
CONPASU-tool:
A Concurrent Process Analysis Support
Tool based on Symbolic Computation

Yoshinao ISOBEa,1

aNational Institute of Advanced Industrial Science and Technology, Japan

Abstract. This paper presents an analysis-method of concurrent processes with value-
passing which may cause infinite-state systems. The method consists of two steps:
sequentialisation and state-reduction. In the sequentialisation, the symbolic transition
graph of a given concurrent process is derived by symbolic operational semantics. In
the state-reduction, the number of states in the symbolic transition graph is reduced by
removing needless internal transitions. Furthermore, this paper introduces an analysis-
tool calledCONPASU, which implements the analysis-method, and demonstrates how
CONPASU can be used for automatically analyzing concurrent processes. For example,
it can extract abstract behaviors, which are useful for understanding complex behav-
iors, by focusing on some interesting events.

Keywords. symbolic operational semantics, automatic analysis tool,state-reduction,
infinite state process, value-passing process algebra

Introduction

Concurrent processes, which consist of communicating component-processes, are needed in
parallel computation environments such as multi-core CPU and distributed systems. It is,
however, not easy to completely understand the whole behavior of concurrent processes be-
cause it is a result of interactions between communicating component-processes. For exam-
ple, in order to know the causality between events performedat the different component-
processes, internal communications between the component-processes must be considered.

Process algebrasuch as CSP [1,2] and CCS [3] is a formal framework for analyzing
concurrent processes. In process algebra,implementationsandspecificationsof concurrent
processes can be formally described, and then equalities and/or refinements between an im-
plementation and a specification can be checked. In general,the implementation is a model to
express the structure of the concurrent-process and the behaviors of its component-processes,
while the specification is often a sequential process to express the whole behavior of the
concurrent-process.

Various tools [4,5,6,7], calledmodel checker, based on process algebra have been de-
veloped for automatically checking such equalities and/orrefinements, when formal descrip-
tions of an implementation and a specification are given. Forexample, the following expres-
sion is a formal description (in CSP) of the concurrent processIMPL which consists of two
component-processesIN andOUT.

1Corresponding Author: Yoshinao Isobe, Information Technology Research Institute, National Institute of
Advanced Industrial Science and Technology, Tsukuba Central 2, 1-1-1, Umezono, Tsukuba, Ibaraki, 305-8568
Japan, E-mail:y-isobe@aist.go.jp.

IMPL = (IN [|{| com |}|] OUT) \ {| com |}
IN = in?x → com!x → IN

OUT = com?y → out!y → OUT

The first line defines the structure ofIMPL, and the second and the third lines define behaviors
of IN andOUT, respectively. The meaning of symbols such as→ is explained in Section 1.
Here, we assume to expect thatIMPL behaves like a buffer whose capacity is2, thus the
specification can be formally described as follows:

SPEC = in?x → SPEC1(x)
SPEC1(y) = in?x → SPEC2(x, y) 2 out!y → SPEC

SPEC2(x, y) = out!y → SPEC1(x)

In fact, the behaviors ofIMPL andSPEC are equal (e.g. failures-equivalent [2]) and the equality
can be automatically checked by the model checker FDR [4] if the range of input is finitised.

As shown in the example ofIMPL andSPEC, model checker is very useful for checking
relations between an implementation and a specification. Itis, however, sometimes difficult
to formally describe specifications. Implementations suchasIMPL are often hierarchical and
complex, but they can be more mechanically described than specifications such asSPEC be-
cause designs of structures of systems and behaviors of components are usually given while
it is often difficult to formally describe expected behaviors of systems. Our analysis-tool
CONPASU can automatically generate the specificationSPEC from the implementationIMPL.

In this paper, we present an analysis-method for generatingspecifications (i.e. sequen-
tial processes) from implementations of concurrent processes based on CSP (Communicat-
ing Sequential Processes) [1,2] with value-passing. The analysis-method consists of two
steps: sequentialisation of concurrent processes by symbolic operational semantics and state-
reduction by removing needless internal transitions. It ispossible to extract abstract behav-
iors from the whole behavior by focusing on only interestingevents. Then, we introduce an
analysis-toolCONPASU, which implements the analysis-method, and demonstrate how it ana-
lyzes concurrent processes. The analysis-method andCONPASU have the following features:

• Symbolic transition graphs can be oftenfinite even for value-passing processes with
variables whose ranges are infinite because variables are not instantiated to values.

• Each symbolic transition has assignments (e.g.n := n+ 1) for updating variables and
it has a location for indicating which processes participate in the transition.

• The presented state-reduction method can be directly applied to the symbolic transi-
tion graphs without instantiating variables.

• The toolCONPASU generates symbolic transition graphs from concurrent processes
described in CSPM used in FDR [4], and then it canautomaticallyreduce the number
of states in symbolic transition graphs with preservingstable-failures-equivalence.

This paper is organised as follows: First, we give a definition of process algebra with
symbolic semantics mainly according to [8] in Section 1. It is used for sequentialising con-
current processes. In Section 2, we present an analysis-method for reducing the number of
states with preserving stable-failures-equivalence based on symbolic approach. Then, in Sec-
tions 3 and 4, we introduce a toolCONPASU which implements the analysis-method presented
in this paper, and demonstrate howCONPASU can analyze concurrent processes. Finally, we
compare this work with related works.

1. Process Algebra with Symbolic Operational Semantics

The analysis-method presented in this paper can be applied to concurrent processes whose
behaviors are expressed by labeled transition systems, without respect to the syntax. It is,

however, convenient to use process algebra for expressing concurrent processes. In this sec-
tion, we briefly introduce a sub-calculus of the process algebra CSP [1,2] in Subsection 1.1
and define the symbolic operational semantics with data-assignment and locality for the sub-
calculus in Subsection 1.2.

1.1. Syntax

We assume that the following sets are given: a setVar of variableranged over byx, y, . . ., a
setVal of valuesranged over byv, . . ., a setDexp of data-expressionsranged over bye, . . .,
and a setBexp of Boolean-expressionsranged over byb, . . ., whereDexp includesVar∪ Val

andBexp includesVar ∪ {true, false}. Furthermore, we also assume that a setChan of
channel-names, ranged over byc, . . ., and a setPN of process-names, ranged over byA, . . .
are given.

Then, the setEvent of events, ranged over bya, . . ., is defined as follows:

Event = {c!e | c ∈ Chan, e∈ Dexp} ∪ {c?x | c ∈ Chan, x ∈ Var}

where the eventc!e means sending the evaluation result ofe to the channelc, and the event
c?x means receiving a value from the channelc andx is bound to the value. The setEvent
does not contain basic-events which do not pass values and are used just for synchronization.
Such basic-events, however, can be expressed by sending a dummy value, for example zero.
In this paper,c!0 is sometimes abbreviated toc if the value0 has no meaning.

The language used in this paper is the setE of processes, ranged over byE, F, . . ., and it
is a sub-calculus of CSP [1,2] as defined in Definition 1.1.

Definition 1.1 The syntax of processes E is given by

E ::= STOP | a → E E 2 E E ⊓ E E [|C|] E E \ C b& E A(ẽ)

where a∈ Event, C ⊆ Chan, b ∈ Bexp, and A∈ PN. Andẽ∈ Dexpn is an abbreviation of n
data-expressions e1, . . . , en. A(ẽ) is the process obtained from A(x̃) by replacing n arguments
x̃ ∈ Varn by ẽ.

Since the semantics of processes is given in the next subsection, each operator isbriefly ex-
plained here:a → E can perform the eventa and thereafter behaves likeE. E 2 F andE ⊓ F
represent choices betweenE andF, where the choice ofE 2 F is externally made by an event
of eitherE or F, while the choice ofE ⊓ F is internally made.E [|C|] F represents a concur-
rent composition ofE andF, where they communicate through channels included in the set
C and independently perform events whose channel is not inC. E\C hides communications
through channels inC. b& E behaves likeE if b is true, otherwise it is inactive. The operators
have decreasing binding power in the following order:E\C, a → E, b& E, E 2 F, E ⊓ F,
andE [|C|] F.

