
 
 
 
 

Experiments in Multicore and Distributed 
Parallel Processing using JCSP 

Jon KERRIDGE  
School of Computing, Edinburgh Napier University, Edinburgh UK, EH10 5DT 

j.kerridge@napier.ac.uk 
 
Abstract. It is currently very difficult to purchase any form of computer system be 
it, notebook, laptop, desktop server or high performance computing system that does 
not contain a multicore processor. Yet the designers of applications, in general, have 
very little experience and knowledge of how to exploit this capability. Recently, the 
Scottish Informatics and Computer Science Alliance (SICSA) issued a challenge to 
investigate the ability of developers to parallelise a simple Concordance algorithm. 
Ongoing work had also shown that the use of multicore processors for applications 
that have internal parallelism is not as straightforward as might be imagined. Two 
applications are considered: calculating π using Monte Carlo methods and the 
SICSA Concordance application. The ease with which parallelism can be extracted 
from a single application using both single multicore processors and distributed 
networks of such multicore processors is investigated. It is shown that naïve 
application of parallel programming techniques does not produce the desired results 
and that considerable care has to be taken if multicore systems are to result in 
improved performance. Meanwhile the use of distributed systems tends to produce 
more predictable and reasonable benefits resulting from parallelisation of 
applications. 
 
 
Keywords: multicore processors, distributed processing, parallel programming, 
Groovy, JCSP, Monte Carlo methods, concordance. 

Introduction 

The common availability of systems that use multicore processors is such that it is now 
nearly impossible to buy any form of end-user computer system that does not contain a 
multicore processor. However, the effective use of such multicore systems to solve a single 
large problem is sufficiently challenging that SICSA, the Scottish Informatics and 
Computer Science Alliance, recently posed a challenge to evaluate different approaches to 
parallelisation for a concordance problem. There will be other challenges to follow. The 
concordance problem is essentially input/output bound and thus poses particular problems 
for parallelisation. As a means of comparison, a simple compute bound problem is also 
used as an experimental framework: namely the calculation of π using a Monte Carlo 
method. 

The aim of the experiments reported in this paper is to investigate simple 
parallelisation approaches (using the JCSP packages [1, 2] for Java, running on a variety of 
Windows platforms) and see whether they provide any improvement in performance over a 
sequential solution. In other words, is parallelisation worth the effort? In section 2, 
experiments using the Monte Carlo calculation of π are presented. Section 3 describes and 
discusses the experiments undertaken with the concordance example. Finally, some 
conclusions are drawn. 



  

1. Calculating π Using Monte Carlo Methods 

The calculation of π using Monte Carlo statistical methods provides an approximation 
based on the relation of the area of a square to an inscribed circle [3]. Given a circle of 
radius r inscribed in a square of side 2r, the areas of the circle and square are, respectively, 
πr2and 4r2 – so, the ratio of these areas is π/4. Hence, if sufficient random points are 
selected within the square, approximately π/4 of the points should lie within the circle. 

The algorithm proceeds by selecting a large number of points (N = 1,024,000) at 
random and determining how many lie within the inscribed circle (M). Thus if sufficient 
points are chosen, π can be approximated by (M/N)*4. The following sequential algorithm, 
Listing 1, written in Groovy [4], captures the method assuming a value of r = 1 (and using 
only the top-right quadrant of the circle). The algorithm is repeated 10 times and the results, 
including timings, are averaged. 

 
01 def r = new Random() 
02 def timer = new CSTimer() 
03 def pi = 0 
04 def int N = 10240000 
05 def startTime = timer.read() 
06 for ( run in 1..10) { 
07  print "-" 
08  def int M = 0 
09  for ( i in 1..N){ 
10    def x = r.nextDouble() 
11    def y = r.nextDouble() 
12    if (( (x*x) + (y*y)) < 1.0 ) M = M + 1 
13  } 
14  pi = pi +  ((double)M)/ ((double)N) * 4.0 
15 } 
16 def endTime = timer.read() 
17 def elapsedTime = (endTime - startTime)/10 
18 pi = pi / 10.0 
19 println "\n$pi,$elapsedTime" 

 
Listing 1.  Sequential implementation of π estimation. 

The ‘obvious’ way to parallelise this algorithm is to split the task over a number of 
workers (W), such that each worker undertakes N/W iterations. A manager process is 
needed to initiate each worker and collate the results when all the workers have completed 
their task. Listing 2 shows the definition of such a worker process using Groovy Parallel 
and JCSP. 

