
Implementing Generalised Alt 01

Implementing

Generalised Alt

Gavin Lowe

Implementing Generalised Alt 02

CSO for dummies

Communicating Scala Objects (CSO) is a library of CSP-like

communication primitives for the Scala programming language,

implemented by Bernard Sufrin.

Here’s a simple example:

val c = OneOne[String];

def P = proc{ c!”Hello world!”; }

def Q = proc{ println(c?); }

(P || Q)();

Implementing Generalised Alt 03

Alternation

CSO —inspired by occam— includes a construct, alt, to provide a

choice between communicating on different channels. Here’s a simple

example

alt (

c −−> { println(”c: ”+(c?)); }

| d −−> { println(”d: ”+(d?)); }

)

Note that the body of each branch is responsible for performing the

actual input: the alt just performs the selection, based on the

communications offered by the environment.

In the original version of CSO alts could perform selections only

between input ports (InPorts). Later this was extended to include

output ports (OutPorts), for example:

alt (in −?−> { println(”in: ”+(in?)); } | out −!−> { out!”Hello”; })

Implementing Generalised Alt 04

Alternation

However, the implementation of alt had the following restriction:

A channel’s input and output ports may not both

simultaneously participate in alts.

This restriction makes the implementation of alts considerably easier.

But it can be inconvenient in a number of settings. Our aim is to

remove this restriction.

We are aiming for an implementation in terms of monitors, avoiding

using channels internally, or a centralised controller.

Implementing Generalised Alt 05

Using CSP

Our development strategy was to build CSP models of putative

designs, and then to analyse them using FDR. In most cases, our

putative designs turned out to be incorrect: FDR revealed subtle

interactions between the components that led to incorrect behaviour.

Debugging CSP models using FDR is very much easier than

debugging code by testing for a number of reasons:

• FDR does exhaustive state space exploration, whereas execution

of code explores the state space nondeterministically, and so may

not detect errors;

• The counterexamples returned by FDR are of minimal length,

whereas counterexamples found by testing are likely to be much

longer;

• CSP models are more abstract and so easier to understand than

code.

Implementing Generalised Alt 06

Overview

• An incorrect design;

• A correct design — but that can’t be implemented directly by a

monitor;

• A compound design;

• Adding timeouts and channels closing;

• Code.

Implementing Generalised Alt 07

First design

An alt registers, in turn, with each of its channels.

• If the channel is immediately ready to communicate, it returns a

response of YES, and the communication goes ahead;

• Otherwise, the channel returns a response of NO.

If the alt receives a response of NO from each of its channels, it waits

for one to become ready.

If the channel subsequently becomes ready to communicate, it sends

a message to the alt asking if it can commit.

Implementing Generalised Alt 08

First design

Chan2 Alt1 Chan1 Alt2
register

//

NOoo

register
oo

NO //

waitbb
register

oo

commitoo

YES //

deregister
oo YES //

Implementing Generalised Alt 09

CSP model of an alt

−− A l t w i th i d e n t i t y me and p o r t s ps

A l t (me , ps) = AltReg (me , ps , {} , ps)

−− Reg i s t e r w i th the p o r t s i n toReg

AltReg (me , ps , reged , toReg) =

i f toReg=={} then AltWai t (me , ps , r eged)

e l s e

⊓ p : toReg •

r e g i s t e r .me . p → r e g i s t e r R e s p ?p !me? r e s p →

i f r e s p==YES then Al tDereg (me , ps , reged , p)

e l s e AltReg (me , ps , add (reged , p) , remove (toReg , p))

Implementing Generalised Alt 10

CSP model of an alt

−− Wait f o r a po r t to become ready

AltWai t (me , ps , r eged) =

commit?p : r eged !me → commitResp .me . p !YES →

Al tDereg (me , ps , remove (reged , p) , p)

−− De r e g i s t e r from the p o r t s i n toDereg

Al tDereg (me , ps , toDereg , p) =

i f toDereg=={} then s i g n a l .me . chanOf (p) → A l t (me , ps)

e l s e (

(⊓ p1 : toDereg •

d e r e g i s t e r .me . p1 → Al tDereg (me , ps , remove (toDereg , p1) , p))

2

commit?p1 : ps → commitResp .me . p1 !NO → Al tDereg (me , ps , toDereg , p)

)

Implementing Generalised Alt 11

CSP model of a channel

Channe l (me , r eged) =

r e g i s t e r ?a? po r t : p o r t s (me) → (

l e t toTry = {(p , a1) | (p , a1) ← reged , p==otherP (po r t)} w i t h i n

ChannelCommit (me , a , por t , reged , toTry))

2

d e r e g i s t e r ?a?p : p o r t s (me) → Channe l (me , remove (reged , (p , a)))

ChannelCommit (me , a , por t , reged , toTry) =

i f toTry=={} then −− None can commit

r e g i s t e r R e s p . po r t . a !NO → Channe l (me , add (reged , (por t , a)))

e l s e

⊓ pa ’ @@ (port ’ , a ’) : toTry •

commit . por t ’ . a ’ → commitResp . a ’ . por t ’ ? r e s p →

i f r e s p==YES then

r e g i s t e r R e s p . po r t . a !YES → Channe l (me , remove (reged , pa ’))

e l s e

ChannelCommit (me , a , por t , remove (reged , pa ’) , remove (toTry , pa ’))