The sets ofbound variablesandfree variablesin the processE ∈ E are denoted bybv(E)
andfv(E), respectively, where each input eventc?x binds the variablex in E of c?x → E.
Similarly, the sets of free variables of the data-expression eand the Boolean-expressionb are
denoted byfv(e) andfv(b), respectively. The set of processes which have no free variable is
denoted byP and ranged over byP, Q,

The meaning of each process-name is given by a defining equation. We assume that for
every process-nameA ∈ PN, there is a defining equation of the formA(x̃) = E, whereE ∈ E
andE has no free variables exceptx̃ ∈ Varn. Process-names are often used for expressing
recursive behaviors. For example, let the process-nameSQ(n) be defined by

SQ(n) = ((n > 0) & in?x → sq!(x ∗ x) → SQ(n− 1)) 2 ((n == 0) & end → STOP).

If n is greater than0, SQ(n) firstly receives a value, to whichx is bound, from the channel
in, and then sends(x ∗ x) to the channelsq, and thereafter behaves likeSQ(n − 1). And if
n is 0, SQ(n) performs the eventend, which is the abbreviation ofend!0, and then stops. In
other words,SQ(n) iteratively receives a value and sends the square of the valuen-times, and
thereafter performsend and then stops.

1.2. Symbolic Operational Semantics

In our analysis method, variables aresymbolicallycomputed without instantiated to values.
It means that symbolic approach can express behaviors of processes with value-passing in a
finitegraph even if ranges of variables are not finitised or parameters are not fixed. Symbolic
labeled transition systems have been studied, for example in [8,9,10]. In this subsection, we
define a symbolic operational semantics of CSP, based on the standard operational semantics
of CSP [2] with symbolic semantics of CSP (e.g. [11]), and extended with data-assignment
[9] and locality [12]. The locality has been studied in process algebra (e.g. [12,13]) for giving
non-interleaving semantics. In this paper, however, we useinterleaving semantics, thus lo-
cations are ignored when checking equality. The locality isused for checking independence
between transitions when reducing states. The symbolic semantics defined in this section is
a combination of existing results [2,9,12] and no new technique is used.

At first, a notation for assigning data-expressions to variables is introduced. Anassign-
menthas the form(x̃ := ẽ), which is an abbreviation of(x1 := e1, . . . , xn := en), and means to
simultaneously replace every free variablexi ∈ Var by ei ∈ Dexp. The set of assignments is
denoted byAssign and is ranged over byθ, The sets of the domain and the free variables
of an assignment(x̃ := ẽ) are denoted bydm(x̃ := ẽ) = {x1, . . . , xn} andfv(x̃ := ẽ) = fv(ẽ),
respectively. An assignmentθ can be applied to processesE, data-expressionse, and Boolean-
expressionsb, and they are denoted byEθ, eθ, andbθ. For example,

(in?x → out!(x + y) → STOP)(x := 1, y := 2) = (in?x → out!(x + 2) → STOP).

Then, the compositionθ◦θ′ such thatE(θ◦θ′) = (Eθ)θ′ of two assignments can be defined
by (x̃ := ẽ)◦θ′ = (x̃ := ẽθ′)(θ′ − x̃), where(x̃ := ẽθ) represents(xi := eiθ) for everyi and
(θ′ − x̃) is the assignment obtained fromθ′ by removing the assignments tox̃.

If an assignmentθ has no free variable (i.e.fv(θ) = ∅) and its domain is the set of all
variables (i.e.dm(θ) = Var), then it is called anevaluation. We denote the set of evaluations
by Eval and letρ, . . . range over evaluations.

Next, locality is introduced for indicating where events occur in concurrent processes.
In the same way to [12], alocationδ is a binary tree defined by

δ ::= 0 1 (δδ)

and the set of locations is denoted byLoc, where0 means the inactive location and1 means
the active location. For example, in the concurrent process(E0 [|C1|] (E1 [|C2|] E2)), the loca-
tion (0(10)) is attached to events whichE1 independently performs and(1(01)) is attached to
events which bothE0 andE2 participate in. The locations are used for checking the causality
between events (e.g. the locations(0(10)) and(1(01)) are independent), when searching for
reducible states (see Definition 2.5).

Then, we define the setAct of actions, which are guarded events with assignments and
locations, by

Act = {α[b]/θ@δ | α ∈ Event ∪ {τ}, b ∈ Bexp, θ ∈ Assign, δ ∈ Loc},

whereτ is a special event, calledinternal event, which cannot be observed (τ /∈ Event), and
the setEvent∪{τ} is ranged over byα, The actionα[b]/θ@δ means if the conditionb is
true then the eventα can occur at the locationδ, and thereafter variables are updated by the

E.Snd
c!e→ E

c!e@1
•−→ E

E.Rcv
c?x → E

c?y@1

•−→ E(x := y)
(y is fresh)

E.ECh1
E

α[b]/θ@δ

•−−−→ E′

E 2 F
α[b]/θ@δ

•−−−→ E′

(α 6= τ) E.ECh2
E

τ [b]/θ@δ

•−−−→ E′

E 2 F
τ [b]/θ@δ

•−−−→ E′
2 F

E.ICh1

E ⊓ F
τ@1
•−→ E

E.Grd E
α[b′]/θ@δ

•−−−→ E′

b& E
α[b∧b′]/θ@δ

•−−−−−→ E′

E.PNE(x̃ := ẽ)
α[b]/θ@δ

•−−−→ E′

A(ẽ)
α[b]/θ@δ

•−−−→ E′

(A(x̃) = E)

E.Par1
E

α[b]/θ@δ

•−−−→ E′

E [|C|] F
α[b]/θ@(δ0)

•−−−−−→ E′ [|C|] F

(ch(α) /∈ C)

E.Par2
E

c!e[b]/θ@δ

•−−−−−→ E′ F
c?x[b′]/θ′@δ′

•−−−−−→ F′

E [|C|] F
c!e[b∧b′]/θθ′(x:=e)@(δδ′)

•−−−−−−−−−−−−−→ E′ [|C|] F′

(c ∈ C)

E.Par3
E

c!e[b]/θ@δ

•−−−−−→ E′ F
c!e′[b′]/θ′@δ′

•−−−−−→ F′

E [|C|] F
c!e[(e=e′)∧b∧b′]/θθ′@(δδ′)

•−−−−−−−−−−−−−→ E′ [|C|] F′

(c ∈ C)

E.Par4
E

c?x[b]/θ@δ

•−−−−−→ E′ F
c?x′[b′]/θ′@δ′

•−−−−−→ F′

E [|C|] F
c?x[b∧b′]/θθ′@(δδ′)

•−−−−−−−−−→ E′ [|C|] F′(x′ := x)

(c ∈ C)

E.Hide1
E

c!e[b]/θ@δ

•−−−→ E′

E \ C
τ [b]/θ@δ

•−−−→ E′ \ C

(c ∈ C) E.Hide2
E

c?x[b]/θ@δ

•−−−→ E′

E \ C
τ [b]/θ(x:=v)@δ

•−−−−−→ E′ \ C

(c ∈ C, v ∈ Val)

E.Hide3
E

α[b]/θ@δ

•−−−→ E′

E \ C
α[b]/θ@δ

•−−−→ E′ \ C

(ch(α) /∈ C)

Figure 1. The inference rules for transitions
α[b]/θ@δ

•−−−→ for performing events (symmetric rules are omitted)

assignmentθ. The true condition[true], the identical assignment/ε, and the unique-location
@1 are often omitted likeα/θ@δ, α[b]@δ, andα[b]/θ.

By using the actions as labels, two symbolic transitions aredefined.

Definition 1.2 Two symbolic transitions•−→⊆ E × Act×E and;⊆ E × Assign×E are
the smallest relations satisfying the inference rules in Figures 1 and 2, respectively. For con-

venience, we write E
α[b]/θ@δ
•−−−→ E′ and E θ

; E′ for (E, α[b]/θ@δ, E′) ∈•−→ and(E, θ, E′) ∈;,
respectively.

The first transitionE
α[b]/θ@δ

•−−−→ E′ is used for performing the eventα. The side condition
of the ruleE.Rcv means that the bound variable is renamed to afreshname, which is not
used in the other processes, in order to avoid conflicting with free variables, if necessary.
Though the renaming is represented only in the ruleE.Rcv for simplicity, the bound variables
can be actually renamed later, for example when composing processes byE.Pari. We have
implemented such renaming mechanism in the toolCONPASU introduced in Section 3, and for
example the following transition can be inferred.