 
20 class Worker implements CSProcess {  
21  def ChannelInput inChannel 
22  def ChannelOutput outChannel 
23   
24  void run(){ 
25    def r = new Random() 
26    for ( run in 1..10){ 
27      def N = inChannel.read() 
28      def int M = 0 
29      for ( i in 1..N){ 
30        def x = r.nextDouble() 
31        def y = r.nextDouble() 
32        if (( (x*x) + (y*y)) < 1.0 ) M = M + 1 
33      } 
34      outChannel.write (M) 
35    } 
36  } 
37 } 
 

Listing 2.  Worker process definition. 



   

The corresponding manager process is shown in Listing 3. Each run of the calculation 
is initiated by a communication from the manager process to each worker {52}1. The 
manager process then waits for the returned value of M from each worker {53}. 
 
38 class Manager implements CSProcess { 
39  def ChannelOutputList outChannels 
40  def ChannelInputList  inChannels 
41   
42  void run () { 
43    def timer = new CSTimer() 
44    def startTime = timer.read() 
45    def workers = outChannels.size() 
46    def pi = 0.0 
47    def N = 10240000 
48    def iterations = N / workers 
49    for ( run in 1..10) { 
50      print "." 
51      def M = 0 
52      for ( w in 0 ..< workers) outChannels[w].write (iterations) 
53      for ( w in 0 ..< workers) M = M + inChannels[w].read() 
54      pi = pi + ( ( ((double)M)* 4.0) / ((double)N) ) 
55    } 
56    def endTime = timer.read() 
57    def elapsedTime = (endTime - startTime)/10 
58    pi = pi / 10.0 
59    println "\n$workers,$pi,$elapsedTime" 
60  } 
61 } 
   

Listing 3.  Manager process definition. 

This parallel formulation has the advantage that it can be executed as a single parallel 
within one Java Virtual Machine (JVM) or over several JVMs using net channels. 
Furthermore, the JVMs can be executed on one or more cores in a single machine or over 
several machines, simply by changing the manner of invocation. 

1.1 Experimental Framework 

The experiments were undertaken on a number of different machines and also over a 
distributed system in which each node comprised a multicore processor. Table 1 shows the 
three different machine types that were used. 

 
Table 1.  Specification of the experimental machines used in the experiments. 

Name CPU cores 
Speed 
(Ghz) 

L2 Cache 
(MB) 

RAM 
(GB)

Operating 
System 

Size 
bits 

 
Office E8400 2 3.0 6 2 Windows XP 32 
Home Q8400 4 2.66 4 8 Windows 7 64 
Lab E8400 2 3.0 6 2 Windows 7 32 

 

The Lab and Office machines were essentially the same except that the Lab machines 
were running under Windows 7 as opposed to XP. The Home machine was a quad core 64-
bit machine. The Lab machines were also part of a distributed system connected by a 100 
Mbit/sec Ethernet connected to the internet and thus liable to fluctuation depending on 
network traffic. 

                                                           
1 The notation {n} and {n..m} refer to line numbers in one of the Listings.  Each line is uniquely numbered. 



  

1.2 Single Machine Performance 

The experiments on a single machine were undertaken as follows. The sequential algorithm 
was executed on each machine type to determine the ‘sequential’ performance of each 
machine. The average performance for the sequential version over 10 runs for each 
machine type is shown in Table 2. The effect of the 64-bit architecture on the Home 
machine is immediately apparent. Using the Windows Task Manager to observe CPU usage 
on each of the machines it was noted that the maximum CPU usage was never more than 
50%. 
 

Table 2.  Sequential performance of each machine. 

  Office Home Lab 
 

Time (secs) 4.378 2.448 4.508
 

The parallel version of the algorithm was then executed on each machine in a single 
JVM with various numbers of worker processes. The corresponding times and associated 
speedup is shown in Table 3. The performance in each case was monitored using the Task 
Manager and in each case the CPU usage was reported as 100%. However, the only version 
which showed any speedup of the parallel version over the sequential version was the 
Home machine with 2 workers. In all other cases the use of many parallel workers induced 
a slowdown even though the CPU was indicating a higher percentage use. The same 
behaviour was observed by Dickie [5] when undertaking the same Monte Carlo based 
calculation of π in a .NET environment. It was observed that as the number of threads 
increased CPU usage rose to 100% and overall completion time got worse. Further analysis 
using Microsoft’s Concurrency Visualizer tool [6] showed this additional processor usage 
was taken up with threads being swapped. 
 

