
A Model for Concurrency���
using ���

Single-Writer Single-Assignment���
Variables ���

CPA 2011, Limerick, Ireland	

Matthew Huntbach	

School of Electronic Engineering and Computer Science	

Queen Mary, University of London	

mmh@eecs.qmul.ac.uk	

An Abstract Model for Computation ���
with Agents acting Concurrently	

•  The universe consists of Agents which have
shared access to Variables	

•  Each variable must have exactly one agent which
can write to it (single writer)	

•  Each variable may have any number of agents
which can read it (but see linearity later)	

•  Once a variable has been written to, it cannot be
written to again (single assignment)	

Reduction to Assignments	

•  The simplest form of agent is an Assignment	

•  An assignment represents a variable assigned to a tuple

containing a tag and further variables	

•  An assignment counts as the writer of the variable it

assigns to	

•  An application of a computation rule is an agent reducing

to a network of agents	

•  An agent which consists only of assignments cannot

reduce further	

•  When an agent reduces, every variable to which it is a

writer must have exactly one agent which is its new writer,
the new agent may be an assignment	

Process	

•  A Process is an agent which consists of a set of Rules	

•  A Rule consists of a left-hand-side (lhs) which contains

Matches, and a right-hand-side (rhs) which is an agent (so
could be a network of agents)	

  A match consists of a variable which is matched, and a
Tuple it matches, consisting of a tag and any number of
new variables	

•  A lhs may have 0 or 1 matches for each variable to which
the process has read access	

•  A lhs may have 0 or 1 matches for each variable which is
in the tuple of another match in the lhs	

•  A rhs must put every variable to which the process has
write access in a write position in its network	

Reduction	

•  A Reduction occurs when a tuple assigned to a variable to

which a process has read access has the same tag and same
number of variables as a match on the lhs of a rule	

•  The variables in the tuple are linked to the variables in the
match, and the match is removed from the rule	

  If a rule has no matches, the process reduces to the
network of agents which is its rhs. The other rules are
discarded, and the rhs is incorporated directly into the
universe of agents	

•  Assignments on the rhs to variables which the process had
write access may then match matches on the lhs of other
processes which have read access to those variables	

Futures	

•  A variable may be assigned a tuple which contains

variables which have not yet been assigned	

•  Such a variable may then be used like any other

variable	

•  The result is to build structures with “holes” which

are later written to	

•  A process which needs to know the value of a

variable for a match to reduce cannot reduce until
it is assigned	

•  This is like a “future” but requires no special
syntax	

Linear Variables	

•  Variables may be designated either linear or non-

linear	

•  Linear variables must have exactly one reader as

well as exactly one writer	

•  A linear variable may be assigned a tuple

containing non-linear and linear variables	

•  A non-linear variable may only be assigned a tuple

containing non-linear variables	

Back Communication	

•  An assignment to a non-linear variable can only

have read access to variables in its tuple	

•  An assignment to a linear variable may have write

access rather than read access to variables in its
tuple	

•  On reduction, the reader of a linear variable which
is assigned a tuple which has write access to
further variables must put each of those variables
in exactly one write access position 	

Long-lived Agents	

•  When an agent reduces to a network of agents, we

may consider one of them its successor	

•  When a variable is assigned a tuple, we may

consider one of the variables in the tuple as its
successor	

•  Agents may have rules in which one of the agents
in the network of agents on the rhs is a recursive
process	

•  This enables us to model long-lived agents
communicating over channels, 	

Non-determinacy	

•  The lhs of rules in a process need not be

mutually exclusive	

•  This enables us to have non-determinate agents:

a situation may exist where more than one rule
may be applied	

•  There is no backtracking to alternative once a
rule is selected	

•  There is an indeterminate time delay between a
rule becoming applicable due to all matches
being matches, and the rule being applied, so we
cannot say that if another rule becomes
applicable, the first will still be used	

The World	

•  The world can be considered just another agent

within the agents network, which communicates
through an interface of shared variables.	

