
Evaluating an Emergent Behaviour
Algorithm in JCSP for Energy

Conservation in Lighting Systems

Anna KOSEK a and Aly SYED b and Jon KERRIDGE c

a Risoe DTU National Laboratory of Sustainable Energy, Denmark;
E-mail: amko@risoe.dtu.dk

b NXP Semiconductors, The Netherlands; E-mail: aly.syed@nxp.com
c Edinburgh Napier University, United Kingdom; E-mail: j.kerridge@napier.ac.uk

Abstract. Since the invention of the light bulb, artificial light is accompanying people
all around the world every day and night. As the light bulb itself evolved a lot through
years, light control systems are still switch-based and require users to make most
of the decisions about its behaviour. This paper presents an algorithm for emergent
behaviour in a lighting system to achieve stable, user defined light level, while saving
energy. The algorithm employs a parallel design and was tested using JCSP.

Keywords. emergent behaviour, lighting system, energy saving

Introduction

The main energy sources on Earth are not renewable, according to EIA1 statistics from 2008,
renewable solar, geothermal, wind, hydro-power and biomass energy is only 7% of the world
energy supply. Energy usage grows every year, according to EIA between 1997 and 2008 it
grew by 604.5 Terawatt hours (TWh) that is 15.5% of total energy use [1]. There is a widely
recognised need to reduce energy usage in any of the major sectors of the economy. Lighting
takes on average 37.8% of the total energy use in buildings over 90m2 [2] and in houses it is
17% [3]. Therefore lighting usage has a big share of overall energy consumption and gives
opportunity to conserve shrinking energy sources.

There are many ways to save energy on lighting, very obvious one is to replace existing
high-power incandescent bulbs with energy-saving Compact Fluorescent Lamps (CFL) and
Light Emitting Diode (LED) lights. This can bring 70% of savings when switching from
incandescent to CFL [4] or LED [5]. Further reductions in energy use can be achieved by
better controlling light, such as they consume energy sparingly. Statistics from the Dutch
NEN2 norm NEN2916 [6] shows an estimate of potential energy savings for different smart
light controls.

Statistics from Table 1 indicate that daylight-dependent switching can save 60% of en-
ergy use in spaces with daylight, that is up to 22% of the total energy use for lighting in the
building, if we replace on/off with dimming capability the reduction is 80%, that is overall
on average 30% of enegry conservation in a building.

The number of devices controlled by home automation systems grows every day and
many devices are already hidden for people’s sight, becoming more and more pervasive. On-

1U.S. Energy Information Administration, http://www.eia.doe.gov
2Nederlandse Normalisatie-instituut (eng. Dutch Standards Institute), http://www.nni.nl

Table 1. Energy reduction possibilities for lighting.

Reduced number of light bulb burning hours (%)
Smart light control Spaces with daylight Spaces with artifi-

cial light
Turning all lights off at a certain time 30 30
Manual switching 30 10
Daylight-dependent switching 60 10
Daylight-dependent switching and turning
all lights off at a certain time

80 30

Daylight-dependent dimming 80 4

going device miniaturisation makes it possible to create a network of many dust-like devices
that will eventually disappear from people’s sight, therefore locating and managing them will
become very difficult [7]. Building automation systems are usually centrally controlled, how-
ever the new trend in building automation systems is to have more distributed approach to
control. Small systems are easy to manage with a central control, but for large systems prob-
lems with scalability appear and a central management unit becomes a system’s bottleneck.
The other reason to move toward distributed control system is that central control systems
are difficult to change in response to changing occupancy and layout of the building.

When considering pervasive systems self-organisation, self-reconfiguration and adapta-
tion to environmental conditions are desired control mechanisms. In distributed systems, it is
possible to program devices to behave in a predefined manner, but it is also possible to give
devices some simple behaviour and let the total distributed system’s behaviour emerge out of
actions of individual devices. This paper describes an emergent behaviour algorithm for en-
ergy conservation in a lighting system. The presented algorithm is inspired by the workings
of human society. Section 1 presents an example of a lighting system and proposed scenario
for light sources adaptation in a single space. Section 2 describes the Lazy and Enthusiastic
Employee algorithm for emergent behaviour and Section 3 proposes a production regulation
scheme used in this algorithm. In Section 4 of this paper we describe how the algorithm can
be adjusted to achieve interesting behaviour. In Section 5 a proposed scenario implementa-
tion in JCSP [8,9] is discussed. Section 6 presents different experiments performed with im-
plemented simulation and results are described in Section 7. Conclusions and Further work
are presented in Section 8.