D.STOP
STOP

ε
; STOP

D.Act
α.E

ε
; α.E

D.PN
A(ẽ)

ỹ:=ẽ
; A(ỹ)

(A(x̃) = E, ỹ are fresh and distinct)

D.Par E
θ0

; E′ F
θ1

; F′

E ⊕ F
θ0θ1

; E′ ⊕ F′

(⊕ ∈ {2, ⊓, [|C|] })

D.Res E
θ

; E′

E\C
θ

; E′\C
D.Grd E

θ
; E′

b& E
θ

; b& E′

Figure 2. The inference rules for transitions
θ
; for updating data

(in?x → P(x)) [|∅|] (out!x → Q(x))
in?x0@(10)

•−−−−−→ P(x0) [|∅|] (out!x → Q(x))

By renamingx to x0, the value received through the channelin is correctly passed toP(x0)
and not toQ(x). It is also noted that the location(10) means that the left process performs
the event. If two or more processes synchronise, then all thelocations of the processes are
indicated by the active symbol1, for example the following transition can be inferred.1

(com!x → P(x)) [|{| com |}|] (com?y → Q(y))
com!x/(y:=x)@(11)

•−−−−−−−−−→ P(x) [|{| com |}|] Q(y)

The second transitionE θ
; E′ is used for updating variables by the assignmentθ when

process-names are unfolded. For example, the transitions from the processA(n) defined by
A(n) = up!n → A(n + 1) are inferred by the rules in Figures 1 and 2 as follows:

A(n)
up!n
•−→ A(n + 1)

(n:=n+1)
; A(n)

It means that the transition graph ofA(n) is finite, where the location@1 is omitted. On the
other hand, the standard transitions forA(n) are inferred by the standard operational seman-
tics [2] as follows, when the initial value ofn is 0:

A(0)
up!0
−→ A(1)

up!1
−→ A(2)

up!2
−→ A(3)

up!3
−→ · · · .

It means that the standard transition graph becomes infinite.
Then, by composing the two symbolic transitions in Definition 1.2, the symbolic opera-

tional semantics used in this paper is defined.

Definition 1.3 Thesymbolic operational semantics with assignments and locations is given
by the symbolic labeled transition system(E , Act, •−→→⊆ E × Act × E), where•−→→ is
defined by

E
α[b]/θ@δ
•−→→ E′′ ⇔ (∃E′, θ1, θ2. E

α[b]/θ1@δ

•−−−→ E′, E′ θ2
; E′′, θ = θ2 ◦ θ1).

The processSQ(n), given in Subsection 1.1, is used again here. Figure 3 shows the tran-
sition graph derived fromSQ(n) by the symbolic operational semantics in Definition 1.3. The
transition graph shows thatSQ(n) iteratively receives a value and sends the square of the value
n-times, and thereafter performsend and then stops for anyn.

1In this paper, we denote the set of channelsc1, . . . , cn by {| c1, . . . , cn |} rather than{c1, . . . , cn} according
to the syntax of CSPM used in FDR[4].

in?x[n>0]

STOP
sq!(x*x)/n:=n-1

SQ(n)
end[n==0]

Figure 3. The transition graph ofSQ(n) by the symbolic operational semantics with assignment

SQ(3)

in?1

in?0

sq!1

sq!0

SQ(2) STOP
end

in?2 sq!4

SQ(1) SQ(0)

in?1

in?0

sq!1

sq!0

in?2 sq!4

in?1

in?0

sq!1

sq!0

in?2 sq!4

Figure 4. The transition graph ofSQ(3) by the standard operational semantics

To compare the symbolic semantics with standard semantics given in [2], we show the
transition graph ofSQ(n) by the standard operational semantics in Figure 4, where every vari-
able has to be instantiated to a value for each transition. The graph in Figure 4 has infinite
number of branches because the range of values received through the channelin is not re-
stricted, and the initial value ofn must be fixed. On the other hand, the graph in Figure 3 is
finite for anyn because infinite number of values can be expressed by the variablex.

Here, we give the relations between the symbolic operational semantics
α[b]/θ@δ
•−→→ and the

(not-symbolic) standard operational semantics
α0−→ in [2], whereα0 ∈ Act0 andAct0 is the

set of events without variables:

Act0 = {c.v | c ∈ Chan, v ∈ Val} ∪ {τ}.

It is similar to the result presented for value-passing CCS [8,9].

Lemma 1.1 Eρ
α

−→ P′ if and only if for some b,θ, δ, and E′, either

for some c, v, x, E
c?x[b]/θ@δ

•−−−→→ E′, α = c.v, bρ, and P′ ≡ E′θ(x := v)ρ,

or for some c, e, E
c!e[b]/θ@δ

•−−−→→ E′, α = c.(eρ), bρ, and P′ ≡ E′θρ,

or E
τ [b]/θ@δ

•−−−→→ E′, α = τ , bρ, and P′ ≡ E′θρ.

Finally, the process-nameSP(→→,E)(x̃) is defined for generating a sequential process for
anysymbolic transition relation→→.

Definition 1.4 Let→→⊆ E×Act×E be a symbolic transition relation. Then, for any process
E ∈ E , the process-nameSP(→→,E)(x̃) is defined as follows:

SP(→→,E)(x̃) = 2{b& obs(α) → (SP(→→,E′)(x̃
′)θ) | E

α[b]/θ@δ

−−−−→→ E′}

wherex̃ ofSP(→→,E)(x̃) is the list of free variables of E,2 {E1, . . . , En} is an abbreviation
of E1 2 · · · 2 En, namely replicated external choice, andobs(α) is defined as follows:

obs(α) =

{
tmp (if α = τ)
α (otherwise)

wheretmp is a special observable event which is not used in the processes E. As a special
case, if→→ is •−→→, which is defined in Definition 1.3, it is often omitted, thus

SP(E)(x̃) = SP
(•−→→,E)

(x̃).

The eventtmp is used instead of the internal eventτ for choosing one from external
choice processes(E1 2 · · · 2 En) because the external choice is not executed byτ (see
the ruleE.ECh2 in Figure 1). As expected,E andSP(E)(x̃)\{tmp} arestrongly bisimilar[3],
where locationsδ are ignored, because the following relation can be easily proved:

SP(E)(x̃)\{tmp}
α[b]/θ@1

•−−−→→ SP(E′)(x̃′)\{tmp} ⇐⇒ ∃ δ. E
α[b]/θ@δ

•−−−→→ E′.

2. State Reduction

As shown in Figure 3, the symbolic semantics with assignmentcan avoid replicating states
for each value because variables are not instantiated to values. In this section, we present a
method for reducing the number of states by removing some needless internal transitions.

In order to reduce the number of states, there has been a method for finding an equal
pair of states and then folding them to one state, e.g. [14]. It is, however, impossible to
automatically check whether two symbolic transition graphs with assignments are equal or
not in general as discussed in [9,10]. Therefore, instead offinding all such equal pairs, we
present a method for automatically findingsomeequal pairs.

At first, we prepare some notations: the composition of locations, the independent rela-
tion between locations, the composition of symbolic internal transitions, and a consecutive
symbolic transition relation, whereTrns is an abbreviation ofE ×Bexp×Assign×Loc×E
and it is used for expressing a subset of internal transitions.

Definition 2.1 Let δ, δ′ ∈ Loc. The composition of locations is defined as follows:

δ•δ′ =

(δ0•δ
′
0 δ1•δ

′
1) (if δ = (δ0δ1) andδ′ = (δ′0δ

′
1))

δ′ (if δ = 0)
δ (if δ′ = 0)
1 (otherwise)

Definition 2.2 Let δ, δ′ ∈ Loc. The independence of locations is defined as follows:

δ ⊥ δ′ =

(δ0 ⊥ δ′0) ∧ (δ1 ⊥ δ′1) (if δ = (δ0δ1) andδ′ = (δ′0δ
′
1))

true (if δ = 0 or δ′ = 0)
false (otherwise)

The composition of two locations works like the disjunction-operator, for example,
((01)(01))•((00)(11)) = ((01)(11)). The independence of two locations checks whether the
same process participates in the two locations or not, for example,

((10)(01))⊥ ((01)0) = true, ((10)(01))⊥ ((01)(01)) = false.