Table 3.  Parallel performance with varying number of workers in a single JVM. 

Workers 
Office 
(secs) Speedup

Home 
(secs) Speedup

Lab 
(secs) Speedup 

 
2 4.621 0.947 2.429 1.008 4.724 0.954 
4 4.677 0.936 8.171 0.300 4.685 0.962 
8 4.591 0.954 7.827 0.313 4.902 0.920 

16 4.735 0.925 7.702 0.318 4.897 0.921 
32 4.841 0.904 7.601 0.322 5.022 0.898 
64 4.936 0.887 7.635 0.321 5.161 0.873 

128 5.063 0.865 7.541 0.325 5.319 0.848 
 

The Office and Lab machines use the same processor (E8400) and both show a gradual 
slowdown as the number of workers is increased. Whereas, the Home machine (Q8400) 
initially shows a speedup then followed by an initial dramatic decrease in performance 
which then slowly gets worse. An explanation of this could be that the L2 cache on the 
Q8400 is 4MB whereas the E8400 has 6MB and that this has crucially affected the overall 
performance. 

The parallel version of the algorithm was then reconfigured to run in a number of 
JVMs assuming each JVM was connected by a TCP/IP based network utilising the net 
channel capability of JCSP. The intention in this part of the experiment was to run each 



   

JVM on a separate core. Each JVM was initiated from the command line by a separate 
execution of the java environment. The experiments were conducted twice: once just using 
the command line java command directly and secondly using the Windows start 
command so that the affinity of the JVM to a particular core could be defined. This would, 
it was hoped, ensure that each JVM was associated with a distinct core thereby increasing 
the parallelism. In the case of the Home and Lab machines this appeared to have no effect. 
In the case of the Office machine an effect was observed and the execution using the start 
command had a similar performance to the Lab Machine. Table 4 shows the performance 
from runs that did not use the start command. 
 

Table 4.  Parallel performance with varying number of JVMs in a single machine. 

JVMs 
Office 
(secs) Speedup

Home 
(secs) Speedup

Lab 
(secs) Speedup 

 
2 4.517 0.969 2.195 1.115 4.369 1.032 
4 4.534 0.966 1.299 1.885 4.323 1.043 
8 4.501 0.973 1.362 1.797 4.326 1.042 

 

The Office machine, which uses Windows XP showed a slowdown when run without 
the start command, whereas the other two machines both showed speedups, relative to 
the sequential solution. These machines use Windows 7 and, as there was no difference in 
the performance when using start or not, it can be deduced that Windows 7 does try to 
allocate new JVMs to different cores. 

The Home machine has 4 cores and it can be seen that the best speedup is obtained 
when 4 JVMs are used. Similarly, the Lab machine has two cores and again the best 
speedup occurs when just two JVMs are utilised. 

1.3 Distributed Performance 

The multi JVM version of the algorithm was now configured to run over a number of 
machines using a standard 100 Mbit/sec Ethernet TCP/IP network. These experiments 
involved Lab machines only, which have two cores. One of the machines ran the 
TCPIPNode Server, the Manager process and one Worker in one core. The TCPIPNode 
Server is only used to set up the net channel connections at the outset of processing. The 
Manager is only used to initiate each Worker and then to receive the returned results and 
thus does not impose a heavy load on the system. The performance using both two and four 
machines is shown in Table 5. 
 

Table 5.  Performance using multiple JVMs on two and four machines. 

         Two Machines Four Machines 
 

JVMs Time (secs) Speedup Time (secs) Speedup 
 

2 4.371 1.031     
4 2.206 2.044 2.162 2.085 
8     1.229 3.668 

16     1.415 3.186 
 



  

The best performance is obtained when the number of JVMs used is the same as the 
number of available cores. Unfortunately, the best speedup relates to the number of 
machines and not the number of available cores.  

