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An Abstract Model for Computation ���
with Agents acting Concurrently	



•  The universe consists of Agents which have 
shared access to Variables	



•  Each variable must have exactly one agent which 
can write to it (single writer)	



•  Each variable may have any number of agents 
which can read it (but see linearity later)	



•  Once a variable has been written to, it cannot be 
written to again (single assignment)	





Reduction to Assignments	


•  The simplest form of agent is an Assignment	


•  An assignment represents a variable assigned to a tuple 

containing a tag and further variables	


•  An assignment counts as the writer of the variable it 

assigns to	


•  An application of a computation rule is an agent reducing 

to a network of agents	


•  An agent which consists only of assignments cannot 

reduce further	


•  When an agent reduces, every variable to which it is a 

writer must have exactly one agent which is its new writer, 
the new agent may be an assignment	





Process	


•  A Process is an agent which consists of a set of Rules	


•  A Rule consists of a left-hand-side (lhs) which contains 

Matches, and a right-hand-side (rhs) which is an agent (so 
could be a network of agents)	



  A match consists of a variable which is matched, and a 
Tuple it matches, consisting of a tag and any number of 
new variables	



•  A lhs may have 0 or 1 matches for each variable to which 
the process has read access	



•  A lhs may have 0 or 1 matches for each variable which is 
in the tuple of another match in the lhs	



•  A rhs must put every variable to which the process has 
write access in a write position in its network	





Reduction	


•  A Reduction  occurs when a tuple assigned to a variable to 

which a process has read access has the same tag and same 
number of variables as a match on the lhs of a rule	



•  The variables in the tuple are linked to the variables in the 
match, and the match is removed from the rule	



  If a rule has no matches, the process reduces to the 
network of agents which is its rhs.  The other rules are 
discarded, and the rhs is incorporated directly into the 
universe of agents	



•  Assignments on the rhs to variables which the process had 
write access may then match matches on the lhs of other 
processes which have read access to those variables	





Futures	


•  A variable may be assigned a tuple which contains 

variables which have not yet been assigned	


•  Such a variable may then be used like any other 

variable	


•  The result is to build structures with “holes” which 

are later written to	


•  A process which needs to know the value of a 

variable for a match to reduce cannot reduce until 
it is assigned	



•  This is like a “future” but requires no special 
syntax	





Linear Variables	


•  Variables may be designated either linear or non-

linear	


•  Linear variables must have exactly one reader as 

well as exactly one writer	


•  A linear variable may be assigned a tuple 

containing non-linear and linear variables	


•  A non-linear variable may only be assigned a tuple 

containing non-linear variables	





Back Communication	


•  An assignment to a non-linear variable can only 

have read access to variables in its tuple	


•  An assignment to a linear variable may have write 

access rather than read access to variables in its 
tuple	



•  On reduction, the reader of a linear variable which 
is assigned a tuple which has write access to 
further variables must put each of those variables 
in exactly one write access position 	





Long-lived Agents	


•  When an agent reduces to a network of agents, we 

may consider one of them its successor	


•  When a variable is assigned a tuple, we may 

consider one of the variables in the tuple as its 
successor	



•  Agents may have rules in which one of the agents 
in the network of agents on the rhs is a recursive 
process	



•  This enables us to model long-lived agents 
communicating over channels, 	





Non-determinacy	


•  The lhs of rules in a process need not be 

mutually exclusive	


•  This enables us to have non-determinate agents: 

a situation may exist where more than one rule 
may be applied	



•  There is no backtracking to alternative once a 
rule is selected	



•  There is an indeterminate time delay between a 
rule becoming applicable due to all matches 
being matches, and the rule being applied, so we 
cannot say that if another rule becomes 
applicable, the first will still be used	





The World	


•  The world can be considered just another agent 

within the agents network, which communicates 
through an interface of shared variables.	



•  So all situations can be considered in terms of a 
closed network	



•  The rhs of a rule can be considered a universe in 
which the world is an additional agent whihjc 
reads the variables the rhs has wrote access to and 
writes to the variables the rhs has write access to	



•  Any subset of a network of agents can have a 
boundary drawn round it and the whole considered 
“an agent”	





A graphical representation	


•  Agents can be written as nodes in a directed graph	


•  A linear variable can be shown as an arc from one 

agent (its writer) to another (its reader)	


•  A non-linear variable with more than one readers 

can be shown as an arc leading to a Duplicator, 
with two arcs leading from the duplicator to other 
agents or further duplicators	



•  A non-linear variable with no readers can be 
shown as an arc leading from an agent to an Eraser	





A variable with ���
one reader and one writer	



f(…)—>(…,x,…), g(…,x,…)—>…!

f! g!
x!



A linear variable with ���
one reader and one writer	



f(…)—>(…,X,…), g(…,X,…)—>…!

f! g!
X!



A non-linear variable with ���
two readers and one writer	



f(…)—>x, g(…,x,…), h(…,x,…)!

f!

g!
x!

h!



Non-linear variable with two readers ���
and one writer showing ���

variable to variable assignment 	


f(…)—>x, g(…,x,…), y<—x,  h

(…,y,…)!

f!
g!x!

h!y!



