
The Computation Time Process Model

Martin Korsgaard and Sverre Hendseth

Norwegian University of Science and Technology
Department of Engineering Cybernetics

CPA 2011

0 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Introduction and Background

Introduction to Introduction

Definition: Computation Time Process (CTP)

A CTP is an abstract representation of execution time with a
SEQ/PAR structure.

Motivation

To explore general, temporal properties of executing
processes with a SEQ/PAR structure in multiprocessor
real-time environments.

1 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Introduction and Background

Outline

1 Introduction and Background

2 Defining CTPs
Basic Definitions
Basic Measures
Steps, Schedules and Execution

3 Analysing CTPs
Partial Orders over CTPs
Timing Anomalies
Well-Behaved Processes

4 Summary and Future Work

2 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Introduction and Background

Background

Definition: Real-time System

A system is real-time, if its correctness depends not only on
computational results, but also on the time when those
results are produced.

Definition: Schedulability Analysis

Real-time schedulability analysis is to take a real-time system
and prove in advance that all deadlines will be met.

Definition: Worst-case Execution Time (WCET)

The WCET is an upper bound to the execution time of some
computation.

Actual execution time is variable and undecidable; only WCET
can be found in advance.

Therefore, analyses must take into account that execution
times may be less than expected.

3 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Introduction and Background

Real-time Schedulability Analysis

Typical System Model for RTSA

Tasks may be sporadic (triggered) or periodic.
Tasks are defined by their computation, deadline and
(minimum) period
Each job (=task instance) executes on one processor.
System defined by job scheduler (EDF, RMS, DMPO..) and
number of processors.

This paper

We look at the timing behaviour of one job only, written
with a SEQ/PAR structure
The number of processors available to the job is
considered time-varying and non-deterministic, due to
the possible existence of higher priority jobs
The intra-job scheduler is assumed to be work-conserving
but otherwise undefined.

4 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Introduction and Background

Structure of tasks

Serial jobs (traditional model)

Jobs with parallel structure (this paper)

5 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Defining CTPs

1 Introduction and Background

2 Defining CTPs
Basic Definitions
Basic Measures
Steps, Schedules and Execution

3 Analysing CTPs
Partial Orders over CTPs
Timing Anomalies
Well-Behaved Processes

4 Summary and Future Work

6 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Defining CTPs Basic Definitions

Basic Definitions

A CTP can be 0 (do nothing), 1 (do one thing), or a sequence, or
parallel composition of two other CTPs:

P ∈ P ⇐⇒ P = 0

∨ P = 1

∨ P = Q ;R Q,R ∈ P
∨ P = Q ||R Q,R ∈ P

The value of 1 with respect to real time represents the minimum
quantification of time for the system.

These processes satisfy the following intuitive laws

0 ; P = P 0 || P = P

P ;0 = P P ||Q = Q || P
(P ;Q) ;R = P ;(Q ;R) (P ||Q) ||R = P ||(Q ||R)

7 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Defining CTPs Basic Measures

Basic Measures

Three measures (P→ N) are used in the paper;
Total computation (C)

which is the count of 1s in the process

The length (L)

which is the length of the longest sequence

The immediate height (H)

which is the number of 1s that may be executed at the first
step.

H(1) = 1

H(0) = 0

H(P ;Q) =

{
H(P) if P 6= 0

H(Q) if P = 0

H(P ||Q) = H(P) +H(Q)

8 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Defining CTPs Steps, Schedules and Execution

Stepping

Definition: Step

step(P,m) yields all possible outcomes of executing P with
given m processors for a single unit of time.

step : P× N→ {P}

A step must satisfy the work-conservation requirement of the
intra-job scheduler.

step(1,m) =

{
{1} if m = 0

{0} if m ≥ 1

step(0,m) = {0}

9 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Defining CTPs Steps, Schedules and Execution

Stepping (P ;Q and P ||Q)

A single step for a sequence P ;Q depends on whether there is
anything to execute in P.

step((P ;Q),m) =

{{
(P′ ;Q) : P′ ∈ step(P,m)

}
if P 6= 0

step(Q,m) if P = 0

A single step of a parallel P ||Q is any steps of P and Q in parallel
that satisfies the work-conservation requirement.

step((P ||Q),m) =
{
(P′ ||Q′) : P′ ∈ step(P,mP),Q

′ ∈ step(Q,mQ),

mP ∈ [0,H(P)],
mQ ∈ [0,H(Q)],

mP +mQ = min{H(P) +H(Q),m}
}

10 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Defining CTPs Steps, Schedules and Execution

Examples of steps

step
(
(1 ||1),1

)
= {1} (1)

step
(
((1 ||1) ;1),1

)
= {1 ;1} (2)

step
(
(1 ;(1 ||1)),1

)
= {1 ||1} (3)

step
(
(1 ||1),2

)
= {0} (4)

step
(
(1 ;(1 ||1)),2

)
= {1 ||1} (6)

step
(
((1 ||(1 ;1)),1

)
= {(1 ;1), (1 ||1)} (7)

11 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Defining CTPs Steps, Schedules and Execution

Schedules

Notation

〈3,4〉 means 3 processors for the first step and 4 for the
second step. The set of all schedules is S.