1.4 Conclusions Resulting from the Monte Carlo π Experiments 

The Monte Carlo determination of π is essentially an application that is processor bound 
with very little opportunity for communication. Hence the normal behaviour of CSP-based 
parallelism, with many processes ready to execute but awaiting communication, does not 
happen. JCSP currently relies on the underlying JVM to allocate and schedule its threads 
(that implement JCSP processes) over multiple cores. In turn, the JVM relies on the 
underlying operating system (Windows, in our experiments). The disappointing observation 
is that this combination seems to have little ability to make effective use of multiple cores 
for this kind of application. Utilising parallel processes within a single JVM had little effect 
and the result was worse performance. Performance improvement was only achieved when 
multiple machines were used in a distributed system. 

2. Concordance Related Experiments 

The SICSA Concordance challenge [7] was specified as follows: 

Given:  a text file containing English text in ASCII encoding and an integer N. 
 
Find:  for all sequences, up to length N, of words occurring in the input file, the 
number of occurrences of this sequence in the text, together with a list of start 
indices. Optionally, sequences with only 1 occurrence should be omitted. 

A set of appropriate text files of various sizes was also made available, with which 
participants could test their solutions. A workshop was held on 13th December 2010 where 
a number of solutions were presented. The common feature of many of the presented 
solutions was that as the amount of parallelism was increased the solutions got slower. 
Most of the solutions adopted some form of Map-Reduce style of architecture using some 
form of tree data structure. 

The approach presented here is somewhat different in that it uses a distributed solution 
and a different data structure. The use of a distributed solution using many machines was 
obvious from the work undertaken on Monte Carlo π. The data structures were chosen so 
they could be accessed in parallel, thereby enabling a single processor to progress the 
application using as many parallel processes as possible. However, the number of such 
parallel processes was kept small as it had been previously observed that increased numbers 
of parallel processes tended to reduce performance. 

The Concordance problem is essentially input-output bound and thus a solution needs 
to be adopted that mitigates such effects. For example, one of the text files is that of the 
Bible which is 4.681 MB in size and comprises 802,300 words. For N=6 (the string length) 
and ignoring strings that only occur once, this produces an output file size of 26.107 MB.  

2.1 Solution Approach 

It was decided to use N as the basis for parallelisation of the main algorithm. The value of 
N was likely to be small and thus would not require a large number of parallel processes on 
each machine. It was thus necessary to create data structures that could read the data 



   

structures in parallel (with each value of N accessed by a separate process). One approach 
to processing character strings is to convert each word to an integer value based on the sum 
of the ASCII values of each character in the word. This has the benefit that subsequent 
processing uses integer comparisons, which are much quicker than string comparisons. 

The approach used to parallelise the reading of the input file was to split it into equal 
sized blocks, in terms of the number of words and then send each block to a worker 
process. The input blocks were distributed in turn over the available worker processes. 
Once a worker process received a block it would do some initial processing, which should 
be completed before the next block was to be received. This initial processing removed any 
punctuation from the words and then calculated the integer value of each word in the block. 
Some initial experiments determined that a block size of 6k words was a good compromise 
between the overall time taken to read the file and the ability of a worker process to 
complete the initial processing before the next block needed to be received so that the read 
process was not delayed. This appeared to be a good compromise for the number of 
workers being used, which were 4, 8 and 12. 

The worker process could now calculate the values for N = 2..6 (N=6 was the 
maximum value chosen2). This was simply undertaken by summing the requisite number of 
integers in turn from the single word sequence values previously calculated during the 
initial phase. This could be easily parallelised because each process would need to read the 
N=1 values but would write to a separate data structure for N = 2..6. This was then 
undertaken for each block in the worker. The blocks were structured so that last N-1 words 
were repeated at the start of the next block. This meant that there was no need to transfer 
any values between workers during processing. 

The second phase of the algorithm was to search each of the N sequences to find equal 
values, which were placed in a map comprising the value and the indices where the value 
was found. Only sequences with equal values could possibly be made from the same string 
of words. However, some values could be created from different sequences of words 
(simply because the sum of the characters making up the complete string was the same) and 
these need eliminating (see below). 

This phase was repeated for each block in the worker. The result was that for each 
block a map structure was created which recorded the start index where sequences of equal 
value were found in that block. Experiments were undertaken to apply some form of hash 
algorithm to the creation of the value of a sequence. It was discovered that the effect was 
negligible in that the number of clashes remained more or less constant; the only aspect that 
changed was where the clashes occurred. Yet again this processing could be parallelised 
because each set of sequence values could be read in parallel and the resulting map could 
also be written in parallel as they were separated in N. 