Definition 2.3 Let(E, b, θ, δ, E′), (F, b′, θ′, δ′, F′) ∈ Trns. The composition of the transitions
is defined by

(E, b, θ, δ, E′) • (F, b′, θ′, δ′, F′) =

{
(E, b ∧ b′θ, θ′◦θ, δ•δ′, F′) (if E′ ≡ F)
undefined (otherwise)

then the composition is extended over sets of transitions T, T′ ⊆ Trns by

T •T′ = {tr • tr ′ | tr ∈ T, tr ′ ∈ T′, tr • tr ′ is defined}.

Furthermore, the iterative composition T• of copies of T⊆ Trns is the smallest set satisfying
the following inclusions:

{(E, true, ε, 0, E) | E ∈ E} ⊆ T• and (T•) •T ⊆ T•.

Definition 2.4 The consecutive symbolic internal transition
τ []/ @
•=⇒⇒ ⊆ Trns is defined by

τ []/ @
•=⇒⇒ = (

τ []/ @
•−→→)• = {(E, b, θ, δ, E′) | E

τ [b]/θ@δ
•−→→ E′}•.

Conveniently, we write E
τ [b]/θ@δ
•=⇒⇒ E′ for (E, b, θ, δ, E′) ∈

τ []/ @
•=⇒⇒ .

Thus,E
τ [b]/θ@δ
•=⇒⇒ E′ represents that if the conditionb is true thenE can reach toE′ by

zero or more internal transitions and thereafter the variables are updated by the assignment
θ, whereδ indicates the locations of all the processes which participate in the consecutive
transition.

Next, we define a setR of internal transitions such that(E, b, θ, δ, F) ∈ R implies that
E may be removed without changing behavior.

Definition 2.5 LetR ⊆
τ []/ @
•=⇒⇒ . ThenR is a symbolically reducible set, if for all α[b]/θ@δ

and E′ such that E
α[b]/θ@δ
•−→→ E′,

(i) for all b0, θ0, δ0, and F such that(E, b0, θ0, δ0, F) ∈ R, andsat(b ∧ b0),

if δ⊥ δ0 then for some F′, F
α[b]/θ@δ
•−→→ F′ and(E′, b0, θ0, δ0, F′) ∈ R,

elseδ = δ0, α = τ , and(E, b, θ, δ, E′) ∈ R,

(ii) for all b0, θ0, δ0, and F′ such that(E′, b0, θ0, δ0, F′) ∈ R andsat(b ∧ b0),

if δ⊥ δ0 then for some F, F
α[b]/θ@δ
•−→→ F′ and(E, b0, θ0, δ0, F) ∈ R,

wheresat() is the predicate for checking satisfiability, thussat(b) iff (∃ ρ. bρ = true).

The symbolically reducible set is used for reducing needless internal transitions mainly
caused byinterleaving. For example, Figure 6(a) is the transition graph of the concurrent
processAbs(x, z) defined in Figure 5.Abs(x, z) consists of two processesCaller(x) and
Callee(z): Callee(z) returns the absolute value ofx passed fromCaller(x) if z is not zero,
otherwise nondeterministically returnsx or−x. Caller(x) can independently performtask,
while Callee(z) is checking the sign ofx and reversing the sign if necessary. The inde-
pendence is expressed by interleaving the events, for example the conditional internal event
τ [b1] can occur before and aftertask in Figure 6(a). Then, the followingR is a symbolically
reducible set:

R = {(S1, b1, ε, (01), S3), (S1, b2, ε, (01), S4), (S2, b1, ε, (01), S5), (S2, b2, ε, (01), S6),
(S3, true, (y := −y), (01), S4), (S5, true, (y := −y), (01), S6)}

where each process (state)Si corresponds to the nodei in Figure 6(a) andS0 is the initial state
of Abs. In this case, the statesS1 andS3 can be bypassed2 and removed like the transition
graph shown in Figure 6(b) whose initial state isAbs′, where Proposition 2.1 given later
guarantees thatAbs andAbs′ are stable-failures-equivalent.

If the internal transition fromS2 to S5 does not exist in the transition graphAbs of Fig-
ure 6(a), thenAbs andAbs′ are not stable-failures-equivalent becauseAbs can deadlock atS2

2The method to bypass reducible states is given in Definition 2.6 later.

Abs(x, z) = Caller(x)[| {| call, ret |} |](Callee(z) \ {| chk, minus |})
Caller(x) = call!x → task → ret?x → prt!x → STOP

Callee(z) = call?y → Check(y, z)
Check(y, z) = ((y<0 ∨ z==0)& chk → minus → Ret(−y)) 2 ((¬(y<0) ∨ z==0)& chk → Ret(y))

Ret(y) = ret!y → STOP

Figure 5. A concurrent processAbs(x,z)

0
call!x/(y:=x)@(11)

1
task@(10)

2

3 5

4 6

7

ret!y/(x:=y)@(11)

τ[b1]@(01)

τ[b2]@(01)
τ[b1]@(01)

(a) the original transition graph of Abs

b1 = (y<0) , b2 = (y<0)

Abs

τ[b2]@(01)

prt!x@(10)

8

τ/y:= -y@(01)
τ/y:= -y@(01)

task@(10)

task@(10)

0

call!x[b2’]/(y:=x)@(11)

4 6

ret!y/(x:= y)@(11)

(b) the reduced transition graph

Abs’

task@(10)

call!x[b1’]/(y:= -x)@(11)

b1’ = (x<0) , b2’ = (x<0)

7

prt!x@(10)

8

Figure 6. The basic idea for reducing the number of transitions

if x = 0 andz 6= 0. The condition(i) in Definition 2.5 requires that the internal transition
from S2 to S5 must exist if the internal transition fromS1 to S3.

On the other hand, if the internal transition fromS1 to S3 does not exist, the stateS1 must
remain for the case¬b2 even after making a bypass fromS0 to S4. It means that the nonde-
terminism in the casez = 0 disappears by the bypass (i.e. ifz = 0 thenx is deterministically
returned), thusAbs andAbs′ are not stable-failures-equivalent. The condition(ii) in Defini-
tion 2.5 requires that the internal transition fromS1 to S3 must exist if the internal transition
from S2 to S5 exists.

In Figure 6, it is noted thatAbs andAbs′ arenot weakly bisimilar [3] becauseAbs has
a nondeterministic choice atS1 aftercall if z = 0. This is an important reason why stable-
failures-equivalence is used in this paper.

Then, the process-nameBP(n)
(R,E)(x̃) is defined forbypassingreducible states.

Definition 2.6 LetR be a symbolically reducible set and n∈ Nat. Then, thebypassed tran-
sition relation•−→→(R,n)⊆ E × Act × E with respect toR and n is the smallest relation
satisfying the following rules:

• (base): if E
α[b]/θ@δ

•−−−→→ E′ then E
α[b]/θ@δ

•−−−→→(R,0) E′

• (bypass): if (E
α[b]/θ@δ
•−→→(R,n) E′ ∧ (E′, b0, θ0, δ0, E′′) ∈ R ∧ bv(α) ∩ fv(b0θ) = ∅)

then E
α[b∧b0θ]/θ0◦θ@(δ•δ0)

•−−−−−→→(R,n+1) E′′,

• (rest): if E
α[b]/θ@δ
•−→→(R,n) E′ then E

α[b∧rest(R,E,α,θ)]/θ@δ

•−−−−−−−−−→→(R,n+1) E′,

whererest() is the Boolean expression defined by

rest(R,E,α,θ) =
∧
{¬b0 | ∃ θ0, δ0, E′. (E, b0, θ0, δ0, E′) ∈ R, bv(α) ∩ fv(b0θ) = ∅}.

P1(x)

a

P2(x)

P3 P4

τ[x==0]τ[x==0]

STOP

z nz

B1(x)

a[x==0 x==0]

B2(x)

B3 B4

τ[x==0]τ[x==0]

STOP

z nz

a[x==0] a[x==0]

(a) original graph (b) bypassed graph

C1(x)

C3 C4

STOP

z nz

a[x==0] a[x==0]

(c) cleaned graph

Figure 7. The bypassed transition graph (every location is1 and is omitted)

Then, by using•−→→(R,n), thebypassed processBP(n)
(R,E)(x̃) is defined as follows:

BP
(n)
(R,E)(x̃) = SP

(•−→→(R,n),E)
(x̃)

whereSP(...,E)(x̃) is the process-name defined in Definition 1.4.