1. Scenario Description

The scenario chosen to describe the lighting system is presented in Figure 1, which shows
a model of a room that is used as an office. The space is equipped with two different light
source types: 16 ceiling lights bulbs that are capable of dimming, another source of light in
this room is a mirror that is placed outside the window. This mirror can be actuated such that
it reflects sun light to the ceiling in the room. A light sensor also placed outside the window
detects and informs the mirror if there is enough sunlight to reflect into the room. It is possible
to control the amount of sunlight reflected into the room by changing the angle of the mirror
to the incident sunlight. The space is divided into 16 regions equipped with one light sensor
each. Regions are associated with lamps and part of the ceiling that are illuminating it using
reflected sunlight from the mirror.

The system is implemented such that all devices namely the 16 lamps, 16 light sensors,
a mirror and the outside light detecting sensor are all autonomous devices that control their
own actions without the influence of a central control device. This can be implemented for
example using the architecture presented in [10].

Figure 1. Proposed scenario.

When the sunlight conditions outside change and less light is reflected into the room,
then the light sensors detect change in light intensity in the room. The light sensors then
inform the lights, which adjust their dimming to compensate such that the amount of light in
the room is maintained at the user defined level. As all devices in the room are autonomous
and no central control is present, devices need to react to a signal from the sensor individually.
This paper describes an algorithm that is responsible for emergent behaviour of the presented
lighting system.

2. Lazy and Enthusiastic Employee Algorithm for Emergent Behaviour

Let’s consider an example of a brick making company. The company can make bricks that
have different cost price. One is made form local materials, therefore it has a lower production
cost, but the number of bricks that can be made in certain time is limited, due to limited
resources. The second type of brick is more expensive to produce, because it is made of
imported materials, but the number of bricks that are being made, at a certain period of
time, is not limited. The company has a pool of employees, they are divided into lazy and
enthusiastic employees, a lazy worker is not very conducive to work, on the other hand an
enthusiastic employee is always happy to answer a manager’s request. However both lazy and
enthusiastic employees are able make bricks at the same rate once they start working at full
capacity. A manager monitors the factory’s overall production and periodically informs the
employees about the factory performance. The manager has no control over choosing what
type of bricks are made, he only issues a feedback on the work that has been done by all
employees. For optimal functioning of the factory the issues that need to be addressed are:

• Is it possible to make this brick making company reliable, as long as there are em-
ployees to work?

• How to minimise the production cost by using available employees and material?

Because the factory manager has no control over choosing the brick type that is being made,
the algorithm to minimise production cost has to be deployed in employees.

Let’s assign all lazy employees to production of expensive bricks and very enthusias-
tic employees to cheap bricks production. When the request to increase bricks production
is triggered all available employees respond, but enthusiastic employees will start working
immediately and try to increase brick production rapidly. Lazy employees, on the other hand,
will try to avoid working, therefore they will wait for a while and then will increase bricks
production by a small factor. If the production of cheap bricks is enough to fulfil a request,

expensive bricks are not produced or only small number of those bricks is being produced. If
the inexpensive production is not enough, then the lazy worker will eventually boost produc-
tion of expensive bricks and take over the remaining percentage of the delivery.

When a request to decrease the production is triggered, the lazy workers quickly recog-
nise opportunity to work less and are very happy to decrease the production. Enthusiastic
employees, on the other hand, are very happy to work, so are not that inclined to decrease
their workload. Enthusiastic employees will wait for a while for the situation to stabilise and,
if it is necessary, they will decrease production only slightly.

The first reaction of both lazy and enthusiastic employees is significant for minimising
cost of production. Because the brick company has to be reliable eventually lazy workers
will have to work hard if the production of cheap bricks is not enough to fulfil the request.
Similarly, the enthusiastic employees will have to work less if the production exceeds the
required amount. As shown in Figure 2 the factory is designed to supply stable flow of bricks
and react to request to increase and decrease production without any central control.

Figure 2. Factory scheme.