Implementing Generalised Alt 12

Testing with FDR

We can use FDR to test whether this configuration:

Channel(1)

##FF
FF

FF
FF

Alt(1)

;;xxxxxxxx Alt(2)

{{xx
xx

xx
xx

Channel(2)

ccFFFFFFFF

with all events other than signals hidden, refines the following

specification in the stable failures model:

Spec =

⊓ c : Channe l I d •

s i g n a l . 1 . c → s i g n a l . 2 . c → Spec

2 s i g n a l . 2 . c → s i g n a l . 1 . c → Spec

Implementing Generalised Alt 13

Deadlock

FDR finds the following behaviour leads to deadlock.

Alt(1) Channel(1) Channel(2) Alt(2)

register
//

register
oo

NOoo NO //

register
//

register
oo

commitoo commit //

Implementing Generalised Alt 14

Improved design

The counterexample shows that alts should be able to accept commit

messages while waiting for a response to a register. But how should

an alt deal with such a commit?

• It would be wrong to respond with YES, for then it would be

unable to deal with a response of YES to the register message (an

alt must respect a response of YES to a register message).

• It would also be wrong to respond NO to the commit, for then the

chance to communicate on this channel would be missed.

• Delaying replying to the commit until after a response to the

register has been received would again lead to a deadlock.

We therefore introduce a different response, MAYBE, that an alt can

send in response to a commit; informally, MAYBE means “I’m busy

right now; please call back later”.

Implementing Generalised Alt 15

Using MAYBE

Chan2 Alt1 Chan1 Alt2
register

//

NOoo

register
oo

register
oo

commitoo

MAYBE //

NO // MAYBE //

waitbb pausebb
register

oo

commitoo

YES //

deregister
oo YES //

We can adapt the CSP model to capture this new protocol. (See

paper.)

Implementing Generalised Alt 16

Analysing the new design

FDR finds that the system satisfies the earlier stable failures

refinement, but that it can diverge.

Alt(1) Channel(1) Channel(2) Alt(2)

register
//

register
oo

NOoo NO //

*

register
//

register
oo

commitoo commit //

MAYBE // MAYBEoo

MAYBE //

MAYBEoo

pausebb pausebb

Implementing Generalised Alt 17

Analysing the new design

We can perform a different refinement test to find that the only way

that the system can diverge is through repeated pauses and retries.

In the implementation, the pause will be of a random amount of time,

to ensure the symmetry is eventually broken (with probability 1).

I’ve analysed various other configurations, and got appropriate

results.

But as the alts and channels are components, we would really like to

analyse all systems built from them: this seems a particularly

difficult case of the parameterised model checking problem.

Implementing Generalised Alt 18

Compound alts

The previous model captures the desired behaviour of an alt.

However, it does not seem possible to implement this behaviour using

a single monitor, with messages implemented by procedure calls and

their returns.

We want to:

• implement the main execution of the alt as a procedure apply,

and

• implement the commit and commitResp events as a procedure

commit and its return.

However, these two procedures will need to be able to run

concurrently, so cannot be implemented in a single monitor.

Implementing Generalised Alt 19

Compound alts

Instead we implement the alt using two monitors.

• The MainAlt will implement the apply procedure, to register with

the channels, deregister at the end, execute the appropriate

branch of the alt, and generally control the execution.

• The Facet will provide the commit procedure, responding

appropriately. It will receive messages from the MainAlt,

informing it of its progress. If the Facet receives a call to commit

while the MainAlt is waiting, the Facet will wake up the MainAlt.

Implementing Generalised Alt 20

Compound alts

Chan2 MainAlt Facet Chan1

INIT //

register
//

NOoo

register
oo commitoo

NO // MAYBE //

WAIT //

waitbb
commitoo

wakeUp.Chan1
oo

deregister
oo YES //

DONE //

Implementing Generalised Alt 21

A commit received while pausing

Recall that if the MainAlt receives a reply of MAYBE when trying to

register with channels, it pauses for a short while, before retrying.

Here’s what happens if a commit is received during the pause.

Chan2 MainAlt Facet Chan1

register
oo

MAYBE //

PAUSE //

pausebb
commitoo

YES //

getToRun.Chan1
oo

deregister
oo

DONE //

Implementing Generalised Alt 22

Pausing before retrying

And here’s what happens if no commit is received during the pause.

Chan2 MainAlt Facet Chan1

register
oo

MAYBE //

PAUSE //

pausebb

getToRunNo
oo

register
oo

NO //

Implementing Generalised Alt 23

Analysing the compound design

We can build CSP models for this compound design: each alt is

formed as a parallel composition of MainAlt and Facet processes.

I have tested various configurations built from compound alts.