The first rule(base) means that•−→→(R,0) is exactly•−→→. The second rule(bypass)

is used for bypassingE′ by the actionα[b ∧ b0θ]/θ0◦θ@(δ•δ0) if E
α[b]/θ@δ
•−→→(R,n) E′ and

(E′, b0, θ0, δ0, E′′) ∈ R, and the value received byα does not affect the next conditionb0 (i.e.
bv(α) ∩ fv(b0θ) = ∅). The third rule(rest) is used for strengthening the condition of the
existing original transition byrest(). It means that the original transition can be performed
only if the condition of every bypassed-transition is false(i.e.rest() = true). For example,
in the transition graph of Figure 7(a), the following setR is a symbolically reducible set.

R = {(P2, x = 0, ε, 1, P3), (P2, x 6= 0, ε, 1, P4)}

Then, Figure 7(b) shows that the processB1 generated fromP1 by bypassing the reducible
stateP2 (i.e.B1 = BP

(1)
(R,P1)(x)). Here, it is important to note that the transition fromB1 to B2

is never performed. Therefore, it can be removed as shown Figure 7(c). This transformation
seems to be easy, but it is difficult to find such reducible states and to bypass transitions
because there are generally many interleaving transitionsin concurrent processes.

Then, in order to prove that the original process and the bypassed process arestable-
failures-equivalent[2], we give the following lemma.

Lemma 2.1 Let t ∈ Act∗0 and R be a symbolically reducible set. If Eρ t
−→ P′, then for

some E′ and ρ′, P′ ≡ E′ρ′ and for all b0, θ0, δ0, and F′ such that(E′, b0, θ0, δ0, F′) ∈ R•

and b0ρ′, for some b′0, θ′0, δ′0, and F′′, (E′, b′
0, θ

′
0, δ

′
0, F′′) ∈ R•, b′0ρ

′, (E′, b0, θ0, δ0, F′) ≍

(E′, b′
0, θ

′
0, δ

′
0, F′′), and(BP

(n)
(R,E)(x̃)\{tmp})ρ

t̂
=⇒ (BP

(n)
(R,F′′)(x̃

′)\{tmp})(θ′0◦ρ
′), where tr1 ≍

tr2 represents that tr1 and tr2 are comparable (i.e. tr1 � tr2 ∨ tr2 � tr1) by the partial order
� defined by: tr1 � tr2 ⇔ ∃ tr. tr1 • tr = tr2. 3

Proof: This lemma can be proved by induction on the length oft andn. Especially, the
following sublemma is the key for proving it at the last transition of t.

Sublemma: If Eρ
α

−→ P′ then for someE′ andρ′, P′ ≡ E′ρ′ and
for all b′

0, θ′0, δ′0, andF′
0 such that(E′, b′

0, θ
′
0, δ

′
0, F′

0) ∈ R• andb′
0ρ

′,
for someb0, θ0, δ0, andF0, (E, b0, θ0, δ0, F0) ∈ R•, b0ρ and
for all b1, θ1, δ1, andF such that(E, b0, θ0, δ0, F0) ≍ (E, b1, θ1, δ1, F) ∈ R• andb1ρ,

3P
t

−→ P′ is the sequential standard transition fromP to P′ by t ∈ Act∗0, t̂ is the event-sequence obtained

from t by deletingτ , andP
t

=⇒ P′ is the weak standard transition, where zero or more internaltransitions can
be inserted between observable transitions (e.g. see [3] for the weak standard transition).

(4) (E’, b’1, θ’1, δ’1, F’) R

(1) (E’, b’0, θ’0, δ’0, F’0) R(2) (E, b0, θ0, δ0, F0) R

(3) (E, b1, θ1, δ1, F) R

α

(BP {tmp}) θ1ρ(R,F)

(n)
(x)

(BP {tmp}) θ’1ρ’
(R,F’)

(n)
(x’)

P = Eρ P’ = E’ρ’

α

Figure 8. The relation betweenE and(BP
(n)
(R,F)(x̃))\{tmp} in the sublemma in Lemma 2.1

for someb′
1, θ′1, δ′1, andF′, (E′, b′

0, θ
′
0, δ

′
0, F′

0) ≍ (E′, b′
1, θ

′
1, δ

′
1, F′), b′

1ρ
′,

and(BP
(n)
(R,F)(x̃)\{tmp})θ1ρ

α̂
=⇒ (BP

(n)
(R,F′)(x̃

′)\{tmp})θ′1ρ
′.

When comparing the event-sequences of original processE and the bypassed process
(BP

(n)
(R,F)(x̃))\{tmp}, it is noted thatE has to perform more internal events than the bypassed

process because the bypassed process can bypass reducible states. Therefore,̂α is used in
the bypassed process for deleting the extra internal eventτ of E (note: τ̂ = ε). The re-
lation betweenE and (BP

(n)
(R,F)(x̃))\{tmp} is shown in Figure 8. See the proof-note in the

CONPASU website [15] for the details.

A bypass often makes the other bypasses possible. Therefore, the bypassed process
BP

(n)
(R,E)(x̃) has the parametern for iteratively bypassing by using the setR. It is important

thatR can bereusedat each stepn in the iterative bypass, in other words, it is not necessary
to computeR for each step.

Then, we present Proposition 2.1 which guarantees that the original process and the
bypassed process arestable-failures-equivalent[2].

Proposition 2.1 Let E∈ E , n ∈ Nat, andR be a symbolically reducible set. Then,

E =F BP
(n)
(R,E)(x̃)\{tmp}

Proof: Lemma 2.1 impliestraces(Eρ) ⊆ traces((BP
(n)
(R,E)(x̃)\{tmp})ρ), wheretraces(P)

is the set of traces ofP. The opposite direction “⊇” can be proven by the following sub-
lemma:

Sublemma: if (BP
(n)
(R,E)(x̃)\{tmp})ρ

α
−→ P′, then for someE′ andρ′, Eρ

α
−→

ε
=⇒ E′ρ′

andP′ ≡ (BP
(n)
(R,E′)(x̃

′)\{tmp})ρ′.

This sublemma is easier than Lemma 2.1. Furthermore, it is easy to show thatE′ and
BP

(n)
(R,E′)(x̃)\{tmp} have the same refusals for anyE′. Here, F′′ of BP(n)

(R,F′′)(x̃
′)\{tmp} in

Lemma 2.1 is not necessarily the same asE′, but if E′ is stable (i.e. has no internal transi-

tion), thenE′ ≡ F′′ because(E′, b′
0, θ

′
0, δ

′
0, F′′) ∈ R• ⊆

τ []/ @
•=⇒⇒ . Hence,failures(Eρ) =

failures((BP
(n)
(R,E)(x̃)\{tmp})ρ), wherefailures(P) is the set of failures ofP.

By Proposition 2.1, internal transitions inR can be bypassed with preserving the be-
havior up to stable-failures-equivalence. In order to apply the proposition, however, it is nec-
essary to find a symbolically reducible setR, according to Definition 2.5. In general, it is

difficult to find the largest reducible set because
τ []/ @
•=⇒⇒ may be infinite by compositions of

assignments (e.g. the infinite composition of(n := n + 1)) even if the symbolical transition
graph is finite. Therefore, we present a method for generating a reducible set, which is not
necessarily largest.

Definition 2.7 LetS ⊆ E . Then, the setSRS ⊆
τ []/ @
•=⇒⇒ is defined as follows:

SRS =
⋂

n≥0 SR
(n)
S ,

SR
(0)
S = {(E, b0, θ0, δ0, F) | E ∈ S, E

τ [b0]/θ0@δ0
•−−−→→ F, E 6≡ F},

SR
(n+1)
S = SRB(SRF(SR

(n)
S)),

whereSRF(R), SRF(R) ⊆
τ []/ @
•=⇒⇒ are defined as follows:

SRF(R) = {(E, b0, θ0, δ0, F) ∈ R | ∀α, b, θ, δ, E′. (wsat(b ∧ b0), E
α[b]/θ@δ
•−→→ E′)

⇒ (if δ⊥ δ0 then(∃F′. F
α[b]/θ@δ
•−→→ F′, (E′, b0, θ0, δ0, F′) ∈ R)

else(δ = δ0, α = τ, (E, b, θ, δ, E′) ∈ R))}

SRB(R) = {(E′, b0, θ0, δ0, F′) ∈ R | ∀α, b, θ, δ, E. (wsat(b ∧ b0), E
α[b]/θ@δ
•−→→ E′)

⇒ (if δ⊥ δ0 then(∃F. F
α[b]/θ@δ
•−→→ F′, (E, b0, θ0, δ0, F) ∈ R))}

wherewsat() is a predicate such that if b is satisfiable thenwsat(b) is true.