Another issue for emergent systems is a feedback loop problem. If, on a request, all em-
ployees are equally vigorous to change their behaviour, the behaviour if the system alters very
quickly and it is proportional to the number of the employees answering a request. Therefore
if employees are happy to answer a request to increase the production all at the same time,
this behaviour will be escalated and trigger another request to decrease the production, that
can lead to an infinite feedback loop. Introducing the Lazy and Enthusiastic Employee algo-
rithm slows down the reaction of some parts of the factory, which reduces the rapid increase
or decrease of production. The feedback loop can also appear, but it will truncate,as the reac-
tion to decreasing and increasing production is not the same, the employees will eventually
adapt to the situation and the loop will be broken.

3. The Used Production Regulation Scheme

For the purpose of this paper we present a production regulation scheme that is used with
the emergent behaviour algorithm. In the factory all employees are capable of reacting to a
value propagated by the manager and adapt their production rate. The ideal production rate in
the factory is provided by the manager and is remembered by all employees. The ideal value
is provided with a margin, that determines a range around this value where the production
rate changes within an error range. Therefore the workers do not try to compensate any more
while the production is within the margin. This is done to avoid production rate changing
continuously when the value received from the manager is in a margin very close to the ideal
value.

The production rate in an environment is divided into three groups: above agreed range,
inside of the range and below it. If we let pi be an ideal production rate value in the factory,
pi > 0, m be a margin and pa be actual production of the factory, then the value of pa is in
the agreed range if pa ∈ (pi−m, pi +m) provided m < pi and m > 0.

The scheme that regulates production rate pa in the factory takes a value from the man-
ager at a particular time and if the value is above the specified range, therefore pa > pi +m,
the production is decreased, if the value is below the range, therefore pa < pi−m, the pro-
duction is increased. If the value pa is inside of the range, there is no action taken.

Let d be a production rate of an employee of the factory, where d > 0 and let ∆d be
a factor of increase or decrease of d, where ∆d > 0. Then if pa < pi−m, then workers
production rate is increased d = d + ∆d, if pa > pi + m, then workers production rate is
decreased d = d−∆d, otherwise the request is dropped and the production rate d is kept
constant until another request is issued.

The behaviour can be alternated by changing the value of delta ∆d depending on some
conditions. Let c{n} be a sequence of conditions c1,c2, ...,cn, where c{n} = {c1,c2, ...,cn},
n ∈ N+, cn ∈ R and let g : c{n}→ ∆d, ∆d > 0 and h : c{n}→ ∆d, ∆d > 0, be functions that
generate the decrease/increase factor of the bricks production by each employee accordingly,
then:

∆d =
{

g(c{n}) if pa < pi−m;
h(c{n}) if pa > pi +m.

Functions g and h that generate the decrease or increase factor of brick production by
each employee can be adjusted to regulate factory behaviour. Functions g and h can be either
directly dependent or independent of pa, the actual value of production in the factory.

The first group of production decrease or increase factor functions (g′ and h′, where
g′ ⊂ g and h′ ⊂ h) produce values independent of the value of the actual production in the
factory, therefore c{n} is not dependent on pa. For example, let’s assume the ideal production
is pi =100 bricks/min and the margin is m =5 bricks/min accepted production rate set is
between 95 bricks/min and 105 bricks/min. If the input from the manager informs that the
actual production is pa =50 bricks/min, then the production is increased. An employee can
decide to decrease the production by a factor of ∆d =1 bricks/min or ∆d =10 bricks/min, that
is independent of value of pa. The production rate scheme with factor functions independent
of the actual production only checks if the value belongs to any of three ranges and uses
functions not based on the actual value of pa. This function can be dependent of some other
conditions used to calculate the increase or decrease factor. Therefore the employee that
adapts to the manager’s request only need to know if the value is outside of the set (pi−
m, pi +m) and react depending on the situation.

The second group of production decrease or increase factor functions (g′′ and h′′, where
g′′ ⊂ g and h′′ ⊂ h) produce values dependent of the value of the actual production in the
factory, therefore pa or function of pa can be one of conditions in sequence c{n}. For example
one of the conditions of functions g′′ and h′′ can be the distance between actual and ideal
production rate, therefore c1 = |pi− pa|, where c1 ∈ c{n}.

4. Algorithm Adjustments

There are several factors that can be adjusted to achieve emergent behaviour when using
Lazy and Enthusiastic Employee algorithm: in this paper we consider production decrease or
increase factor functions and margin’s m size. Production decrease or increase factor func-
tions helps varying workers’ behaviour. As mentioned in algorithm description any worker
performs different behaviour when the overall production is too low and react differently
in case of over-producing, therefore functions for production decrease or increase factor are
different.