•  So all situations can be considered in terms of a
closed network	

•  The rhs of a rule can be considered a universe in
which the world is an additional agent whihjc
reads the variables the rhs has wrote access to and
writes to the variables the rhs has write access to	

•  Any subset of a network of agents can have a
boundary drawn round it and the whole considered
“an agent”	

A graphical representation	

•  Agents can be written as nodes in a directed graph	

•  A linear variable can be shown as an arc from one

agent (its writer) to another (its reader)	

•  A non-linear variable with more than one readers

can be shown as an arc leading to a Duplicator,
with two arcs leading from the duplicator to other
agents or further duplicators	

•  A non-linear variable with no readers can be
shown as an arc leading from an agent to an Eraser	

A variable with ���
one reader and one writer	

f(…)—>(…,x,…), g(…,x,…)—>…!

f! g!
x!

A linear variable with ���
one reader and one writer	

f(…)—>(…,X,…), g(…,X,…)—>…!

f! g!
X!

A non-linear variable with ���
two readers and one writer	

f(…)—>x, g(…,x,…), h(…,x,…)!

f!

g!
x!

h!

Non-linear variable with two readers ���
and one writer showing ���

variable to variable assignment 	

f(…)—>x, g(…,x,…), y<—x, h

(…,y,…)!

f!
g!x!

h!y!

Assignment	

x=p(y,z)	

p!
x!

y!

z!

A non-linear variable with ���
two readers and one writer showing ���

variable to variable assignment 	

f(…)—>x, g(…,x,…), y<—x, h(…,y,…)!

f!
g!x!

h!y!

Assignment with ���
back communication	

X=q(y)—>z!

q

y!

z

X!

Three-way communication	

X=q(y)—>z, g(…,X,…), !
f(…)—>y, h(…,z,…)!

q

y!

z

X!
f!

g!

h!

Communication through ���
assignment extrusion and absorption 	

g!

A

B!
C!

x

y

V!

r!

f!

f(A,x,B,y)—>V, g(y,V,C)—>r!

g!

A

B!
C!

x

y

V!

r!

f!

f(A,x,B,y)—>V ⇒  
!f(A,x,B1,y)—>V1, h(B,x,U)->B1, V=m

(V1)->U !

f!
g!

h

m

A

B!
C!

x

y

B1!
V!

V1!

U!

r!

f(A,x,B1,y)—>V1, g(y,V,C)—>r h
(B,x,U)->B1, V=m(V1)->U !

f!
g!

h

m

A

B!
C!

x

y

B1!
V!

V1!

U!

r!

g(y,V,C)—>r @ V=m(V1)->U ⇒ g1(y,V1,C)—>
(r,U) ! 

f!
g!

h

m

A

B!
C!

x

y

B1!
V!

V1!

U!

r!

f(A,x,B1,y)—>V1, g1(y,V1,C)—>
(r,U) h(B,x,U)—>B1! 

f!

h

A

B!
C!

x

y

B1!

V1!

U!

r!

g1!

g1(y,V1,C)—>(r,U) ⇒  
!g(y,V1,C1)—>r, U=n(y,r)—>s, k(s,C)—>C1!

f! g!

h

A

B!
C!

x

y

B1!

V1!

U!

r!

k
n s! C1!r!

f! g!

h

A

B!
C!

x

y

B1!

V1!

U!

r!

k
n s! C1!

f(A,x,B1,y)—>V1, g(y,V1,C1)—>r h
(B,x,U)—>B1, U=n(y,r)—>s ! 

r!

f! g!

h

A

B!
C!

x

y

B1!

V1!

U!

r!

kn
s!

C1!

f(A,x,B1,y)—>V1, g(y,V1,C1)—>r h
(B,x,U)—>B1, U=n(y,r)—>s ! 

r!

h(B,x,U)—>B1 @ U=n(y,r)—>s ⇒  
! !h1(B,x,y,r)—>(B1,s)!

f! g!

A

B!
C!

x

y

B1!

V1!

k
s!

h1!

r! C1!

r!

