Static Scoping and Name
Resolution for Mobile Processes
with Polymorphic Interfaces

Matt B. Pedersen & Matthew Sowders

University of Nevada, Las Vegas

What Have we Done?

* Added mobile processes to Process|
> With polymorphic interfaces

Multiple interfaces to the same process

Different set of formal parameters per interface
mobile void foo (int x, int y) {
while (...) {

suspend resume with (int z)

Polymorphic Interfaces

mobile void foo (int x, int y) {
while (...) {
suspend resume with (int 2z)

}
}

e foo has 2 interfaces
° (int x, int vy)
° (int z)

* When foo is started (int x, int y)
is used; subsequently (int 2z) is used.

Why Have we Done That!?

MOBILE PROC reindelf (CHAN AGENT.INITIALIZE initialize?,
SHARED CHAN AGENT.MESSAGE report!,
SHARED CHAN INT santa.a!, santa.b!)
IMPLEMENTS AGENT
... local state declarations
SEQ
... in station compound (initialise local state)
WHILE TRUE
SEQ
... in station compound
SUSPEND -- move to gathering place
... in the gathering place
SUSPEND -- move to santa’s grotto
... 1n santa’s grotto
SUSPEND -- move to compound

From: Santa Claus — with mobile reindeer and elves, CPA Fringe presentation 2008

Why Have we Done That!?

(CHAN AGENT.INITIALIZE initialize?,
SHARED CHAN AGENT.MESSAGE report!,
SHARED CHAN INT santa.a!, santa.b!)
IMPLEMENTS AGENT

SUSPEND -- move to gathering place
SUSPEND -- move to santa’s grotto

SUSPEND -- move to compound

Why Have we Done That!?

(CHAN AGENT.INITIALIZE initialize?,
SHARED CHAN AGENT.MESSAGE report!,
SHARED CHAN INT santa.a!, santa.b!)
IMPLEMENTS AGENT

... local state declarations

SUSPEND -- m

SUSPEND -- m

SUSPEND -- move to compound

Why Have we Done That!?

e Channel ends (or other parameters) not
used in code following a resumption must
still be passed

> A dummy reading end passed could cause
deadlock if ever read.

> Made up actual parameter values must be
passed to satisfy the compiler.

Advertisement: Eric and Peter’s Call Channels (Fringe Talk)

Ok, so now what!

e What is the semantics of this?

o Parameters do not retain their values between
invocations.

mobile void foo (int x, int y) {

Bl

while (B,) {
B;
suspend resume with (int z)
B,

}

Bg

}

x & y can be referenced in B, (first invocation);
z in B, (subsequent invocations)

Invocation of Mobiles

mobile void foo (int x, int y) {
Bl
while (B,) {
B;
suspend resume with (int z)
B,

}
B5

}
e Example of execution of foo:

foo(4,5); foo(4), foo(5), foo(7),

e Only the first time (when foo is started) is
the procedure interface used.

* All other resumptions use the suspend/
resume interface.

Possible Executions

mobile void foo (int x, int y) {
Bl
while (B,) {
B3
suspend resume with (int 2z)
B4

B5
}

foo(x,y): B,, B,, B; done!
foo(x,y): B, B,, B;, suspend/foo(z): B,, B,, B.

We see that e.g. B, (& B:) can be executed
‘with’ both x & y as well as z.

Possible Executions

mobile void foo (int x, int y) {
Bl
while (B,) {
B3
suspend resume with (int 2z)
B4
}
B5
}

The first time B, is executed x seems to
be ‘a valid parameter’, but the second
time it does not; only z does.

What should we do?

* Determine witch parameters can be
referenced in all program blocks

> Create a control flow graph (CFG) based on
the source

> Massage it a little

> Perform an analysis using In and Out sets (to
be defines shortly)

~
~

ember:

m

o

(S

L

—

rs only; no

e

paramet

are

S

ble

o

varia

local

13

®
\®

ember

L

m

L

L

L

Only th

fr:

eters

m

)

par:

)

14

maost recent

1 th

m

L

L

(0

Initial Control Flow Graph

mobile void foo (int x, int y) {
Bl
while (B,) {
B;
suspend resume with (int z)

} |, represents the original
interface:

foo (int x, int y)

|, represents the resume
interface:

foo (int z)

CFG Transformation

B;l, B,

Interfaces are separated out and given
their own nodes

Transformed CFG

mobile void foo (int x, int y) {
B1

while (B,) {
B3
suspend resume with (int z)
B4

}

B5

CFG with interface information

{(x int lo) (y int lo)}

Interface Nodes

lo | {(xintlo) (y int Io)}
L
!