Let’s consider a factory with 200 workers, where 100 of them are lazy employees and
remaining 100 are enthusiastic employees. The ideal production rate is set to be 10000

bricks/minute, all workers start from individual production rate, that is 0 bricks/minute, the
default increase/decrease rate (∆d) is 10 bricks/minute. Let’s assign all enthusiastic employ-
ees to producing cheap bricks (1$ per unit) and lazy employees to production of expensive
bricks (10$ per unit). By selecting appropriate production decrease or increase factor func-
tions (g and h) we need to minimise the cost and maximise the factory reliability. At any time
period the factory is reliable when actual production rate is within the accepted range, there-
fore pa ∈ (pi−m, pi +m) provided m < pi and m > 0, where pi is an ideal overall production
rate.

Within the proposed example let’s consider decrease or increase factor functions (g′

and h′) that produce values independent of the value of the actual production in the factory.
Considered functions for enthusiastic employees g′a, h′a, and lazy employees g′b, h′b, are as
follows:

g′a1
(∆d) = 3, g′b1

(∆d) = 1,
h′a1

(∆d) = 1, h′b1
(∆d) = 3, (1)

Workers production rate factor in the first example of g′ and h′ functions is constant
and reaction to a low production is faster than reaction to over-producing for enthusiastic
employee (g′a1

(∆d) > h′a1
(∆d)), and opposite for lazy employee (g′b1

(∆d) < h′b1
(∆d)). This

way the enthusiastic employee is increasing production faster than decreasing, independently
of value of ∆d. In this case the production increase/decrease functions u1 and u2 are constant
and independent of vale of pa. The second example functions are as follows:

g′a2
(step,∆d) = ∆d · (step4/100)/100, where step ∈ [0,10],

h′a2
(step,∆d) = ∆d · ((step−10)4/100)/100, where step ∈ [0,10],

g′b2
(step,∆d) = ∆d · ((step−10)3/10+100)/100, where step ∈ [0,10],

h′b2
(step,∆d) = ∆d · (100− (step)3/10)/100, where step ∈ [0,10].

(2)

Workers production rate factor in the second example of g′ and h′ functions is modelled
using curves presented in Figure 3. Curves in Figure 3 based on x4 and x3 are used to cal-
culate fraction of ∆d being added or subtracted. The shape of the curve influences worker’s
production rate and is one of the parameters of the algorithm. According to curves from Fig-
ure 3, enthusiastic workers increase their production rapidly at first and then stabilise, while
decreasing production slowly and then picking up when no other employees are willing to
decrease the production. The behaviour changes depending on a step, where step ∈ [0,10].
At first an employee continues on the chosen curve and when the overall production reaches
other side of the required range (pi−m, pi + m), then the curve is changed and a worker
behaves differently.

Figure 3. Functions used to decrease and increase bricks production in the factory.

The workers’ behaviour for both sets of g′ and h′ functions is compared to the behaviour
without the Lazy and Enthusiastic algorithm and presented in Figure 4. The g′ and h′ func-
tions used for comparison are as follows:

g′a3
(∆d) = 2, g′b3

(∆d) = 2,
h′a3

(∆d) = 2, h′b3
(∆d) = 2. (3)

As presented in Figure 4, the Lazy and Enthusiastic Employee algorithm’s performance
depends on choice of g′ and h′ functions. Graphs 4.A1 and 4.A3 are very similar, therefore
overall production of the factory is stable in both of those cases. When we look closer at
individual behaviour of workers, graph 4.B3 shows that both work the same and try to sustain
the production rate, in graph 4.B1 enthusiastic employees overtake the production with 9.9-
10.2 bricks/minute, and force the lazy workers to decrease their production to around 0-2
bricks/minute. The third case (graph 4.B2), when using curves from Figure 3, enthusiastic
workers take over the production completely, not letting lazy employees contribute to the
overall production rate.

The second group of production decrease or increase factor functions (g′′ and h′′) pro-
duce values dependent of the value of the actual production in the factory. Therefore the
value of increase/decrease of bricks production depends on the actual value of overall pro-
duction pa. An example of functions g′′ and h′′ depend of the distance between pa and pi, as
introduced in previous section, and can be as follows:

g′′a4
(pa, pi) = (1− (|pi− pa|/pi)) pi, pa > 0,

h′′a4
(pa, pi) = (|pi− pa|/pi) pi, pa > 0,

g′′b4
(pa, pi) = (|pi− pa|/pi) pi, pa > 0,

h′′b4
(pa, pi) = (1− (|pi− pa|/pi)) pi, pa > 0.