Concatenation

〈3,4〉_〈10,11〉 = 〈3,4,10,11〉
Execution on a schedule

The possible processes remaining after executing P on
schedule s is denoted P⊗ s.

⊗ : P× S→ {P}

P⊗〈〉 = {P}

P⊗ (〈m〉_ s) =
⋃

P′∈step(P,m)

P′⊗ s

12 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Defining CTPs Steps, Schedules and Execution

Complete on Schedule

A process P will complete on a schedule s if P⊗ s = {0}
P may complete on a schedule s if 0 ∈ P⊗ s

Scheduling Example

P = (1 ;1) ||1 ||1
s = 〈2,3〉

P⊗〈2〉 = {(1 ;1), (1 ||1)} (1)

(1 ;1)⊗〈3〉 = {1} (2.1)

(1 ||1)⊗〈3〉 = {0} (2.2)

P⊗ s = {1, 0} (3)

so P may or may not complete on the schedule.

13 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Analysing CTPs

1 Introduction and Background

2 Defining CTPs
Basic Definitions
Basic Measures
Steps, Schedules and Execution

3 Analysing CTPs
Partial Orders over CTPs
Timing Anomalies
Well-Behaved Processes

4 Summary and Future Work

14 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Analysing CTPs Partial Orders over CTPs

Partial Order: Upper Bound Order (w)

Definition

Q is an upper bound of P, written PwQ if P can be derived
from Q by replacing 1s with 0s

Motivation

If WCET analysis yields process Q, then an execution will
behave as some process PwQ.

Examples
1 ;1w1 ;1 ;1 (1)

1 ;1w(1 ||1) ;(1 ||1) (2)

P⊗ sw P (3)

0wQ (4)

Example of incomparable processes are 1 ;1 and 1 ||1.

15 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Analysing CTPs Partial Orders over CTPs

Partial Order: Schedulability Order (≤)

Definition

A process P is easier to schedule than a process Q, written
P ≤ Q, iff for all schedules s,

Q⊗ s = {0} =⇒ P⊗ s = {0}

(Read: Q will complete on s implies that P will also complete on s.)

Examples
1 ;1 ≤ 1 ;1 ;1 (1)

1 ||1 ≤ 1 ;1 (2)

0 ≤ Q (3)

Example of incomparable processes are 1 ;1 and 1 ||1 ||1

16 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Analysing CTPs Timing Anomalies

Timing Anomalies

Big question:
PwQ

?
=⇒ P ≤ Q

In words:

Removing 1s from a process will not make it harder to
schedule

Consequence

WCETs of sub-process would yield worst-case composite
process.

Unfortunately, the relation does not hold

17 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Analysing CTPs Timing Anomalies

Example of Timing Anomaly

Q =
(
1 ;(1 ||1)

) ∣∣∣∣ (1 ;(1 ||1)
)

s = 〈2,4〉
u = 〈1,2,4〉

Q⊗〈2〉 = {1 ||1 ||1 ||1}
(1 ||1 ||1 ||1)⊗〈4〉 = {0}

Q⊗ s = {0}

Q⊗〈1〉 =
((
1 ;(1 ||1)

) ∣∣∣∣1 ∣∣∣∣1)((
1 ;(1 ||1)

) ∣∣∣∣1 ∣∣∣∣1)⊗〈2〉 = {(1 ||1 ||1), (1 ;(1 ||1)
)}

(1 ||1 ||1)⊗〈4〉 = {0}(
1 ;(1 ||1)

)
⊗〈4〉 = {1 ||1}
Q⊗u = {0, (1 ||1)}

18 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Analysing CTPs Timing Anomalies

Consequences of Timing Anomalies

The Example

Q⊗〈2,4〉 = {0} Q⊗〈1,2,4〉 = {0, (1 ||1)}

Observations that follow:

A process may be harder to schedule after it has
performed some execution
A process known to complete may no longer complete if
given more processors.
WCETs of sub-processes do not constitute worst-case
when combined.

Possible counter-argument

The scheduler makes a “wrong decision”.

=⇒ Make a better the scheduler?