Each of these maps was then processed to determine which sequence values 
corresponded to different word sequences. This resulted in another map which comprised 
each distinct word sequence as the key and the indices where that string was found in the 
block. Yet again, this processing was parallelisable in N. At the end of this phase, each 
block contained a partial concordance for the strings it contained in a map with the 
sequence value as key and a further map of the word strings and indices as the entry in N 
distinct data structures.  

The penultimate phase merged each of the partial concordances contained in each 
block to a concordance for the worker process as a whole. This was also parallelisable in N. 
The final phase was to merge to the worker concordances into a final complete concordance 
for each of the values of N. Initially, the sequence values in each data structure were sorted 
                                                           
2 N=6 was chosen because it was known that the string “God saw that it was good” occurs several times in 
Genesis. 



  

so that a merge operation could be undertaken with the workers sending entries in a known 
order to the process undertaking the merge. In the first instance the entries were sent to the 
initial process that read the input file where the complete concordance was created in a 
single file by merging the concordance entries from each worker in a manner similar to a 
tape merge. In a second implementation, additional processes were run in each worker that 
just sent the entries for one value of N to a separate merge process. There was thus N such 
merge processes each generating a single output file for the corresponding value of N. The 
effect of each of these parallelisations is considered in the following subsections. 

2.2 The Effect of Phase Parallelisation 

Each parallelisation did improve the performance of the application as a whole. For 
example, the second phase where each sequence for N = 1..6 is searched to find the indices 
of equal sequence values. The sequential version of the processing is shown in Listing 4. 

 
62 def localEqualWordMapListN = []       // contains an element for each N value 
63 for ( i in 1..N) localEqualWordMapListN[i] = []   // initialise to empty list 
64  def maxLength = BL - N 
65  for ( WordBlock wb in wordBlocks) { 
66   // sequential version that iterates through the sequenceBlockList  
67   for ( SequenceBlock sb in wb.sequenceBlockList){ 
68     // one sb for each value of N 
69     def length = maxLength 
70     def sequenceLength = sb.sequenceList.size() 
71     if (sequenceLength < maxLength) length = sequenceLength   // last block 
72     def equalMap = defs.extractEqualValues ( length,  
73            wb.startIndex,  
74            sb.sequenceList) 
75     def equalWordMap = defs.extractUniqueSequences ( equalMap, 
76              sb.Nvalue,  
77              wb.startIndex,  
78              wb.bareWords) 
79     localEqualWordMapListN[sb.Nvalue] << equalWordMap 
80   } 
81 } 
 

Listing 4.  Sequential version of equal map processing. 

The data structure localEqualWordMapListN {62}is used to hold the map comprising 
the sequence value as key which has an entry, which is itself a map comprising the word 
string as key and the indices where the word string starts as the entry. Each of the map 
entries is initialised to an empty list {63}. The variables maxLength {64} and length 
{69..71} are used to determine how many values in the sequence values are to be used an 
varies with the block size and the value of N. The last block may only be partially full.  

The WordBlock structure {65} holds all the data structures associated with each block 
and these are held in a list called wordBlocks. The loop {65..81} iterates over each such 
WordBlock. Within each WordBlock there are N SequenceBlocks and the loop {76..80} 
iterates over each of these. Each iteration initially finds the location of each sequence value 
that has multiple instances in the block. This is achieved by the method 
extractUniqueSequences {72} which stores the result in the map equalMap. The map 
equalMap is then passed to the method extractUniqueSequences {75} which creates the 
required output map, which is then appended to localEqualWordMapListN {79}. The 
crucial aspect of this process is that there are N SequenceBlocks. Thus, the process can be 
parallelised in N (as shown in Listings 5 and 6). 

It can be seen that lines {82..85} are the same as {62..65}. Lines {86..93} create a list 
of process instances using the collect method of Groovy. The process ExtractEqualMaps 
{87} utilises the same parameters as the methods used in the sequential version. The 



   

process list procNet {86} is then executed in a PAR {94}. This has the effect of 
determining the localEqualWordMapListN {82} for each value of N in parallel. 

 
82 def localEqualWordMapListN = []    // contains an element for each N value 
83 for ( i in 1..N) localEqualWordMapListN[i] = [] 
84 def maxLength = BL - N 
85 for ( WordBlock wb in wordBlocks) { 
86   def procNet = (1..N).collect { n -> 
87     new ExtractEqualMaps( n: n, maxLength: maxLength, 
88            startIndex: wb.startIndex, words: wb.bareWords, 
89            sequenceList: wb.sequenceBlockList[n-1].sequenceList, 
90            localMap: localEqualWordMapListN[n]) } 
91   new PAR(procNet).run()  
92 } 
 

Listing 5.  Parallel invocation of ExtractEqualMaps. 