(4)

Functions g′′ and h′′ are designed to behave differently when distance between pa and pi
is large and differently when both values are in close proximity. Special attention was paid to
the region close to the value of pi in order to enable enthusiastic employees to overtake work
done by lazy workers and stabilise the production. The behaviour of the factory is presented
in Figure 5.

As shown in Figures 4 and 5, the emergent behaviour of workers in a factory varies de-
pending on chosen production decrease or increase factor functions. Table 2 presents com-
bined results of the described behaviours, presenting cost of production and factory relia-
bility. The cost of production is calculated with assumption that cheap bricks cost 1$ and
expensive 10$ per unit. Factory reliability is measured from 100 samples of behaviour (100
minutes), the factory is reliable if the actual production is within the accepted range, therefore
pa ∈ (pi−m, pi +m) provided m < pi and m > 0, where pi is an ideal overall production rate.
Note that the limitation in production of the cheap bricks is not included in results Table 2,
as the aim is to compare speed of reaction of workers depending on increase and decrease
factor functions. In experiments described in Section 6, the light production from the mirror
is limited by the outdoor lighting conditions.

Table 2. Algorithm evaluation towards production cost and factory reliability.

Function used cheap bricks expensive bricks overall pro- factory
production cost production cost duction cost reliability

(1) 798601 800520 1599121 72%
(2) 84390 0 84390 84%
(3) 435400 4354000 4789400 76%
(4) 891502 936440 1827942 94%

Figure 4. A1,A2,A3- Overall behaviour of workers with functions (1),(2) and (3) respectively;
B1,B2,B3- Behaviour of groups of workers with functions (1),(2) and (3) respectively.

Figure 5. A4- Overall behaviour of workers with functions (4); B4- Behaviour of groups of workers with
functions (4).

Based on data represented in Table 2, functions (2) minimised the cost considerably
while maintaining factory reliability within 84%. The performance of factory reliability when
using functions (4) is impressive, while the cost is around 20 times higher than the production
with functions (2). The overall behaviour of the algorithm points out that functions regulating
production decrease or increase factor need to be selected carefully. When maximising for
production cost, functions (2) or their variations should be used.

5. Implementation

The Lazy and Enthusiastic Employee algorithm can be used to sustain a stable light level in
a room with many autonomous light sources,as shown in Figure 1, while saving electricity.
If we assume that light bulbs are lazy employees, as they need electricity to work, which
is ”expensive”. Mirror using sunlight, which is ”cheap”, is assigned to be an enthusiastic
employee and it is expected to give as much light as is needed and possible. This way it is
possible to use the algorithm to save energy and ensure stable light level in the space as long
as all light sources can function properly. This system can also exhibit emergent behaviour
based on this simple model. All devices that are needed for the ligting system described in this
paper are autonomous and collaborate by formatting ad-hoc networks. This means that there
are many concurrent behaviours that represent a real word scenarios need to be simulated.
We have chosen, therefore, the JCSP (Communicating Sequential Processes (CSP) [11] for
Java) library for simulation of this system. Java was chosen as a programming language
of the simulation because of its maturity and ease of programming CSP based networks of
processes.

JCSP implements concurrent programming with processes running and communicating
simultaneously. A parallel solution was chosen for a simulation to represent many devices,
working autonomously, performing a behaviour depending on a value received from sensors.
Devices are autonomous and do not rely on any global synchronisation; devices only syn-
chronise on messages and, therefore, a CSP model is natural to represent the discussed per-
vasive system. A sensor reacts to change of the light intensity and periodically sends a broad-
cast signal to all available devices. Components of the presented system decide how to react
to the received signal. As a broadcast mechanism is not available in CSP, a repeater was used
to ensure that all devices receive a single signal. The broadcast mechanism is fixed to the
number of available devices, repeating the message to all available devices. If any of devices
is not available to receive the request, the broadcast process is blocked. All devices from the
scenario in Figure 1 are CSP processes and use channels to communicate. For the purpose of
this simulation, we assume perfect and reliable communication links. The behaviour of the
presented system needs to be visualised. All devices send their state to a Graphical Interface
(GI) in order to show results of the implemented behaviour. The GI accepts state informa-
tion from devices on any-to-one channel, visualises the data and calculates values for indoor
sensors. The GI of the presented simulation was built with jcsp.awt [8] active components
to enable direct communication between the GI and other processes. The architecture im-
plies broadcast communication between devices, as sensors do not know which devices are
interested in the passed light intensity value. The connection between broadcast process and
a device is one-to-one to make sure that the massage is delivered. The connection between
device and GI is a many-to-one channel enabling all devices to write to GI.

