64 XCore processors connected in a

hypercube.
I 64kB of memory and 8 hardware threads per core.
I Aggregate 512-way concurrency, 25.6 GIPS and 4MB RAM.

I A bespoke language and runtime with a simple set of features to
demonstrate and experiment with distributed process creation.



Explicit processor allocation: notation

I Processor allocation is exposed in the language with the on
statement:

on p do Q

This executes process Q synchronously on processor p.
I The execution of all processes are implicitly on the current

processor.
I We can compose on in parallel to exploit multi-threaded

parallelism:
{ Q1 || on p do Q2 }

which offloads and executes Q2 while executing Q1.
I Processes must be disjoint.



Explicit processor allocation: implementation

source host

Form C(P)

C(P)Initialise PUpdates

I on forms a closure C of process P including the variable context
and a list of procedures including P and those it calls.

I A connection is initialised between the source and host processors
and the host creates a new thread for the incoming process.

I It then receives C(P) and initialises P on the new thread.

I All call branches are performed through a table (with the instruction
BLACP) so the host updates this to record the new address of each
procedure contained in C.

I When P has terminated, the host sends back any updated free
variables of P stored at the source (as P is disjoint).
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Rapid process distribution

I We can combine recursion and parallelism to rapidly generate
processes:

proc distribute (t , n) is
if n = 1 then node (t)
else
{ distribute (t , n/2) || on t + n/2 do distribute (t + n/2, n/2) }

I This distributes the process node over n processors in O(log n)
time.

I The execution of distribute (0, 4) proceeds in time and space:

p0 p1 p2 p3

distribute (0,4)
distribute (0,2) distribute (2,2)
distribute (0,1) distribute (1,1) distribute (2,1) distribute (3,1)

node (0) node (1) node (2) node (3)
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Rapid process distribution: execution time
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I 114.60µs (11,460 cycles) for 64 processors.
I Predicted 190µs for 1024 processors.



Mergesort

I Same structure as distribute but with work performed at leaves.
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Mergesort: execution time I
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I Minimum when input array is subdivided into 64B sections.



Mergesort: execution time II

I Measured (up to 64 cores) and predicted (up to 1024 cores) for
256B input.
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Mergesort: execution time III
I Predicted up to 1024 cores for 1GB input.
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I Single-source data-distribution is a worst-case.



Conclusions

I We have built a lightweight mechanism for dynamically allocating
processors in a distributed system.

I Combined with recursion we can rapidly distribute processes: over
64 processors in 114.60µs.

I It is possible to operate at a fine granularity: creation of a remote
process to operate on just 64B data.

I We can establish a lower bound on the performance of the
approach.

I Distribution over 1024 processors in ∼200µs (20,000 cycles).

I This scheme works well with large arrays of processors with small
memories and allows you to express programs to exploit this.

I Don’t need powerful cores with large memories.
I Emphasis changes from data structures to process structures.



Future work

1. Automatic placement of processes.

2. MPI implementation for evaluation on and comparison with
supercomputer architectures.

3. Optimisation of processor allocation mechanism such as pipelining
the reception and execution of closures.



Any questions?

Email:
hanlon@cs.bris.ac.uk

Project web page:
http://www.cs.bris.ac.uk/~hanlon/sire

http://www.cs.bris.ac.uk/~hanlon/sire
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