Listing 6 shows the definition of the process ExtractEqualMaps. By inspection it can 
be seen that the internal method calls of extractEqualValues {104} and 
extractUniqueSequences {106} are essentially the same as those in the sequential 
version except that they refer to the properties of the process rather than the actual 
variables. The definition is, however, unusual because it contains no channel properties. In 
this case the process will access memory locations that are shared between the parallel 
instances of the process. However the data structures were designed so that multiple 
processes can read the structures but they write to separate data structures ensuring there 
are no memory synchronisation and contention probems. 

 
93 class ExtractEqualMaps implements CSProcess { 
94   def n 
95   def maxLength 
96   def startIndex 
97   def sequenceList 
98   def words 
99   def localMap 
100   void run(){ 
101    def length = maxLength 
102    def sequenceLength = sequenceList.size() 
103    if ( sequenceLength < maxLength) length = sequenceLength 
104    def equalMap = defs.extractEqualValues ( length, startIndex, 
105                                               sequenceList) 
106    def equalWordMap = defs.extractUniqueSequences ( equalMap,  
107                                                     n, startIndex, words) 
108     localMap << equalWordMap 
109   } 
110 } 
 

Listing 6.  Definition of the process ExtractEqualMaps. 

2.3 Performance Improvements Resulting from Internal Parallelisation 

Table 6 shows the performance data for the ExtractEqualMap phase of the algorithm. 
Worker Style 1 is the sequential version of the algorithm and the parallel version is 
represented as Style 2. The speedup resulting from increasing the number of workers is 
linear and is very close to the reasonable limit represented by the increased number of 
workers. The speedup due to the change in algorithm is about 2.5 times, which, given that 
N =3, is in fact for more encouraging than was achieved in the Monte Carlo π experiments. 
In these experiments no attempt was made to run multiple JVMs on each machine. 
 
 



  

 
Table 6.  Analysis of parallelisation performance by workers and technique (N=3). 

Worker 
Style Workers Time 

(secs) 
Speedup by 

workers 
Speedup 
by style 

1 4 138.263   
1 8 69.584 1.99  
2 4 53.600  2.58 
2 8 27.559 1.94 2.52 
2 12 17.957 2.98  

 

2.4 Effect of Parallelising the Merge Phase 

Table 7 shows the total time for worker processing for a system employing 12 workers for 
increasing values of N. The time taken is determined by the last worker to finish its task. 
The workers are of Style 2 which has all internal phases parallelised. Only the merge phase 
is sequential. It can be seen that the ratio of the time taken is increasing more rapidly than 
the ratio of the file output size, thus real benefit can be achieved by overlapping the merge 
phase. 
 

Table 7.  Performance of the sequential merge for 12 workers. 

 
 Total Time 

(secs) 
Time 
Ratio 

Output File 
Size (KB) 

Size 
Ratio 

3 44.034   17,798   

4 62.044 1.41 21,412 1.20 

5 82.003 1.86 23,926 1.34 

6 102.896 2.34 25,810 1.45 
  

The effect of overlapping the merge phase rather than writing all the output to a single 
file by undertaking N merges each of which writes to its own file is shown in Table 8. 
Worker Style 2 has all phases of the internal algorithm fully parallelised but writes the final 
concordance to file using a sequence of merges for each value of N. Whereas Worker Style 
3 undertakes the merge of each value of N in parallel by having a separate merge process 
running on its own machine. The worker process has an internal set of N parallel processes 
that write the entries of each partial concordance to each of the N merge processes. 

By comparing the values in Tables 7 and 8 it can be seen that the increase is now more 
in line with the increase in the size of the output file. The improvement is unlikely to be 
linear as the size of each output file varies. The largest file is associated with N = 1 because 
that file contains all instances of places where any single word has been repeated. In the 
case of the bible N=1 constitutes about 25% of the total output. The overall improvement 
for N = 6 in using the parallel merge represents a speed up of 1.61 and is thus worthwhile. 
 
 
 

N 



   

Table 8.  Performance of the parallel merge phase for 12 workers. 