Assignment	



x=p(y,z)	



p!
x!

y!

z!



A non-linear variable with ���
two readers and one writer showing ���

variable to variable assignment 	



f(…)—>x, g(…,x,…), y<—x,  h(…,y,…)!

f!
g!x!

h!y!



Assignment with ���
back communication	



X=q(y)—>z!

q

y!

z

X!



Three-way communication	


X=q(y)—>z, g(…,X,…), !
f(…)—>y, h(…,z,…)!

q

y!

z

X!
f!

g!

h!



Communication through ���
assignment extrusion and absorption 	



g!

A

B!
C!

x

y

V!

r!

f!



f(A,x,B,y)—>V,  g(y,V,C)—>r!

g!

A

B!
C!

x

y

V!

r!

f!



f(A,x,B,y)—>V ⇒  
!f(A,x,B1,y)—>V1, h(B,x,U)->B1, V=m

(V1)->U !

f!
g!

h

m

A

B!
C!

x

y

B1!
V!

V1!

U!

r!



f(A,x,B1,y)—>V1, g(y,V,C)—>r h
(B,x,U)->B1, V=m(V1)->U !

f!
g!

h

m

A

B!
C!

x

y

B1!
V!

V1!

U!

r!



g(y,V,C)—>r @ V=m(V1)->U ⇒ g1(y,V1,C)—>
(r,U) ! 

f!
g!

h

m

A

B!
C!

x

y

B1!
V!

V1!

U!

r!



f(A,x,B1,y)—>V1, g1(y,V1,C)—>
(r,U) h(B,x,U)—>B1! 

f!

h

A

B!
C!

x

y

B1!

V1!

U!

r!

g1!



g1(y,V1,C)—>(r,U) ⇒  
!g(y,V1,C1)—>r, U=n(y,r)—>s, k(s,C)—>C1!

f! g!

h

A

B!
C!

x

y

B1!

V1!

U!

r!

k
n s! C1!r!
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k
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f(A,x,B1,y)—>V1, g(y,V1,C1)—>r h
(B,x,U)—>B1, U=n(y,r)—>s ! 

r!



f! g!

h

A

B!
C!

x

y

B1!

V1!

U!

r!
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C1!

f(A,x,B1,y)—>V1, g(y,V1,C1)—>r h
(B,x,U)—>B1, U=n(y,r)—>s ! 

r!



h(B,x,U)—>B1 @ U=n(y,r)—>s ⇒  
! !h1(B,x,y,r)—>(B1,s)!

f! g!

A

B!
C!

x

y
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r!



!A=p(A1)->a, B=q(d)->T, C=r(b,C2)  
! !!

f! g!
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Nondeterminacy  
! !!

f! g!
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Rule with one match	


h(s,t)—>r !
{!
… !
  s=p(u,v) || f(v,t)—>w, g(u,w)—>r;!
…!
}	



s

t!

r!
p

f

gu

v
w!



Successful match and rule reduction	


h(s,t)—>r, s=p(x,y) ⇒!

!u<—x, v<—y, f(v,t)—>w, g(u,w)—>r!

s

t!

r!

p

f

gu

v w!

p
x!

y



Assignment Absorption (1)	


h(s,t)—>r, t=q(x,y)!

s

t!

r!
p

f

g
u

v
w!

q
x!

y



Assignment Absorption (1)	


h(s,t)—>r, t=q(x,y)  ⇒!

!  h1(s,x,y)—>r!

s

t!

r!
p

f

g
u

v
w!

q
x!

y



Rule with two independent matches	



s=p(u), t=q(v,w) ||  k(u,v,w)—>r!

p!

q
k!

u

v!

w

s

t!
r!



Assignment absorption (2)	


t=q(x,y),!

h1(s,x,y)—>r!
{ … s=p(u), t=q(v,w) || k(u,v,w)—>r … }!

p!

q
k!

u

v!

w

s

t!

r!x!

y!
q



Assignment absorption (2)	


h(s,t)—>r @ t=q(x,y) ⇒ h1(s,x,y)—>r!

h2(s,x,y)—>r!
{ … s=p(u) || v<—x, w<—y, k(u,v,w)—>r … }!

p!

k!

u

w

s

r!x!

y!

v!



Assignment absorption (3)	



•  Rule eliminated from set if the tag or 
number of variables or mode of variables 
does not match	





Rule with a match and ���
a dependent match	



s=p(w,t), t=q(u,v) || f(w,u,v)—>r!

u!

v

w!

s! r!f!p!
q!t!



Rule with a left hand side duplicator ���
and a dependent match	



s=p(w,t), t=q(u,v) || f(w,u,z)—>x, g(v,t)—>(z,y)!

u!

v

w!

s!

x!f!
p!

q!

t! g
y!

z!



Representing a mutable variable	


mutvar(S)—>V!
{!
 S=empty || V=empty;!
 S=cons(M,S1), M=get(V1) ||!
    merge(V1,V2)—>V, mutvar(S1)—>V2;!
 S=cons(M,S1), M=set()—>V1 ||!
    V=empty, mutvar(S1)—>V1!
}!