!A=p(A1)->a, B=q(d)->T, C=r(b,C2)  
! !!

f! g!

A

B!

C!x

y

B1!

V1!

k
s!

h1!

r!

p

d!

T

A1!
a!

q! r!

C1!

b C2!r!

Nondeterminacy  
! !!

f! g!

A

B!

C!x

y

B1!

V1!

k
s!

h1!

r!

p

d!

T

A1!
a!

q! r!

C1!

b C2!r!

Nondeterminacy  
! !!

B!

C!x

y

p

d!

T

A1!

a!

q!

r!

b
C2!

r!

A

Rule with one match	

h(s,t)—>r !
{!
… !
 s=p(u,v) || f(v,t)—>w, g(u,w)—>r;!
…!
}	

s

t!

r!
p

f

gu

v
w!

Successful match and rule reduction	

h(s,t)—>r, s=p(x,y) ⇒!

!u<—x, v<—y, f(v,t)—>w, g(u,w)—>r!

s

t!

r!

p

f

gu

v w!

p
x!

y

Assignment Absorption (1)	

h(s,t)—>r, t=q(x,y)!

s

t!

r!
p

f

g
u

v
w!

q
x!

y

Assignment Absorption (1)	

h(s,t)—>r, t=q(x,y) ⇒!

! h1(s,x,y)—>r!

s

t!

r!
p

f

g
u

v
w!

q
x!

y

Rule with two independent matches	

s=p(u), t=q(v,w) || k(u,v,w)—>r!

p!

q
k!

u

v!

w

s

t!
r!

Assignment absorption (2)	

t=q(x,y),!

h1(s,x,y)—>r!
{ … s=p(u), t=q(v,w) || k(u,v,w)—>r … }!

p!

q
k!

u

v!

w

s

t!

r!x!

y!
q

Assignment absorption (2)	

h(s,t)—>r @ t=q(x,y) ⇒ h1(s,x,y)—>r!

h2(s,x,y)—>r!
{ … s=p(u) || v<—x, w<—y, k(u,v,w)—>r … }!

p!

k!

u

w

s

r!x!

y!

v!

Assignment absorption (3)	

•  Rule eliminated from set if the tag or
number of variables or mode of variables
does not match	

Rule with a match and ���
a dependent match	

s=p(w,t), t=q(u,v) || f(w,u,v)—>r!

u!

v

w!

s! r!f!p!
q!t!

Rule with a left hand side duplicator ���
and a dependent match	

s=p(w,t), t=q(u,v) || f(w,u,z)—>x, g(v,t)—>(z,y)!

u!

v

w!

s!

x!f!
p!

q!

t! g
y!

z!

Representing a mutable variable	

mutvar(S)—>V!
{!
 S=empty || V=empty;!
 S=cons(M,S1), M=get(V1) ||!
 merge(V1,V2)—>V, mutvar(S1)—>V2;!
 S=cons(M,S1), M=set()—>V1 ||!
 V=empty, mutvar(S1)—>V1!
}!

Syntactic Sugar	

mutvar(S)—>V!
{!
 S=[] || V=[];!
 S=[get(V1)|S1] ||!
 merge(V1,V2)—>V, mutvar(S1)—>V2;!
 S=[set—>V1|S1] ||!
 V=[], mutvar(S1)—>V1!
}!

More Syntactic Sugar	

mutvar(S)—>V!
{!
 S=[] || V=[];!
 S.get(V1) |!
 merge(V1,V)—>V;!
 S.set—>V1 |!
 V=[], V1<—V!
}!

Representing a value	

value(n,S)!
{!
 S=empty ||;!
 S=cons(M,S1), M=get()—>v ||!
 !v<—n, value(S1,n);!
}!

mutvar(S)—>V, value(n,V) !
 sets a new mutable variable to store the value n, it can
proceed without n being assigned.

[]! []!

[]!

*!

*!

:!

:!

get!

set!

merge!

S!

S!

S

V!

V!

V

mutvar(S)—>V!

[]!

*!:!

S!

S

n

get!

n!

value(n,S)!