The setS in Definition 2.7 is usually the set of all the reachable states from the initial
process. The setsSRF(R) andSRB(R) are used for removing internal transitions which do
not satisfy the conditions(i) and(ii) in Definition 2.5, respectively. Here, it is noted that if
it is hard to decide the satisfiability ofb thenwsat(b) can betrue for the safety because
only one direction (b is satisfiable⇒ wsat(b)) is required in Definition 2.7. It is useful for
implementing an automatic tool based on Definition 2.7.

By Definition 2.7, sinceSRF(R) ⊆ R andSRB(R) ⊆ R (i.e. SR(n+1)
S ⊆ SR

(n)
S) for any

n, there is necessarily a natural numberm such thatSR(m)
S = SR

(m+1)
S if the setS of reachable

states is finite. Then, the expected proposition is presented.

Proposition 2.2 If SR(m)
S = SR

(m+1)
S , thenSR(m)

S is a symbolically reducible set.
Proof: It can be shown that the followingR is a symbolically reducible set.

R = {(E, b, θ, δ.F) | ∃m. (E, b, θ, δ, F) ∈ SR
(m)
S = SR

(m+1)
S }

It is not difficult because the conditions in Definition 2.7 imply ones in Definition 2.5.

Consequently, by Propositions 2.1 and 2.2, the following corollary is derived.

Corollary 2.1 Assume that n, m ∈ Nat, E ∈ E , R = SR
(m)
S = SR

(m+1)
S , andS ⊆ E is the set

of reachable states from E. Then, E=F BP
(n)
(R,E)(x̃)\{tmp}.

The setSRS is not necessarily the largest reducible set. Interactive theorem provers like
Isabelle [16] may allow us to find such largest reducible sets. In this paper, however, we
are more interested inautomatically reducingthe number of states thansemi-automatically
minimizing it. Therefore, our reduction method is sound but not complete. We, however,
expect that the method can remove many needless internal transitions caused by interleaving.
It is demonstrated in Sections 3 and 4 by implementing the method.

3. CONPASU-tool: an Implementation

We have implemented the analysis-method, which is presented in Sections 1 and 2, in a
prototype-tool calledCONPASU (CONcurrent Process Analysis SUpport tool) in Java (cur-

CAL(N) = (SQREM(N) [|{|rem,end2|}|] SUM(0)) \ {|rem,end2|}

SQREM(n) = (SQ(n) [|{|sq,end1|}|] REM) \ {|sq,end1|}

SQ(n) = ((n>0) & in?x1 -> sq!(x1*x1) -> SQ(n-1)) [] ((n==0) & end1!0 -> STOP)

REM = sq?x2 -> rem!(x2%10) -> REM [] end1?z1 -> end2!z1 -> STOP

SUM(y) = rem?x3 -> prt!x3 -> SUM(y+x3) [] end2?z2 -> prts!y -> STOP

Figure 9. The concurrent processCAL(N) (a readable script byCONPASU)

rently about 6,000 lines). It means thatCONPASU is a tool for generating a sequential process
E from each concurrent processF such thatE =F F. It can also generate a script in the DOT
language [17] for drawing the symbolic transition graph of the generated sequential process,
for example by using Graphviz (Graph Visualization Software) [18].

In this section, it is explained by the exampleCAL(N) in Figure 9 how to useCONPASU for
analyzing concurrent processes , whereN is the initial value ofn in SQ(n). The input-language
of CONPASU is a sub-language of CSPM (Machine-readable dialect of CSP) used in FDR [4],
andCONPASU can directly read the script of Figure 9. The concurrent processCAL(N) con-
sists of three processes:SQ(n), REM, andSUM(y). The processSQ(n) has been explained in
Section 1. The processesREM andSUM(y) behave as follows. IfREM receives a value from the
channelsq, then sends the remainder of dividing the value by10 and then returns toREM, and
if it receives a value from the channelend1, then forwards it to the channelend2 and then
stops. IfSUM(y) receives a value, to whichx is bound, from the channelrem, then prints it
and behaves likeSUM(y + x), and if it receives a value from the channelend2, then printsy
and then stops

At first, Figure 10 shows the transition graph generated fromCAL(N) by CONPASU, ac-
cording to the symbolic operational semantics with assignments and locations in Defini-
tion 1.3, where Graphviz [18] is used for drawing the graph. And Figure 11 shows the re-
duced transition graph generated from the graph in Figure 10by CONPASU, according to the
state-reduction method presented in Section 2. By the state-reduction, the numbers of states
and transitions decrease by5 (from 12 to 7) and7 (from 17 to 10), respectively.

Figure 11 is useful for understanding the whole behavior of the concurrent process
CAL(N). However, it is not avoidable that transition graphs becomevery complex for large
scale systems even if the state-reduction is applied. In such cases, more abstract behaviors
can be extracted by hiding uninteresting events. For example, althoughCAL(N) prints a value
by prt at each receiving, we can see the abstract behavior by focusing on the inputin and
the final resultprts, in other words, by hidingprt as follows.

ACAL(N) = CAL(N)\{|prt|}

In this case,ACAL(N) is expected to behave like the specificationSPEC(N) in Figure 12. The
specification means thatSPEC(N) iteratively receives a value, to whichx is bound, and adds
x*x%10 to the variabley, n-times, and thereaftery is printed byprts. In fact, the model
checker FDR can verify thatACAL(N) andSPEC(N) are stable-failures-equivalent by fixing
the initial valueN and finitising the range of the input and the variabley. The specification
SPEC(N) is simple and is easily described. It is, however, sometimesmore difficult to describe
such specifications than implementations.

CONPASU can automatically generate specifications (in CSPM script) from implemen-
tations. Figures 13 and 14 show the transition graph ofACAL(N) after state-reduction and
the sequential processS(N), respectively, generated byCONPASU. Therefore, it is guaranteed
by Corollary 2.1 thatS(N) andACAL(N) are stable-failures-equivalent for any initial valueN
and any input. By comparing the generated specificationS(N) with the ideal specification
SPEC(N), S(N) has an extra internal transition (fromS0(n, y) toS4(n, y)), but it is easy to man-

S(N)

S0(n,y)

 /n:=N,y:=0

S1(n,x1,y)

 in?x1
 [n>0]
 @((10)0)

S2(z1,y)

 tau
 [n==0]
 /z1:=0
 @((11)0)

S3(n,x2,y)

 tau
 /n:=n-1,x2:=x1*x1
 @((11)0)

S4(y)

 tau
 @((01)1)

S5(x2,n,x1,y)

 in?x1
 [n>0]
 @((10)0)

S6(n,x3,y)

 tau
 /x3:=x2%10
 @((01)1)

S7

 prts!y
 @(01)

S8(n,x1,x3,y)

 tau
 /x3:=x2%10
 @((01)1)

 prt!x3
 /y:=y+x3
 @(01)

 in?x1
 [n>0]
 @((10)0)

S9(x3,y,z1)

 tau
 [n==0]
 /z1:=0
 @((11)0)

 prt!x3
 /y:=y+x3
 @(01)

S11(n,x3,y,x2)

 tau
 /n:=n-1,x2:=x1*x1
 @((11)0)

 prt!x3
 /y:=y+x3
 @(01)

 prt!x3
 /y:=y+x3
 @(01)

S12(x3,y,x2,n,x1)

 in?x1
 [n>0]
 @((10)0)

 prt!x3
 /y:=y+x3
 @(01)

Figure 10. The symbolic transition graph ofCAL(N) (the top box points to the initial state)

ually prove thatS(N) andSPEC(N) are stable-failures-equivalent for any initial valueN and
any input. As shown in this example, specifications generated byCONPASU are not necessarily
ideal. However, such generated specifications are helpful for formally describing ideal spec-
ifications used in FDR.CONPASU will be also used as a support tool of FDR when formally
describing specifications of concurrent processes. We are now considering how to improve
the analysis-method ofCONPASU for generating more ideal specifications.

