
CONPASU-tool:
A Concurrent Process Analysis Support tool

based on Symbolic Computation

Yoshinao Isobe （磯部 祥尚）
Information Technology Research Institute
AIST, Japan

1

CPA 2011 (21 June 2011)

0:30

Contents

2

 Introduction
 Motivation
 CONPASU

 Analysis method
 Sequentialization
 State-reduction
 Abstraction

 Application
 Data transferring
 Analysis

 Related work

 Summary

2:00 CSPM : the machine readable dialect of CSP used in FDR

Input

Output

CSP model

(CSPM Script)

Formalizing

Analysis-results

CONPASU

Static analysis

CONAPSU is a static analysis tool of concurrent processes.

Feedback

Structure

Behavior

Structures of concurrent processes,
Behaviors of component processes

REM SQ SUM

Design

Introduction

3

 Motivation
 CONPASU

2:00

Motivation

 How can we see behaviors of concurrent processes?

4

REM SQ SUM

SQ REM

SUM

SPEC

SEQ

Requirements
FDR

REM SQ SUM Black box

Concurrent process
(CSP model)

Sequential process
(CSP model)

Sequential process
(CSP model)

=F : failures-equivalence

CONPASU

The goal is to develop it

“Reading” is easier
than “writing”.

Implementation

Specification

4:50

CAL: An example of concurrent process

 CAL: a concurrent process which consists of 3 processes with synchronous channels

5

in
sq

end1
rem
end2

prt
prts REM SQ(n) SUM(y)

“prt” prints each
interim result.

“prts” prints
the final sum.

“in” receives
a value N times

n

in?x1[n>0]

n,x1

sq!(x1*x1) / n:=n-1

end1!0[n==0]

SQ

/n:=N

sq?x2

x2

rem!(x2%10)

z
end1?z end2!z

REM

y

rem?x3 prt!x3 / y:=y+x3

y
end2?z prts!y

y,x3

SUM

/y:=0

Condition Assignment

CAL(N)
Synchronous channel

7:10

The analysis method of CONPASU (outline)

A transition graph is generated from a given CSP model (sequentialization).

6 Graphviz is used for display graphs.

REM SQ SUM
7 states
10 transitions

12 states
17 transitions

= (SQREM(N) [|{|rem,end2|}|] SUM(0))
 ＼ {|rem,end2|}
= (SQ(n) [|{|sq,end1|}|] REM)
 ＼{|sq,end1|}

= ((n>0) & in?x1 -> sq!(x1*x1) -> SQ(n-1))
[] ((n==0) & end1!0 -> STOP)
= sq?x2 -> rem!(x2%10) -> REM
[] end1?z1 -> end2!z1 -> STOP
= rem?x3 -> prt!x3 -> SUM(y+x3)
[] end2?z2 -> prts!y -> STOP

 CAL(N)

 SQREM(n)

 SQ(n)

 REM

 SUM(y)

z

Structure

Behavior

Concurrent process (CSP model)

SEQ(N) = SEQ0(N,0)＼{|tmp|}
SEQ0(n,y) = (n>0) & in?x1 -> SEQ6(n-1,x1*x1%10,y)
 [] (n==0) & tmp!0 -> SEQ4(y)
SEQ4(y) = prts!(y) -> SEQ7
SEQ6(n,x3,y) = (n>0) & in?x1 -> SEQ11(n-1,x3,y,x1*x1)
 [] (n==0) & tmp!0 -> SEQ9(x3,y,0)
 [] prt!(x3) -> SEQ0(n,y+x3)
SEQ7 = STOP
SEQ9(x3,y,z1) = prt!(x3) -> SEQ4(y+x3)
SEQ11(n,x3,y,x2) = (n>0) & in?x1 -> SEQ12(x3,y,x2,n,x1)
 [] prt!(x3) -> SEQ6(n,x2%10,y+x3)
SEQ12(x3,y,x2,n,x1)
 = prt!(x3) -> SEQ11(n-1,x2%10,y+x3,x1*x1)

Sequential process (CSP model)
=F

Needless internal-transitions are bypassed (state-reduction).