[! l

{@inch}| | =

Code Nodes

{(x int lo) (y int lo)}
l
B,
!
B, — B
r 1 |

{(zint 1)} 1 B, B

So Far So Good

¢ Let us define In and Out sets (loosely):

° For interface nodes:

In Set: Not interesting as an interface defines a new
set of parameters

Out Set: The set of parameters defined by the
interface

> For Code nodes:

In Set: The set of parameters that can be
referenced in the node (at least for the final
generation of In set)

Out Set: a copy of the In set

Generation 0 In and Out Sets

e Interface Nodes

o Ing(l) = { }

o Outo(li) — {(ni,| L*N |,) (ni,ki ti,ki |,)}
The Outset of an interface is the set of
triples (name type interface) defined by it

e Code Nodes

>Ing(B) =1}
> Outy(By) =1}

Example

mobile void foo (int x, int y) {C.

Bl

while (B,) {
B;
suspend resume with (int 2z) ‘j
B4

}

B5

}

* For Example

> Outy(ly) = { (xint ly) (v int 1) }
> Outy(l)) ={(zintl)}

In and Out Sets

* We generate generations of these sets
until no sets change, after which we have
the set of parameters that can be
referenced for a node in its In set

> We start out with empty sets except for Out
sets of interface nodes

CFG with In and Out Sets (Gen. 0)

In(ly) ={}
Out(ly) = {(x int ly) (y int 1y)}

In(B,) = {}
In(B,) = {} Out(B)) ={}
Out(B,) ={ }
In(B,) ={}

Out(B,) ={}

In(B;) = { }
Out(B;) ={}

In(l)) ={} In(B;) = {}
Out(l)) ={(zint 1))} Out(B3) ={}

25

Generation k+1| (Interface Nodes)

°In. (k) ={}

> Interface nodes define a new interface,
In sets can be ignored.

o OUt|<+|(|i) =
Out, (i) = {(niy tio) ... (Nik; tikg 1)}

> Interface nodes always define the same
interface.

Generation k+|(Code Nodes)

* Ing (B) = MineyeecrsOut (N)

> New In set is the intersection of all the Out

sets of the code node’s predecessors in the
CFG

* Out,(B) = In,(By)
> The Out set of a code node is the same as its

In set, as it cannot define a new interface
(Technically not needed but nice to have)

Generation k+|(Code Nodes)

* Ing (B) = MineyeecrsOut (N)

> New In set is the intersection of all the Out

sets of the code nodes predecessors in the
CFG

(ni ti) == (n; g ;)
<=>

R (== 1) A (:==)

In set, 2

e same as its
Mnterface

Generation | Sets

In(ly) ={}
Out(ly) = {(xint lp) (y int o)} <m

In(B,) = {(x int ly) (y int ly)}

In(B,) = {} Out(B,) = {(x int Iy) (y int |y}
Out(B,) ={}
In(B,) ={}
Out(B,) ={}
In(Bs) ={}
Out(Bs) ={ }

In(l)) ={} In(B;) = {}
Out(l)) ={(zint 1))} Out(B;) ={}

Generation | Sets

No Changes in B, since
In(B,) = Out(B,) MOut(B,) 1)
={}N{(x int ly) (y int I)}

In(B|) = {(x int ly) (y int 1,)}
Out(B)) = {(x int lp) (y int lp)} ¢=

In(By) =1}
= Out(B,) = {}

In(B,) = {}
Out(B,) ={}

In(B;) = { }
Out(B;) ={}

Out(l)) ={(zint 1))} Out(B;) ={}

In(l)) ={} In(B;) ={}

Generation | Sets

In(ly) ={}
Out(ly) = {(x int) (y int 1,)}

In(B)) = {(x int 1) (y int ly)}

In(B,) ={} Out(B)) = {(x int ly) (y int Iy)}
Out(B,) ={}
{} &=
In(Bs) ={}
Out(Bs) ={ }

In(l}) =1}

Out(l)) ={(zint 1))} | Out(B;) ={}

31

Generation | Sets

In(ly) ={}
Out(ly) = {(x int) (y int 1,)}

In(B|) = {(x int ly) (y int 1,)}
Out(B)) = {(x int ly) (y int 1,)}

In(B,) = { }

Out(B,)|={}
In(Bs) = {}
Out(B;) ={}

In(l,) = {} In(B;) = {}
w» Out(l)) ={(zintl))} Out(B;)={}

32

Generation | Sets

In(ly) ={}
Out(ly) = {(x int) (y int 1,)}

In(B|) = {(x int ly) (y int 1,)}
Out(B)) = {(x int ly) (y int 1,)}

In(B,) = { }

Out(B,) ={} €=
In(Bs) = {}
Out(Bs) ={}

In(l)) ={} In(B;) = {}
Out(l)) ={(zint 1))} Out(B;) ={}

33

In & Out Sets after Generation |

In(ly) ={}
Out(ly) = {(x int) (y int 1,)}

In(B|) = {(x int ly) (y int 1,)}
Out(B)) = {(x int ly) (y int 1,)}

In(B,) = { }

Out(B,) ={}
In(B;) = { }
Out(B;) ={}

In(l)) ={} In(B;) = {}
Out(l)) ={(zint 1))} Out(B;) ={}

34

Generation 2 In and Out Sets

* Nothing changes when computing
generation 2.