CONPASU is still a prototype and has not been polished yet. The current CONPASU soundly
checks theunsatisfiabilityof Boolean expressions by transforming them to disjunctivenor-
mal forms, and it is not complete. The incompleteness, however, does not invalidate Corol-
lary 2.1 because Definition 2.7 only requires that if¬wsat(b) is true thenb is unsatisfi-
able. Furthermore, the syntactical identity is used for theequality over data-expressions (e.g.
x + 1 6= 1 + x). The syntactical identity seems strong, but it is expectedto be still useful
for reducing many transitions caused by interleaving, and it has been shown in the example
CAL(N) and it is also demonstrated in Section 4.

4. Application

In this section, we demonstrate howCONPASU analyzes concurrent processes by using the
exampleTransferSys given in Figure 15. It is a system for transferring data-sequences

S(N)

S0(n,y)

 /n:=N,y:=0

S6(n,x3,y)

 in?x1
 [n>0]
 /x3:=x1*x1%10,n:=n-1
 @((11)1)

S4(y)

 tau
 [n==0]
 @((11)1)

 prt!x3
 /y:=y+x3
 @(01)

S11(n,x3,y,x2)

 in?x1
 [n>0]
 /n:=n-1,x2:=x1*x1
 @((11)0)

S9(x3,y,z1)

 tau
 [n==0]
 /z1:=0
 @((11)0)

S7

 prts!y
 @(01)

 prt!x3
 /x3:=x2%10,y:=y+x3
 @((01)1)

S12(x3,y,x2,n,x1)

 in?x1
 [n>0]
 @((10)0)

 prt!x3
 /y:=y+x3
 @((01)1)

 prt!x3
 /n:=n-1,x2:=x1*x1,x3:=x2%10,y:=y+x3
 @((11)1)

Figure 11. The symbolic transition graph ofCAL(N) after state-reduction

SPEC(N) = LOOP(N,0)

LOOP(n,y) = (n>0) & in?x -> LOOP(n-1,y+x*x%10) [] (n==0) & prts!y -> STOP

Figure 12. The expected specification of the abstract concurrent processACAL(N)

S(N)

S0(n,y)

 /n:=N,y:=0

 in?x1
 [n>0]
 /y:=y+x1*x1%10,n:=n-1
 @((11)1)

S4(y)

 tau
 [n==0]
 @((11)1)

S7

 prts!y
 @(01)

Figure 13. The symbolic transition graph ofACAL(N)

S(N) = S0(N,0)\{|tmp|}

S0(n,y) = (n>0) & in?x1 -> S0(n-1,y+x1*x1%10) [] (n==0) & tmp!0 -> S4(y)

S4(y) = prts!(y) -> S7

S7 = STOP

Figure 14. A specificationS(N) generated fromACAL(N) by CONPASU

TransferSys = (UI [|{|input,quit0,succ,ok,ng|}|] Transfer)

\ {|input,quit0,succ,ok,ng|}

Transfer = (Sender [|{|start,net,term,quit1,ack|}|] Receiver)

\ {|start,net,term,quit1,ack|}

UI = upload?ds -> input!ds -> (ok?a -> Wait [] ng?a -> UI)

Wait = (cancel?b -> quit0!0 -> UI)

[](succ?u -> complete!0 -> UI)

Sender = input?ds0 -> Check(ds0)

Check(ds0) = ((#ds0>0) & ok!0 -> start!0 -> Sending(ds0))

[]((not #ds0>0) & ng!0 -> Sender)

Sending(ds0) = ((#ds0>0) & net!(head(ds0)) -> Sending(tail(ds0)))

[]((not #ds0>0) & term!0 -> Term)

[](quit0?x -> quit1!0 -> Sender)

Term = ack?z -> (succ!0 -> Sender [] quit0?x -> Sender)

Receiver = start?y -> Receiving(<>)

Receiving(ds1) = (net?d -> Receiving(ds1^<d>))

[](term?y -> output!ds1 -> ack!0 -> Receiver)

[](quit1?y -> Receiver)

Figure 15. The CSPM-script of the systemTransferSys for transferring data-sequences with UI

UI

input

ok

ng

quit0

succ

Sender

start

net

term

quit1

ack

Receiver

upload

cancel

complete

Transfer

output

TransferSys

Figure 16. The structure of the transfer systemTransferSys

from the processSender to the processReceiver. The processUI is the user-interface for
controllingSender. The structure ofTransferSys is shown in Figure 16.

The systemTransferSys behaves as follows:

• Start phase: processUI receives a data-sequence fromupload and then sends it to the
channelinput. The processSender checks the length of the data-sequence received
from input, and if the length is greater than zero thenSender repliesok to UI and
thereafter sends the start signalstart and moves to the transfer phase, otherwise
Sender repliesng to UI and thereafter both processes returns to the initial states. If
Receiver receives the start signal, then it initialises the data-sequenceds1 to the
empty sequence<>, and moves to the transfer phase.

• Transfer phase: after starting the transfer, if the length of the data-sequence is greater
than zero (#ds0>0), thenSender iteratively sends the first datahead(ds0) to the
channelnet and retains the remaintail(ds0), otherwise sends the terminal signal
term and moves to the termination phase. At the same time, ifReceiver receives a
data fromnet, then adds it to the sequence byds1^<d>, and ifReceiver receives the
terminal signal then moves to the termination phase.

• Termination phase: processReceiver sends the data-sequenceds1 to the channel
output and then acknowledges completion toSender. After receiving the acknowl-

S

S0

S1(ds)

 upload?ds
 @(10)

S2(ds0)

 tau
 /ds0:=ds
 @(1(10))

 tau
 [not#ds0>0]
 @(1(10))

S3(ds0)

 tau
 [#ds0>0]
 @(1(10))

S5(ds0)

 cancel?b
 @(10)

S6(ds0,ds1)

 tau
 /ds1:=<>
 @(0(11))

S8(ds0,ds1)

 tau
 /ds1:=<>
 @(0(11))

 tau
 [#ds0>0]
 /ds0:=tail(ds0),ds1:=ds1^<head(ds0)>
 @(0(11))

 cancel?b
 @(10)

S9(ds1)

 tau
 [not#ds0>0]
 @(0(11))

 tau
 [#ds0>0]
 /ds0:=tail(ds0),ds1:=ds1^<head(ds0)>
 @(0(11))

S10(ds1)

 tau
 [not#ds0>0]
 @(0(11))

S11

 tau
 @(1(10))

 cancel?b
 @(10)

S12

 output!ds1
 @(0(01))

S13

 output!ds1
 @(0(01))

 tau
 @(0(11))

S14(ds)

 upload?ds
 @(10)

 cancel?b
 @(10)

S15

 tau
 @(0(11))

S16

 tau
 @(0(11))

 tau
 @(0(11))

 cancel?b
 @(10)

S17

 tau
 @(1(10))

 tau
 @(1(10))

 complete!0
 @(10)

Figure 17. The symbolic transition graph ofTransferSys in Figure 15

edgment,Sender replies with success toUI, and thenUI reports success to users.
• Cancel: users can cancel the transfer by the channelcancel in the transfer phase. The

cancel is forwarded toSender andReceiver by the quit-signalsquit0 andquit1.

Since the processes have a lot of interactions in the systemTransferSys, it is not easy to
understand the whole behavior. Figure 17 shows the transition graph derived from the CSPM-
script in Figure 15 by the symbolic operational semantics inDefinition 1.3. Then, it can be
reduced to the graph in Figure 18 by hiding the channelcomplete and reducing internal
transitions by Corollary 2.1. These graphs can be automatically generated byCONPASU. In
Figure 18, we can know howTransferSys behaves, for example, as follows:

• The label on the loop from/to the stateS6,

tau[#ds0>0]/ds0:=tail(ds0),ds1:=ds1^<head(ds0)>@(0(11))

means that if the length of the data-sequenceds0 held inSender is greater than0,
then the first data is attached to the tail ofds1 held inReceiver.