19 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Analysing CTPs Timing Anomalies

No Perfect Scheduler

Observation 2

There exists some process Q and schedule s so that the set
Q⊗ s has no least element in the schedulability order.

(The set Q⊗ s may have incomparable elements.)

Example:

Q =
(
1 ;(1 ||1)

) ∣∣∣∣ (1 ;1 ;1
)

s = 〈1,3〉

Q⊗〈1〉 =
{(
1 ||1 || (1 ;1 ;1)

)
,
(
1 ;(1 ||1)

) ∣∣∣∣ (1 ;1
)}(

1 ||1 ||(1 ;1 ;1)
)
⊗〈3〉 = {1 ;1}((

1 ;(1 ||1)
) ∣∣∣∣ (1 ;1

))
⊗〈3〉 = {1 ||1 ||1}

Q⊗ s =
{
(1 ;1), (1 ||1 ||1)

}
20 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Analysing CTPs Timing Anomalies

No Perfect Scheduler (contd.)

There exists situations where the scheduling decision may lead to
either

(1 ;1)

or (1 ||1 ||1)

If the schedule is 〈1,1〉, only the first process completes.

If the schedule is 〈3〉, only the second process completes.

Therefore

in general, no “correct choice” for a scheduler
“correct choice” may depend on the future schedule.

21 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Analysing CTPs Well-Behaved Processes

Well-behaved Processes

Definition: Well-behaved Process

A process P is well-behaved iff

Qw P =⇒ Q ≤ P

Analysis of real-time systems with an ill-behaved process is not
safe

Instead, when analysing schedulability, replace it with some
well-behaved process that is harder to schedule than any
process for which the ill-behaved process is an upper bound.

22 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Analysing CTPs Well-Behaved Processes

Well-behaved Process Structures

Which processes are well-behaved?

0 and 1 are well-behaved

PAR/SEQ/1 is well-behaved, e.g.

(1 ;1 ;1 ;1...) ||(1 ;1 ;1...) ||(1 ;1...)...

A sequence of well-behaved processes is well-behaved:

P1 ; P2 ; P3 ; ... ; Pn

is well-behaved if all the Pis are well-behaved.

Example of well-behaved process not with this structure:(
1 ;(1 ||1)

) ∣∣∣∣1
23 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Analysing CTPs Well-Behaved Processes

Safe Upper Bounds

Definition: Safe upper bound

A process Q is a safe upper bound for a process P if

∀P′w P : P′ ≤ Q

Definition: Best safe upper bound

Q? = min
≤
{Q ∈ P : ∀P′w P : P′ ≤ Q}

A safe upper bounds always exist, e.g. 1 ;1 ;1... with length
C(P) is a safe upper bound of P

Do not yet know how to find the best safe upper bound, or if it
is unique.

24 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Analysing CTPs Well-Behaved Processes

Example of Safe Upper Bound

Example: Q? is a better SUB than Q1:

P =
(
1 ;(1 ||1)

) ∣∣∣∣ (1 ;(1 ||1)
)

Q1 = 1 ;1 ;1 ;1 ;1 ;1

Q? = (1 ||1) ;(1 ||1) ;(1 ||1)

Why?

Both Q? and Q1 are SUBs of P.
P ≤ Q? ≤ Q1

Q? completes on all schedules where Q1 completes.
Q1 has suppressed all parallelization.
Q? has only suppressed some structure.

25 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Summary and Future Work

Summary

CTPs:

P ∈ P ⇐⇒ P = 0

∨ P = 1

∨ P = Q ;R Q,R ∈ P
∨ P = Q ||R Q,R ∈ P

Executing a process may make it harder to schedule.

No perfect intra-job scheduling strategy exists.

A process that is easier to schedule when computation is
removed is well-behaved

A safe upper bound is a well-behaved upper bound.

Replacing an ill-behaved process with a safe upper bound
enables safe schedulability analysis.

26 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Summary and Future Work

Future Work

Introduce explicit non-determinism (choice)

+ Allows conditional parallels
+ Allows alternation
+ More elegant definition of w.
− Much more complicated definition of step.

Demand bounds, which are needed for real-time schedulability
analysis of systems of CTPs.

Communication between CTPs (blocking terms).

Algorithm for finding good, safe upper bounds

27 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

Summary and Future Work

Questions

28 Martin Korsgaard and Sverre Hendseth The Computation Time Process Model

	Introduction and Background
	Defining CTPs
	Basic Definitions
	Basic Measures
	Steps, Schedules and Execution

	Analysing CTPs
	Partial Orders over CTPs
	Timing Anomalies
	Well-Behaved Processes

	Summary and Future Work