=F : (stable) failures-equivalence

8:40

CAL

[step 1]
[step 2]

Analysis method

7

 Sequentialization
 State-reduction
 Abstraction

9:00

Sequentialization

8

 A symbolic operational semantics with data-assignments and locations is used.

= (SQREM(N) [|{|rem,end2|}|] SUM(0)) ¥ {|rem,end2|}
= (SQ(n) [|{|sq,end1|}|] REM) ¥ {|sq,end1|}

= ((n>0) & in?x1 -> sq!(x1*x1) -> SQ(n-1))
[] ((n==0) & end1!0 -> STOP)
= sq?x2 -> rem!(x2%10) -> REM
[] end1?z1 -> end2!z1 -> STOP
= rem?x3 -> prt!x3 -> SUM(y+x3)
[] end2?z2 -> prts!y -> STOP

 CAL(N)
 SQREM(n)

 SQ(n)

 REM

 SUM(y)

REM SQ SUM

@((10)0) @((01)0) @(01)

Symbolic operational
semantics

CONPASU

prt!x3 / y:=y+x3 @ (01)

τ / x3:=x2%10 @ ((01)1)

τ: Internal event

The CSP model of CAL(N)

Locations
11:30

 Variables are not instantiated to values in symbolic semantics.
→ Many values can be folded into a variable in symbolic labeled transition graphs.
→ State-minimization is difficult (often undecidable).

State-reduction (internal-choice)

 Needless internal transitions are bypassed with preserving the failures-equivalence =F .

9

a

b c

τ τ

a

b c

a

P1

R1

a

b c

R2

P1 =F R1

P1 ≠F R2

e.g. A removable state with non-deterministic internal transitions.
(in fact, it is more complex because conditions and assignments are considered)

Removable

Bypass

=F : (stable) failures-equivalence

τ: Internal event

Non-deterministic choice

Deterministic choice

13:00

State-reduction (interleaving)

10

e.g. Removable states with interleaving.

a/x:=y
@(11)

c!y
@(11)

τ/y:=y+1
@(01)

P3

b!x
@(10)

b!x
@(10)

Removable

P3 =F R3

τ/y:=y+1
@(01)

In CONPASU, locations are used for checking the independency.

 Needless internal transitions are bypassed with preserving failures-equivalence =F .

Removable
a/x:=y, y:=y+1

@(11)

c!y
@(11)

R3

b!x
@(10)

Bypass Independent

14:30

State-reduction (an example)

11

 The removable states in the transition graph of CAL(N) and the reduced graph.

Bypass

CONPASU

REM SQ SUM

Removable 7 states
10 transitions

12 states
17 transitions

=F

15:40

By Corollary 2.1 (p.353) in Proceedings of CPA2011

Abstraction

 Analysis by focusing on interesting channels (e.g. in and prts)

12

in
sq

end1
rem
end2

prt
prts REM SQ(n) SUM(y)

Hiding interim
result on prt

in?x1 [n>0]
/ y:=y+(x1*x1)%10,n:=n-1
@ ((11)1)

CAL ACAL

CONPASU
Sequentialization,
State-reduction

= CAL(N)＼{|prt|}
= (SQREM(N) [|{|rem,end2|}|] SUM(0))＼ {|rem,end2|}
= (SQ(n) [|{|sq,end1|}|] REM) ＼{|sq,end1|}

= ((n>0) & in?x1 -> sq!(x1*x1) -> SQ(n-1))
[] ((n==0) & end1!0 -> STOP)
= sq?x2 -> rem!(x2%10) -> REM
[] end1?z1 -> end2!z1 -> STOP
= rem?x3 -> prt!x3 -> SUM(y+x3)
[] end2?z2 -> prts!y -> STOP

 ACAL(N)
CAL(N)

 SQREM(n)

 SQ(n)

 REM

 SUM(y)

3 states (12→3)
3 transitions (17→3)

17:10

Application

13

 Data-sequence transfer
 Analysis

17:10

The CSP model of TransferSys

 TransferSys is a concurrent process that consists of 3 processes: UI, Sender, and Receiver.