S

S0

S2(ds0)

 upload?ds
 /ds0:=ds
 @(1(10))

 tau
 [not#ds0>0]
 @(1(10))

S6(ds0,ds1)

 tau
 [#ds0>0]
 /ds1:=<>
 @(1(11))

 tau
 [#ds0>0]
 /ds0:=tail(ds0),ds1:=ds1^<head(ds0)>
 @(0(11))

S8(ds0,ds1)

 cancel?b
 @(10)

S9(ds1)

 tau
 [not#ds0>0]
 @(0(11))

 tau
 @(1(11))

 tau
 [#ds0>0]
 /ds0:=tail(ds0),ds1:=ds1^<head(ds0)>
 @(0(11))

S10(ds1)

 tau
 [not#ds0>0]
 @(0(11))

 cancel?b
 @(10)

S15

 output!ds1
 @(0(11))

 output!ds1
 @(1(11))

 cancel?b
 @(1(10))

 tau
 @(1(10))

Figure 18. The reduced symbolic transition graph ofTransferSys \ {| complete |}

• The loop from/to the stateS8 means that data may be transferred even after the cancel
because forwarding the quit-signals may delay.

In the end of this section, the termination phase ofSender is reconsidered. The process
Term in Figure 15 can receive the quit signalquit0 even after receiving the acknowledgment.
It seems needless, but the systemTransferSys’, which is the same asTransferSys except
thatTerm is replaced by the followingTerm’

Term’ = ack?z -> succ!0 -> Sender,

has a deadlock because it is possible to perform the cancel just after the successful termina-
tion. Figure 19 is the reduced transition graph generated fromTransferSys’\{|complete|},
and it shows how the system reaches to the deadlock stateS16.

5. Related Work

There are various model checkers for process algebra, for example, FDR [4], PAT [5],
CWB [6], and mCRL2 [7]. The main purpose of such model checkers is to check equali-
ties or refinements between an implementation and a specification. On the other hand, the
main purpose of this work is to automatically generate a specification (an abstract sequential
process) from an implementation (a concurrent process).

Some model checkers provide functionality to display transition graphs. For example,
Figures 20 and 21 show two transition graphs ofCAL(N), introduced in Section 3 (see Fig-
ure 9), displayed by PAT [5] and LTSA [19], respectively. In Figures 20 and 21, the number
of states are105 in PAT and42 (after minimised) in LTSA even if the parameterN is fixed to
3 and the input values fromin is restricted to{0, 1}. The reason why the numbers of states
are larger than one in Figure 11 is that they use standard semantics, thus variables must be
instantiated to each value.

S

S0

S2(ds0)

 upload?ds
 /ds0:=ds
 @(1(10))

 tau
 [not#ds0>0]
 @(1(10))

S6(ds0,ds1)

 tau
 [#ds0>0]
 /ds1:=<>
 @(1(11))

 tau
 [#ds0>0]
 /ds0:=tail(ds0),ds1:=ds1^<head(ds0)>
 @(0(11))

S8(ds0,ds1)

 cancel?b
 @(10)

S9(ds1)

 tau
 [not#ds0>0]
 @(0(11))

 tau
 @(1(11))

 tau
 [#ds0>0]
 /ds0:=tail(ds0),ds1:=ds1^<head(ds0)>
 @(0(11))

S10(ds1)

 tau
 [not#ds0>0]
 @(0(11))

 cancel?b
 @(10)

S15

 output!ds1
 @(0(11))

S16

 output!ds1
 @(0(11))

 tau
 @(1(10))

 cancel?b
 @(10)

Figure 19. The reduced symbolic transition graph ofTransferSys′ \ {| complete |}

Li and Chen [9] presented an algorithm to translate the problem for checking bisimula-
tion between symbolic transition graphs with assignment into the problem of solving a pred-
icate equation system. The translation is sound and complete, but it is hard to automatically
solve the generated predicate equation system.

Interactive theorem provers [20,21,22] for process algebra have been presented. In the-
orem provers, infinite state processes can be verified. It takes, however, time to make proof-
scripts for giving proof-instructions. Especially, it is often necessary and difficult to manu-
ally give expected relations between a concurrent process and a sequential process. Probably,
CONPASU can support to make such proof-script even for infinite stateprocesses.

6. Conclusion

We have presented an analysis-method for reducing the number of states of the symbolic
transition graphs based on a symbolic operational semantics with assignments and loca-
tions. It is guaranteed that the original process and the reduced process are stable-failures-
equivalent. Then, we have implemented the symbolic operational semantics and the state-
reduction method in the toolCONPASU, and demonstrated it. As far as we know, there is no
other tool which can automatically generate symbolic transition graphs such as Figure 18
from concurrent processes such as Figure 15.

The sequential processes generated byCONPASU do not necessarily correspond to the
expected ideal specifications. It is, however, often difficult to formally describe such ideal
specifications. The generated sequential processes can give useful information for describing
such ideal specifications.

Figure 20. The transition graph ofCAL(3) displayed by PAT (input-value∈ {0, 1})

Figure 21. The minimised transition graph ofCAL(3) displayed by LTSA (input-value∈ {0, 1})

The currentCONPASU is a prototype and we have not discussed the performance of
CONPASU yet. It is a future work to polishCONPASU and evaluate the performance. As a sam-
ple, it took 39 msec for computing the symbolically reducible set from the process in Fig-
ure 15 by Definition 2.7 and 46 msec for bypassing the process by Intel Core 2 Duo CPU
P9600, 2.66 GHz, and 4 GB RAM. In the theoretical side, we are considering how bypass
affects divergence. We have confirmed that divergence is notnewly created in bypassed pro-

cess of Definition 2.6, but we are still carefully discussingwhether divergence can disappear
by bypass or not. We conjecture thatE and (BP

(n)
(R,E)(x̃))\{tmp} in Corollary 2.1 are also

failures/divergence-equivalent.

Acknowledgments

This work was supported by JSPS-KAKENHI 20500023.

References

[1] C. A. R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.
[2] A. W. Roscoe.The Theory and Practice of Concurrency. Prentice Hall, 1998.
[3] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[4] Formal Systems (Europe) Limited. Failures-divergencerefinement: FDR2.http://www.fsel.com/.
[5] National University of Singapore. PAT: Process analysis toolkit.

http://www.comp.nus.edu.sg/~pat/.
[6] The University of Edinburgh. The concurrency workbench.

http://homepages.inf.ed.ac.uk/perdita/cwb/.
[7] Technische Universiteit Eindhoven. mcrl2.http://www.mcrl2.org/mcrl2/wiki/index.php/Home.
[8] M. Hennessy and H. Lin. Symbolic bisimulations.Theoretical Computer Science, 138(2):353–389, 1995.
[9] Z. Li and H. Chen. Computing strong/weak bisimulation equivalences and observation congruence for

value-passing processes. InTACAS ’99, LNCS 1579, pages 300–314. Springer-Verlag, 1999.
[10] H. Lin. Symbolic transition graph with assignment. InCONCUR ’96, LNCS 1119, pages 50–65. Springer-

Verlag, 1996.
[11] R. S. Lazic.A Semantic Study of Data Independence with Applications to Model Checking. PhD thesis,

Oxford University Computing Laboratory, 1999.
[12] U. Montanari and D. Yankelevich. A parametric approachto localities. InICALP ’92, LNCS 623, pages

617–628. Springer-Verlag, 1992.
[13] G. Boudol, I. Castellani, M. Hennessy, and A. Kiehn. Observing localities.Theoretical Computer Science,

114:31–61, June 1993.
[14] R. Wimmer, M. Herbstritt, and B. Becker. Minimization of large state spaces using symbolic branching

bisimulation. InDDECS’06, 2006.
[15] Y. Isobe. Webpage on CONPASU.http://staff.aist.go.jp/y-isobe/conpasu/.
[16] T. Nipkow, L. C. Paulon, and M. Wenzel.Isabelle/HOL. LNCS 2283. Springer, 2002.
[17] E. Gansner, E. Koutsofios, and S. North. Drawing graphs with dot, 2006.

http://www.graphviz.org/Documentation/dotguide.pdf.
[18] J. Ellson, E. Gansner, E. Koutsofios, S. North, and G. Woodhull. Graphviz - graph visualization software.

http://www.graphviz.org/.
[19] Imperial College London. LTSA - labelled transition system analyser.

http://www.doc.ic.ac.uk/ltsa/.
[20] B. Dutertre and S. Schneider. Using a PVS embedding of CSP to verify authentication protocols. In

TPHOL 1997, LNCS 1275, pages 121–136. Springer, 1997.
[21] Y. Isobe and M. Roggenbach. Webpage on CSP-Prover.

http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html.
[22] Y. Isobe and M. Roggenbach. A generic theorem prover of CSP refinement. InTACAS 2005, LNCS 3440,

pages 108–123. Springer, 2005.