As the control algorithm is implemented in individual lamps and the mirror, the be-
haviour of the system can only be observed when all devices run simultaneously. CSP has
already been successfully used to simulate systems presenting emergent behaviour [12,13,14,
15], showing that a process-oriented approach is suitable for modelling a non-deterministic
environment.

Figure 6. CSP process model diagram for the implemented lighting system.

All 16 lamps (in Figure 6: L1-L16), 17 sensors (in Figure 6: indoor sensors S1-S16,
outdoor sensor I) and the mirror (in Figure 6: M) are CSP processes communicating over a
broadcast process (in Figure 6: B) using one-to-one and one-to-many channels. Every mes-
sage sent to the broadcast process is replicated and sent to all devices. Signal is next inter-
preted according to directions from the Lazy and Enthusiastic Employee algorithm in every
device individually. All devices report their state to the graphical interface process (in Fig-
ure 6: GI). The first factor of the Lazy and Enthusiastic Employee algorithm is choice of the
behaviour curve; according to results presented in Section 4, the chosen curves for lights and
mirror are presented in Figure 3. The choice was based on the algorithm’s high performance
in overall production costs and user comfort, as presented in Table 2. The second factor that
we consider in the simulation is the size and location of margins that define the range of
reaction of the system. In this implementation, we use variable values of ideal light intensity
in a space pi, where pi > 0, and fixed margin m=50. Therefore, a region R1 = [pi, pi + 50]
for mirror and region R2 = [pi− 50; pi) for the lights is used. The regions are excluding
(R1 ∩R2 = /0), therefore lights and mirror stabilise on different values from light sensors.
When the light is stable, the mirror is trying to go up and opposite; when the mirror is stable
the lights want to dim down. Therefore, the light first reaction is always enthusiastic. This
enables the behaviour of taking over the task to illuminate the space. Light can eventually
become lazy when there is no need for a fast reaction or the space illumination should be
stabilised.

For purpose of the simulation, we use arbitrary light intensity units to express values
delivered by light intensity sensors. The ideal intensity, defined by user, is 500 units. We have
also assumed that if the light is dimmed to x%, the light sensor senses 10 · x units.

6. Experiments

The main goal of the system is to sustain user defined light intensity in a space while main-
taining low energy use, using as much natural light as possible. We have performed two ex-
periments using a different control algorithms for a space with 16 lamps and a mirror re-
flecting light into a ceiling. The aim of these two experiments is to compare energy use for a
system with and without dimming control algorithm deployed. The space is divided into 16
regions, both a single lamp and a mirror has an influence on this space, also light from outside
is simulated to influence the sensor value with 25%, 12.5%, 10% and 0% of environment’s
light intensity depending on the distance of regions from the window.

Experiment 1. Lights and mirror react to a sensor value and are designed to sustain user
defined level of light. Both mirror and light are willing to accept every request and adapt
to it, therefore the ∆d is constant, therefore there is no algorithm used to regulate devices
behaviour.

Experiment 2. Lights and mirror react to a sensor value and are designed to sustain
user defined level of light and use the Lazy and Enthusiastic Employee Algorithm (L&EE
Algorithm). The algorithm was implemented as described in Section 4. The simulation was

Figure 7. Experiments’ input data for light intensity outside.

run for 60 seconds with identical input for all experiments. The light intensity of the envi-
ronment was changed over time according to Figure 7. We have created a data reference set
for proposed experiments. We have measured an energy consumption of 16 lamps that use
no dimming, all light sustain constant light level that is 100%.

7. Results and Analysis

The simulation has a graphical interface to present results of experiments (Figure 8).The first
part of the simulation GUI shows a 2D model of the considered space. There are 16 lamps on
the ceiling and dimming percentage associated with a lamp (Figure 8,D).

Figure 8. Simulation GUI.