Implementing Generalised Alt 24

Adding timeouts

Alts may have timeout branches, for example

alt (c −−> { println(”c: ”+(c?)); } | after (500) −−> { println(”timeout”); })

If the alt has a timeout branch, then the waiting stage from the

previous design is replaced by a timed wait.

• If the Facet receives a commit during the wait, it can wake up the

MainAlt, and respond YES, as before.

• If the timeout time is reached, the alt can run the timeout

branch.

Implementing Generalised Alt 25

Adding timeouts

However, there is a complication: the Facet may receive a commit at

almost exactly the same time as the timeout is reached — a race

condition.

In order to resolve this race, we introduce a third component into the

compound alt: the Arbitrator will arbitrate in the event of such a race,

so that the Facet and MainAlt proceed in a consistent way.

When the Facet receives a commit, it contacts the Arbitrator to see if

there was a race. Likewise, when a timeout is reached, the MainAlt

contacts the Arbitrator to see if there was a race. Whichever

component calls the Arbitrator first “wins” the race.

Implementing Generalised Alt 26

A commit beating a timeout in a race

MainAlt Arbitrator Facet Chan1

WAIT-TO //

wait,

timeout
bb

commitoo

COMMIToo

true //

TIMEDOUT //

falseoo

waitbb

wakeUp.chan1
oo

YES //

The case of a timeout beating the commit is similar.

Implementing Generalised Alt 27

Closing channels

Channels may be closed. If all of an alt’s branches are disabled (i.e.,

for each, the guard is false or the channel is closed), then it throws an

Abort exception.

However, if there is an orelse branch, e.g.

alt (

(n >= 0 &&& c) −−> { println(”c: ”+(c?)); }

| orelse −−> { println(”orelse”); }

)

and all other branches are disabled, then the orelse branch is executed.

Implementing Generalised Alt 28

Closing channels

When a channel closes, it sends a chanClosed message to each alt that

is registered with it; this message is received by the Facet, which

keeps track of the number of channels that have closed.

If the Facet receives sufficient chanClosed messages such that all

channels are closed, it wakes up the MainAlt by sending it an allClosed

message.

We can extend the CSP models to include both timeouts and the

closing of channels.

Implementing Generalised Alt 29

Code overview

class Alt(events : Seq[Alt .Event], priAlt : Boolean){

def this (events : Seq[Alt .Event]) = this(events , false)

def apply (): Unit = MainAlt.apply();

def repeat = CSO.repeat { this (); }

private [cso] def commit(n:Int) : Int = Facet.commit(n);

private [cso] def chanClosed(n:Int) = Facet.chanClosed(n);

private object MainAlt extends Pausable{

def apply (): Unit = synchronized {...}

def wakeUp(n:Int) = synchronized {...}

def allClosed = synchronized{...}

}

...

}

Implementing Generalised Alt 30

Code overview

class Alt(events : Seq[Alt .Event], priAlt : Boolean){

...

private object Facet {

private var status = INIT;

def commit(n:Int) : Int = synchronized{...}

def chanClosed(n:Int) = synchronized{...}

def changeStatus(s: Int) = synchronized {...}

def setReged(nReged:Int) : Boolean = synchronized{...}

def getToRun : Int = synchronized{...}

}

private object Arbitrator {

def checkRace(s:Int) : Boolean = synchronized{...}

}

}

Implementing Generalised Alt 31

Implementation

Most of the implementation is a straightforward translation of the

CSP model.

Recall that if the MainAlt receives a response of MAYBE (and no

response of YES), it pauses before retrying.

In the implementation, the MainAlt calls a procedure pause. This

performs a binary exponential back-off algorithm, inspired by the

IEEE 802.3 Ethernet Protocol. The call to pause sleeps for a random

amount of time. The maximum possible length of pause doubles on

each successive call, to increase the chance of two alts in contention

getting out of sync.

Implementing Generalised Alt 32

Implementing waiting

Recall that if the MainAlt receives a reply of NO from each of its

channels, it waits for one to become ready, or for all the channels to

be closed; each of these is signalled by a message from the Facet. In

the CSP model:

wakeUp?p : r eged → MainAltDereg (me , ps , remove (reged , p) , p)

2 a l l C l o s e d → MainA l tA l lC l o s ed (me , ps , r eged)

Implementing Generalised Alt 33

Implementing waiting

In the implementation, the MainAlt sets a boolean flag waiting, and

executes

while(waiting) wait()

The Facet wakes up the MainAlt by calling one of the following

procedures (in MainAlt).

def wakeUp(p:Int) = synchronized {

assert (waiting); toRun = p; waiting = false ; notify ();

}

def allClosed = synchronized{

assert (waiting); allBranchesClosed = true; waiting = false ; notify ();

}

When the MainAlt wakes up, it can determine which procedure was

called by testing allBranchesClosed.

Implementing Generalised Alt 34

Conclusions

• We’ve built a useful component for message-passing concurrency.

The implementation seems fast. It has survived beta-testing by

students.

• Building CSP models, and performing analysis using FDR, can

help with developing working code.

• What CSP processes can be implemented directly as monitors?

• Can we automate the translation from CSP to code?

• What design patterns can we use to aid such a development?