14

 TransferSys = (UI [|{|input, quit0, succ, ok, ng|}|] Transfer)
 ＼ {|input, quit0, succ, ok, ng|}

 Transfer = (Sender [|{|start,net,term,quit1,ack|}|] Receiver)
 ＼{|start,net,term,quit1,ack|}

 UI = upload?ds -> input!ds -> (ok?a -> Wait [] ng?a -> UI)
 Wait = cancel?b -> quit0!0 -> UI [] succ?u -> complete!0 -> UI

 Sender = input?ds0 -> Check(ds0)
 Check(ds0) = ((#ds0>0) & ok!0 -> start!0 -> Sending(ds0))
 [] ((not #ds0>0) & ng!0 -> Sender)
 Sending(ds0) = ((#ds0>0) & net!(head(ds0)) -> Sending(tail(ds0)))
 [] ((not #ds0>0) & term!0 -> Term)
 [] (quit0?x -> quit1!0 -> Sender)
 Term = ack?z -> succ!0 -> Sender

 Receiver = start?y -> Receiving(<>)
 Receiving(ds1) = (net?d -> Receiving(ds1^<d>))
 [] (term?y -> output!ds1 -> ack!0 -> Receiver)
 [] (quit1?y -> Receiver)

The CSP model of TransferSys

UI

input

ok

ng

quit0

succ

Sender

start

net

term

quit1

ack

Receiver

upload

cancel

complete

Transfer

output

TransferSys

Structure

TransferSys

Behavior

UI

Receiver

Sender

18:20

 Sender transfers data-sequences from UI to Receiver (it can be cancelled).

The behaviors of the 3 components

 Sender synchronously communicates with UI or Receiver.
 How does their composition behave?

15

UI

Receiver

Sender UI

input

ok

ng

quit0

succ

Sender

start

net

term

quit1

ack

Receiver

upload

cancel

complete

Transfer

output

TransferSys

Sync
Sync

19:10

 TransferSys = (UI [|{|input, quit0, succ, ok, ng|}|] Transfer)
 ＼ {|input, quit0, succ, ok, ng|}

 Transfer = (Sender [|{|start,net,term,quit1,ack|}|] Receiver)
 ＼ {|start,net,term,quit1,ack|}

 UI = upload?ds -> input!ds -> (ok?a -> Wait [] ng?a -> UI)
 Wait = cancel?b -> quit0!0 -> UI [] succ?u -> complete!0 -> UI

 Sender = input?ds0 -> Check(ds0)
 Check(ds0) = ((#ds0>0) & ok!0 -> start!0 -> Sending(ds0))
 [] ((not #ds0>0) & ng!0 -> Sender)
 Sending(ds0) = ((#ds0>0) & net!(head(ds0)) -> Sending(tail(ds0)))
 [] ((not #ds0>0) & term!0 -> Term)
 [] (quit0?x -> quit1!0 -> Sender)
 Term = ack?z -> succ!0 -> Sender

 Receiver = start?y -> Receiving(<>)
 Receiving(ds1) = (net?d -> Receiving(ds1^<d>))
 [] (term?y -> output!ds1 -> ack!0 -> Receiver)
 [] (quit1?y -> Receiver)

The behavior of TransferSys

 The symbolic labeled transition graph generated by CONPASU from TransferSys

16

TransferSys＼{|complete |}

8 states (18 8)
14 transitions (27 14)

τ[#ds0>0]
/ds0:=tail(ds0),
 ds1:=ds1^<head(ds0)>
@(0(11))

Deadlock ! CONPASU

Graphviz is used for display graphs.

Cancel

Sequentialization,
State-reduction

ds0 : the sequence-variable in Sender
ds1 : the sequence-variable in Receiver

20:20

Sender

(A revised version)

A revision of Sender

 A transition is added in Sender for receiving the cancel signal after transfer completion.

17

It can receive the
cancel signal after
the completion.