Nondeterminate Stream Merger	

merge(S1,S2)->S!
{!
 S1=empty || S<-S2;!
 S2=empty || S<-S1;!
 S1=cons(M,S1t) || !
! S=cons(M,St), merge(S1t,S2)->St;!
 S2=cons(M,S2t) || !
! S=cons(M,St), merge(S1,S2t)->St;!
}!

merge(S1,S2)—>S!

[]!S1!

S2!

S1!

S2! []!

:!S1!

S2!

S1!

S2! :!

 :!

*!

*!
 :!

S!

S!
S!

S!

append(S1,S2)—>S!

[]!S1!

S2!

 :!S1!

S2!

 :!

*!

S!
S!

Representing a lockable variable	

lockvar(S)—>V!
{!
 S=empty || V=empty;!
 S=cons(M,S1), M=get(V1) ||!
 merge(V1,V2)—>V, lockvar(S1)—>V2;!
 S=cons(M,S1), M=set()—>V1 ||!
 V=empty, lockvar(S1)—>V1;!
 S=cons(M,S1), M=lock(S2) ||	

! append(S2,S1)—>S3, lockvar(S3)—>V;!

}!

Representing an Asynchronous Channel	

achan(Ch)->(Puts,Gets)!
{!
 Ch=[] || Puts=[], Gets=[];!
 Ch=[P|Ch1], P=()->V || !
! P1=()->V, Puts=[P1|Puts1], achan(Ch1)—>(Puts1,Gets);!

 Ch=[G|Ch1], G=(V) || !
! G1=(V), Gets=[G1|Gets1], achan(Ch)—>(Puts,Gets1);!

}!

achan1(Puts,Gets)!
{!
 Puts=[P|Puts1], P=()—>V1, Gets=[G|Gets1], G=(V2) ||!
!V1<—V2, achan1(Puts1,Gets1);!

}!

Using a mutable variable or
asynchronous channel	

S=[()—>V|S1] !
S=[(V)|S1]!
use S1 for variable/channel subsequently	

append(S1,S2)—>S	

use S1 and S2 for variable/channel (sequential access)	

merge(S1,S2)—>S	

use S1 and S2 for variable/channel (concurrent access)	

Representing a λ-expression	

	

With exp(E)->(X,V) where E represents the
expression, X is the argument and V represents a free
variable, λx.exp is represented by F where	

!lambda(F)—>V!
!{!
! F=[] || V=[];!

 ! F=[C|F1], C=(R)—>X || exp(R)—>(X,V1), !!
! !lambda(F1)—>V2, merge(V1,V2)—>V!
!}!

	

then (λx.exp) n is given by R in F=[(R)—>N|F1] where
N represents n, with F1 used for λx.exp subsequently.	

Y Combinator	

	

If F represents a λ-expression f, then the
expression Y f can be represented by R with: 	

!F=[(R1)->F1], merge(F1,R)->R1	

:!F

Rmerge!

[
]!

History: “Aldwych Core”	

•  “Aldwych” general purpose concurrent language,

originally syntactic sugar for concurrent logic
programming	

•  Identification of minimal subset of concurrent
logic language needed for Aldwych	

•  Establishment of variable moding and linearity
throughout	

•  Improved operational model making use of
knowledge of modes and linearity	

Current work	

•  Aldwych syntactic sugar incorporated features of

major programming language paradigms	

•  Aldwych enabled a fine control of concurrent

variations of language features	

•  So Aldwych Core can be used as an abstract

model of concurrency giving an operational
semantics	

•  Aldwych computes naturally with “holes”:
variables not currently assigned, as they are being
written to concurrently	

Future work	

•  Computing with “holes” is a form of proof:

finding properties of programs before data is
supplied	

•  Further use of partial evaluation techniques
provides deeper proofs	

•  Aldwych computation is naturally in terms of an
agent interacting with “the world” 	

•  This has similarities with the “game semantics”
insight	

•  Can partial evaluation of Aldwych be taken to the
point of providing full denotational semantics?	