Final In and Out Sets

In(ly) ={}
Out(ly) = {(x int) (y int 1,)}

In(B,) = {(x int o) (y int I)}
In(B,) = {(zint 1))} Out(B)) = {(x int ly) (y int I,)}

In(B,) ={}

Out(B,)|={}
In(Bg) ={ }
Out(B;) ={ }

In(l)) ={} In(B;) =1}
Out(l)) ={(zint 1))} Out(B;) ={}

36

Final Result of Analysis

37

Final Result of Analysis

* During all possible executions we can
only guarantee that
> x and y are always available in B,
° z is always available in B,

Name Resolution

* We have not considered local variables
or how to resolve name usage in the
code
° For locals, regular scoping rules apply
° Locals can hide parameters
> One symbol table for an interface

> One symbol table for its body

Name Resolution

* A suspend/resume point acts like the
procedure interface

> One symbol table for the interface

> One symbol table for the implicit ‘body’
following

End of scope determined by the closest enclosing
scope of the suspend/resume statement.

» A block { } and a for-statement opens a
new scope as well

Now with Locals ;-)

mobile void foo (int x, int y)
{
int a;
Bl
while (B,)
{
int qg;
B
suspend resume with (int z)
int w,z;
B,
} & Implicit end of scopes opened by suspend
Bs
}

Now with Locals And Scopes

mobile void foo

Implicit scopes added in red

{10
(int x, int y)
(i * Parameter scope for
int a; procedure interface (T,)
1
V{V?Tizle (B,) * Parameter scope for
int g; suspend/resume interface
B
sixspend resume with (T3)
£
(int z)
£ * Body scope for
int w,z; .
B4 suspend/resume interface
3
yom (Ty)
}—TZ
B5
}—Tl

Name Resolution

* A symbol Table now has an ‘access list’

> Only name-uses in code blocks listed in the
access list are allowed to perform a look up in
the table — if not listed, move on to the parent

table.
—

int Z Table

Access List:{1,2,3,4,5}

Symbol Tables

* Only symbol tables associated with the
implicit scopes of interfaces have limited
access lists; all others have full access

Table for T, Table for T,
foo (int x,inty) suspend resume with (int z)

Name | Value Name | Value

int X int y4

int y

Access List: { | } Access List:{ 4 }

V

Errata: Access lists of T, T, & T,
in the paper are incorrect.
They read {1,2,3,4} they should
be {I1,2,3,4,5}

(the 5 has gone missing}
JE T *

int| z
intf w

{1,2,3,4,5}

46

The access list contains only |,
because x and y can only be
referenced in B,.

47

int
int

{1}

{1,2,3,4,5}

48

int X
int y
{1}

T,

int q

{1,2,3,45}

{1,2,3,4,5}

49

1. T,
int X \m
int ‘

z from |, can only be
referenced in B,

Y t

in a

{1}
{1,2,3,4,5}

T,

int q
T,

I’Z’ ’4’ (

Lhese | N | v |

int y4

50

{1}

1. T,
int X \m
int :

{1,2,3,4,5}

{1,2,3,45} |

T,
|int w
int y4

{1,2,3,4,5}

T,

I N | v |
int y4
{4}

51

' Red arrows indicate

in which table
resolution starts

Y
int a
{1}
{1,2,3,4,5}
2
int q
€ LE
: I’Z’ ’4’
L
int y4
)
int w
int y4

{1,2,3,4,5}

52

Final Results

* We get the following table of blocks and
which parameters and locals they can
reference.

m Locals Parameter

B, a €T, X €ETy,yE T,
B, a €T,
B, q&€T, a €T,
B, wET,zET,qETj,a€ET, z €Ty
B, a €T,

Errata: Table 4 Parameter for B4 shouldread z € T;and notz € T,

Conclusion

* We have defined and implemented mobile
procedures with polymorphic interfaces
in Process]

* Provided a new scope resolution
mechanism for polymorphic mobiles that
performs correct name resolution

Conclusion

* Provided an implementation in Java/JCSP
(Process| translated to Java with JCSP)

> Paper on the implementation (similar to our
2009 paper at CPA but without byte code
rewriting) is being presented at PDPTA 201 |

in July.

processj.cs.unlv.edu (currently turned off
cause of hackers but we will be back up
soon)

Questions

56