Syntactic Sugar	


mutvar(S)—>V!
{!
 S=[] || V=[];!
 S=[get(V1)|S1] ||!
    merge(V1,V2)—>V, mutvar(S1)—>V2;!
 S=[set—>V1|S1] ||!
    V=[], mutvar(S1)—>V1!
}!



More Syntactic Sugar	


mutvar(S)—>V!
{!
 S=[] || V=[];!
 S.get(V1) |!
    merge(V1,V)—>V;!
 S.set—>V1 |!
    V=[], V1<—V!
}!



Representing a value	


value(n,S)!
{!
 S=empty ||;!
 S=cons(M,S1), M=get()—>v ||!
  !v<—n, value(S1,n);!
}!

mutvar(S)—>V, value(n,V) !
 sets a new mutable variable to store the value n, it can 
proceed without n being assigned. 



[]! []!

[]!

*!

*!

:!

:!

get!

set!

merge!

S!

S!

S

V!

V!

V

mutvar(S)—>V!



[]!

*!:!

S!

S

n

get!

n!

value(n,S)!



Nondeterminate Stream Merger	


merge(S1,S2)->S!
{!
 S1=empty || S<-S2;!
 S2=empty || S<-S1;!
 S1=cons(M,S1t) || !
!  S=cons(M,St), merge(S1t,S2)->St;!
 S2=cons(M,S2t) || !
!  S=cons(M,St), merge(S1,S2t)->St;!
}!



merge(S1,S2)—>S!

[]!S1!

S2!

S1!

S2! []!

:!S1!

S2!

S1!

S2!  :!

 :!

*!

*!
 :!

S!

S!
S!

S!



append(S1,S2)—>S!

[]!S1!

S2!

 :!S1!

S2!

 :!

*!

S!
S!



Representing a lockable variable	


lockvar(S)—>V!
{!
 S=empty || V=empty;!
 S=cons(M,S1), M=get(V1) ||!
    merge(V1,V2)—>V, lockvar(S1)—>V2;!
 S=cons(M,S1), M=set()—>V1 ||!
    V=empty, lockvar(S1)—>V1;!
 S=cons(M,S1), M=lock(S2) ||	


!  append(S2,S1)—>S3, lockvar(S3)—>V;!

}!



Representing an Asynchronous Channel	


achan(Ch)->(Puts,Gets)!
{!
 Ch=[] || Puts=[], Gets=[];!
 Ch=[P|Ch1], P=()->V || !
!  P1=()->V, Puts=[P1|Puts1], achan(Ch1)—>(Puts1,Gets);!

 Ch=[G|Ch1], G=(V) || !
!  G1=(V), Gets=[G1|Gets1], achan(Ch)—>(Puts,Gets1);!

}!

achan1(Puts,Gets)!
{!
 Puts=[P|Puts1], P=()—>V1, Gets=[G|Gets1], G=(V2) ||!
!V1<—V2, achan1(Puts1,Gets1);!

}!



Using a mutable variable or 
asynchronous channel	



S=[()—>V|S1] !
S=[(V)|S1]!
use S1 for variable/channel subsequently	



append(S1,S2)—>S	


use S1 and S2 for variable/channel (sequential access)	



merge(S1,S2)—>S	


use S1 and S2 for variable/channel (concurrent access)	





Representing a λ-expression	


	

With exp(E)->(X,V) where E represents the 
expression, X is the argument and V represents a free 
variable, λx.exp is represented by F where	


!lambda(F)—>V!
!{!
! F=[] || V=[];!

 ! F=[C|F1], C=(R)—>X || exp(R)—>(X,V1), !!
! !lambda(F1)—>V2, merge(V1,V2)—>V!
!}!

	

then (λx.exp) n is given by R in F=[(R)—>N|F1] where 
N represents n, with F1 used for λx.exp subsequently.	





Y Combinator	


	

If F represents a λ-expression f, then the 
expression Y f can be represented by R with:  	


!F=[(R1)->F1], merge(F1,R)->R1	



:!F

Rmerge!

[
]!



History: “Aldwych Core”	


•  “Aldwych” general purpose concurrent language, 

originally syntactic sugar for concurrent logic 
programming	



•  Identification of minimal subset of concurrent 
logic language needed for Aldwych	



•  Establishment of variable moding and linearity 
throughout	



•  Improved operational model making use of 
knowledge of modes and linearity	





Current work	


•  Aldwych syntactic sugar incorporated features of 

major programming language paradigms	


•  Aldwych enabled a fine control of concurrent 

variations of language features	


•  So Aldwych Core can be used as an abstract 

model of concurrency giving an operational 
semantics	



•  Aldwych computes naturally with “holes”: 
variables not currently assigned, as they are being 
written to concurrently	





Future work	


•  Computing with “holes” is a form of proof: 

finding properties of programs before data is 
supplied	



•  Further use of partial evaluation techniques 
provides deeper proofs	



•  Aldwych computation is naturally in terms of an 
agent interacting with “the world” 	



•  This has similarities with the “game semantics” 
insight	



•  Can partial evaluation of Aldwych be taken to the 
point of providing full denotational semantics?	