Sender

Added

Competed

Sending

Cancel

 Revision

21:10

TransferSys＼{|complete |}
TransferSys = (UI [|{|input, quit0, succ, ok, ng|}|] Transfer)
 ＼ {|input, quit0, succ, ok, ng|}

 Transfer = (Sender [|{|start,net,term,quit1,ack|}|] Receiver)
 ＼ {|start,net,term,quit1,ack|}

 UI = upload?ds -> input!ds -> (ok?a -> Wait [] ng?a -> UI)
 Wait = cancel?b -> quit0!0 -> UI [] succ?u -> complete!0 -> UI

 Sender = input?ds0 -> Check(ds0)
 Check(ds0) = ((#ds0>0) & ok!0 -> start!0 -> Sending(ds0))
 [] ((not #ds0>0) & ng!0 -> Sender)
 Sending(ds0) = ((#ds0>0) & net!(head(ds0)) -> Sending(tail(ds0)))
 [] ((not #ds0>0) & term!0 -> Term)
 [] (quit0?x -> quit1!0 -> Sender)
 Term = ack?z -> (succ!0 -> Sender [] quit0?x -> Sender)

 Receiver = start?y -> Receiving(<>)
 Receiving(ds1) = (net?d -> Receiving(ds1^<d>))
 [] (term?y -> output!ds1 -> ack!0 -> Receiver)
 [] (quit1?y -> Receiver)

The behavior of the revised TransferSys

 The transition graph of the revised TransferSys.

18

CONPASU

Revised

7 states (18 8)
14 transitions (27 14)

Sequentialization,
State-reduction

21:50

Related works

19

 PAT
 LTSA

21:50

PAT (Process Analysis Toolkit)

 PAT can display transition graphs of CSP models.

PAT (GUI)

by Simulator

fix N=3 and finitize input in {0,1}

20

105 states
160 transitions

The standard transition graph of CAL(3)

in
sq

end

rem

end’

prt

prts REM SQ(n) SUM(y)

8 states
12 transitions

cf. CONPASU

CAL
any N and any input

23:00

 Standard (non-symbolic) semantics is used.
(all variables are instantiated to possible values)

LTSA (LTS analyzer)

 LTSA can display minimized transition graphs.

LTSA (GUI)

by Draw

21

in
sq

end

rem

end’

prt

prts REM SQ(n) SUM(y)

fix N=3 and finitize input in {0,1}

8 states
12 transitions

cf. CONPASU

The minimized standard transition graph of CAL(3)

42 states (102→42)
67 transitions (157→67)

any N and any input

23:50

 Standard (non-symbolic) semantics is used.
(all variables are instantiated to possible values)

Summary

22

 Advantages
 Future works

23:50

Summary

23

 The advantages[A] and disadvantages[D] of CONPASU compared with model-checkers:
 [A] Symbolic operational semantics is used (i.e. variables are not instantiated),
 [A] An equal sequential process (and the graph) can be automatically generated.
 [D] Symbolic labels are usually more complex than standard (instantiated) labels.
 [D] Generated sequential processes are not nececssarily optimized (e.g. not minimized).

→ CONPASU and model checker will complement each other.

 Future works:

 Careful consideration about livelocks
 Symbolic computation of data-expressions (1+2 ≠ 2+1 in the prototype)
 Improvement of CONPASU (Java, 6,000 lines) and evaluation of performance

CONPASU-website: http://staff.aist.go.jp/y-isobe/conpasu/

/n:=0
sq!n2/ n:=n+1

n 0 1
sq!0

2
sq!1

3
sq!4 sq!9

...

By symbolic semantics By standard (non-symbolic) semantics

 A symbolic analysis method and its implementation CONPASU have been presented.

25:00

S(n) = sq!n2 → S(n+1)

	CONPASU-tool: �A Concurrent Process Analysis Support tool�based on Symbolic Computation
	Contents
	Introduction
	Motivation
	CAL: An example of concurrent process
	The analysis method of CONPASU (outline)
	Analysis method
	Sequentialization
	State-reduction (internal-choice)
	State-reduction (interleaving)
	State-reduction (an example)
	Abstraction
	Application
	The CSP model of TransferSys
	The behaviors of the 3 components
	The behavior of TransferSys
	A revision of Sender
	The behavior of the revised TransferSys
	Related works
	PAT (Process Analysis Toolkit)
	LTSA (LTS analyzer)
	Summary
	Summary