The mirror’s illumination is the same for whole room an is represented in the GUI by
a half-circle (Figure 8,C). There are 16 regions and 16 sensors, each associated with each
region. The value of the sensor in each region is the sum of light from a lamp, mirror and
light spread from the window. The value of intensity in agreed units in a region is shown
in Figure 8,B. For the purpose of this simulation we calculate the value of the sensor only
using intensity from one lamp and mirror. The brightness of the environment due to sunlight

is shown in a strip outside the room (Figure 8,A). Colours and brightness of all components
in the simulation is adjusted depending on a data received from devices. The simulation real-
time data is output to graphs as shown in Figure 9. To simplify the GIU only data from lamp
1 (top-left corner of the room), mirror and sensor 1 associated with region 1 are shown in
graphs. The x axis in graphs is time measured in milliseconds.

Figure 9. Light, mirror and indoor sensor behaviour for Experiment 1 and 2.

Experiment 1. In this experiment lights react to values from the sensor and try to fulfil
the request to increase or decrease the light level in the space. All lights and mirror react the
same to sensor values, increasing or decreasing light level with the same factor, therefore no
algorithm regulating their behaviour is used. The graphs in Figure 9 are divided into time
phases that were described in Figure 7.

In phase 1 light and mirror both are trying to dim up, both light sources stop as soon as
they reach the defined range. In phase 2, as light outside decreases, mirror gives away less
light and light has to compensate. Both light sources slightly decrease in phase 3. As envi-
ronmental light decreases to 20 units in phase 4, light takes over lighting the space. In phase
5 both light and mirror are stable as both of them have reached the range. In this experiment
we can observe that the mirror is usually not used, as it has a limit over its dimming up. The
lamp can dim up easily, therefore it usually takes over lighting the space.

Experiment 2. In this experiment we use L&EE algorithm to control light intensity in
the space. The graphs in Figure 9 are divided into the sample five time phases. At the start
of the simulation, in phase 1, all the lamps are off, as sensors start sending values to lamps,
lamps notice that the light intensity is smaller than defined by the user, therefore they start
slowly dimming up. In phase 1 mirror is also willing to dim up, and as the light intensity
outside is 200 units mirror fast dim up to 20%. Lamps waits for a while and then slowly
starts dimming up to keep the desired light level. In phase 2 the environmental conditions
change and intensity decreases to 100 units, the mirror gives less light, therefore lamps have
to compensate. Soon lamp 1 becomes stable as the range of the ideal intensity was reached.
In phase 3 the light from outside increases to 700 units and mirror takes this opportunity to
dim up, meanwhile light notices a possibility to give away less light, therefore it dims down.
After a while the mirror takes over lighting up the space and light 1 is off.

Table 3. Energy usage for all experiments.

Algorithm Energy usage (J)
No control, lamps 100% dim 86700
Dimming control, no algorithm 31428
L&EE Algorithm 16019

In phase 4 light from the outside rapidly decreases to 20 units. The mirror stops giving
light, so the light bulb is forced to dim up slowly, until the space will be illuminated within
the agreed range. In phase 5 light outside increases to 300 units, therefore mirror goes up and
lamp 1 dims down to 10%. As the light from outside spreads unevenly in the room. Regions
closer to the window are brighter than regions further away from the window. At the end of
this experiment lamp 1 is dimmed to only 10%, while lamp 4 (top-right corner of the room)
needs to be dimmed to 20%.

Table 4. Energy savings when comparing energy usage from experiment 1 and 2 to the reference data.

Algorithm used Energy savings (%)
No dimming algorithm 63.8
L&EE Algorithm 81.5

Energy usage results from two experiments are compared in Table 3. The energy usage
data is calculated with assumption that all lamps are 100 Watt. From Table 3 we can further
calculate the percentage of the energy savings while using L&EE algorithm and experiment
with no dimming control algorithm used compared to the reference data. Results are shown
in Table 4. Using data reference set and other experiments, we can see that Lazy and Enthu-
siastic Employee algorithm can reduce energy usage, when there is light outside that can be
used to illuminate the space.