 
N Total Time 

(secs) 
Time 
Ratio

2 3 44.034   
2 6 102.896   
3 3 32.319 1.36 
3 6 63.866 1.61 

 
 

2.5 Overall Processing Improvements 

As a final experiment the performance of the system with two different input files was 
undertaken for N = 6 and 12 workers. This is shown in Table 9. The input file WaD 
contains the text for Elizabeth Gaskell’s Wives and Daughters. The comparison is 
undertaken on the basis of the number of words in the input file, the size of the output file, 
the size of the file for N = 1 and the total processing time. As can be seen the smallest ratio 
is that for the Time, implying that as the size of the input file varies the overall time will 
increase at the smallest rate. 
 

Table 9.  Ratio analysis for Bible and Wives and Daughters. 

 
Words Total Output 

(KB) 
Output for 
N = 1 (KB)

Time 
(secs) 

Bible 802,300 26,107 6,297 63.809 
WaD 268,500 5,488 2,044 27.302 

 
Ratio 2.99 4.76 3.08 2.34 

 

3. Conclusions 

These experiments have produced interesting and sometimes unexpected results. Perhaps 
the most disappointing result was that obtained in the calculation of π where it seems that, 
for compute bound processing, the ability of the associated JVM (supporting JCSP) and/or 
the operating system automatically to make effective use of multiple cores was limited.  

The concordance example, however, produces more promising results in two ways. 
First the effect of introducing parallelism to the individual phases that make up the 
algorithm always improved the performance of the phase. Secondly, these improvements 
were achieved without taking any account of the fact that the machines were dual core, 
which is what the parallel system designer would wish. The fact that the improvements 
were achieved using a distributed system is also encouraging given the number of high 
performance clusters being built.  

The key aspect of the success of the concordance solution was that it was designed 
parallel from the outset in terms of its internal data structures and the manner in which the 
processes were to communicate. A highly optimised sequential solution was not the starting 
point as this would have been much harder to parallelise.  

Worker 
Style 



  

The solution has the benefit of being scalable in terms of the value of N and the 
number of workers. It also has the benefit of being capable of scaling to any size of input 
file. If the available memory size in all the workers were insufficient to hold all the data 
structures then these could be written to file as required. Solutions that assume sufficient 
memory to hold the entire input file and the internal data structures are not scalable in the 
same manner. 

Finally, the time taken to process the Bible input file, for N = 6, sequentially was 210 
seconds in comparison to the 64 seconds taken by the parallel version. 

Acknowledgements 

The author gratefully acknowledges the very helpful comments made by the anonymous 
referees and also the efforts of the editors in improving the coherence and presentation of 
this paper. 

References 

[1] JCSP Home Page, http://www.cs.kent.ac.uk/projects/ofa/jcsp/, accessed 28th April, 2011. 
[2]  P.H. Welch, N.C.C. Brown, J. Moores, K. Chalmers, and B. Sputh.  “Integrating and Extending JCSP”. In 

A.A. McEwan, S. Schneider, W. Ifill, and P.H. Welch, editors, Communicating Process Architectures 
2007, volume 65 of Concurrent Systems Engineering Series, pp. 349–370, Amsterdam, The Netherlands, 
July 2007. IOS Press. ISBN: 978-1-58603-767-3. 

[3]  E. Andersson.  “Calculation of Pi Uisng Monte Carlo Methods”, 
       http://www.eveandersson.com/pi/monte-carlo-circle, accessed 28th April, 2011 
[4] J Kerridge, K Barclay and J Savage.  “Groovy Parallel! A Return to the Spirit of occam? ”, in JJ Broenink 

et al (Eds.), Communicating Process Architectures 2005, pp. 13-28, IOS Press, Amsterdam, 2005. 
[5] S Dickie. “Can design patterns (and other software engineering techniques) be effectively used to 

overcome concurrency and parallelism problems that occur during the development stages of video 
games?”, MSc Thesis, School of Computing,  Edinburgh Napier University, 2010. 

[6] Microsoft, Visual Studio 2010 Concurrency Visualizer, see http://msdn.microsoft.com/en-
us/magazine/ee336027.aspx, accessed 28th April, 2011. 

[7] SICSA Concordance Challenge, 
       http://www.macs.hw.ac.uk/sicsawiki/index.php/MultiCoreChallenge, accessed 28th April, 

2011. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