8. Further Work and Conclusions

In this paper we have shown an emergent behaviour arising from autonomous lighting sys-
tem devices. This behaviour is based on a simple model inspired by human society. Process-
oriented approach was chosen for representing this non-deterministic environment. We have
used CSP to model and JCSP to implement this system of many concurrently executing de-
vices and their message exchanges. The Graphical Interface benefits from use of any-to-one
input channel for receiving information about devices’ state in order to simulate the overall
light intensity in the room. The algorithm helps saving energy in spaces with daylight and
enables devices that use less energy to take over a task from devices that use more energy
without a central control. The algorithm was tested with different parameters and a simula-
tion of a lighting system in an office space was developed in order to show possible energy
savings.

The algorithm presented in this paper is tested using simulation, we have chosen arbitrary
units for light intensity as we did not use any lighting model. This algorithm can be tested in
a real system with actual devices. In this simulation model we also assume that light sensor
value is a sum of luminance from light that is above its location, the light distributed by the
mirror and the light that gets into the room through the window. In real system, in general
a sensor could be be affected by more than one light source but no light distribution model
was used in this simulation. In a real system the value from the sensor is a sum of the actual
lighting condition in the room, in the simulation, this value is calculated from lamps and light
outside, but not according to any lighting model, therefore calculations can be inaccurate. In
this paper we described algorithm with only two options for employees: lazy and enthusiastic,
but its possible to make whole range of workers and assign them different behaviours using
different behaviour curves, as presented in Figure 3.

Acknowledgements

The work presented in this paper and part of the experiments have been performed at NXP
Semiconductors, The Netherlands.

References

[1] U.S. Energy Information Administration. Retail sales and direct use of electricity to ultimate consumers
by sector, by provider, 1997 through 2008, 2008.

[2] U.S. Energy Information Administration. Electricity consumption (kwh) by end use for all buildings,
2003, 2008.

[3] Kurt W. Ruth and Kurtis McKenney. Energy consumption by consumer electronics in U.S. residences,
Final report to the Consumer Electronics Association (CEA) January 2007, 2007.

[4] WorldwatchInstitute. Compact Fluorescent Lamps Could Nearly Halve Global Lighting Demand for Elec-
tricity, 2008.

[5] U.S. Department of Energy. Comparison of LEDs to Traditional Light Sources, 2009.
[6] NEN. NEN 2916:2004, Dutch Standards Institute Norm, Energy performance of residential buildings,

2004.
[7] Marco Mamei and Franco Zambonelli. Field-Based Coordination for Pervasive Multiagent Systems.

Springer, 2006.
[8] P. H. Welch and P. D. Austin. The jcsp home page. http://www.cs.ukc.ac.uk/projects/ofa/jcsp/, 1999.
[9] Peter H. Welch, Neil C.C. Brown, J. Moores, K. Chalmers, and B. Sputh. Integrating and Extending JCSP.

In Alistair A. McEwan, Steve Schneider, Wilson Ifill, and Peter Welch, editors, Communicating Process
Architectures 2007, volume 65 of Concurrent Systems Engineering Series, pages 349–370, Amsterdam,
The Netherlands, July 2007. IOS Press. ISBN: 978-1-58603-767-3.

[10] Aly A. Syed, Johan Lukkien, and Roxana Frunza. An ad hoc networking architecture for pervasive systems
based on distributed knowledge. In Proceedings of Date2010, Dresden, 2010.

[11] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, 1978.
[12] C. G. Ritson and P. H. Welch. A process-oriented architecture for complex system modelling. Concurr.

Comput. : Pract. Exper., 22:965–980, June 2010.
[13] Christopher A. Rouff, Michael G. Hinchey, Walter F. Truszkowski, and James L. Rash. Experiences

applying formal approaches in the development of swarm-based space exploration systems. Int. J. Softw.
Tools Technol. Transf., 8:587–603, October 2006.

[14] Peter H. Welch, Frederick R. M. Barnes, and Fiona A. C. Polack. Communicating complex systems. In
Proceedings of the 11th IEEE International Conference on Engineering of Complex Computer Systems,
pages 107–120, Washington, DC, USA, 2006. IEEE Computer Society.

[15] A.T. Sampson, P.H. Welch, and F.R.M. Barnes. Lazy Simulation of Cellular Automata with Communi-
cating Processes. In J.F. Broenink, H.W. Roebbers, J.P.E. Sunter, P.H. Welch, and D.C. Wood, editors,
Communicating Process Architectures 2005, volume 63 of Concurrent Systems Engineering Series, pages
165–175, Amsterdam, The Netherlands, September 2005. IOS Press. ISBN: 1-58603-561-4.

