
Static Scoping and Name Resolution
for Mobile Processes with
Polymorphic Interfaces

Jan Bækgaard PEDERSEN 1, Matthew SOWDERS

School of Computer Science, University of Nevada, Las Vegas

Abstract. In this paper we consider a refinement of the concept of mobile processes
in a process oriented language. More specifically, we investigate the possibility of
allowing resumption of suspended mobile processes with different interfaces. This is
a refinement of the approach taken currently in languages like occam-π. The goal
of this research is to implement varying resumption interfaces in ProcessJ, a process
oriented language being developed at UNLV.

Keywords. ProcessJ, process oriented programming, mobile processes, static name
resolution

Introduction

In this paper we redefine static scoping rules for mobile processes with polymorphic (multiple
possible varying) suspend/resume interfaces, and develop an algorithm to perform correct
name resolution.

One of the core ideas behind mobile processes is the ability to suspend execution (al-
most) anywhere in the code and return control to the caller, who can then treat the suspended
process as a piece of data, that can be transmitted to a different (physical) location, and at a
later point in time, resumed and continue executing from where it left off.

We shall use the word start the first time a mobile procedure is executed/invoked, and re-
sume for all subsequent executions/invocations. Let us illustrate the problem with an example
from occam-π. In occam-π [16], mobile processes are all initially started and subsequently
resumed with the original (procedure) interface; that is, every resumption requires the same
parameter list, even if some of these parameters have no meaning for the code that is to be
executed. An example from [17] is shown in Figure 1.

The reindelf process only uses the initialise channel (line 1) in the in
station compound (initialise local state) code block (line 7). For each
subsequent resumption (lines 11, 13, and 15) of this process, a ’dummy’ channel-end must
be passed as the first parameter. The channel end represents a channel on which no com-
munication is ever going to happen. Not only does that make the code harder to read, but
also opens the possibility of incorrect code should the channel be used for communication in
the subsequent code blocks. Similarly, should subsequent resumptions of the process require
different channels, the initial call must provide ’dummy’ values for these the first time the
process is called.

1Corresponding Author: Jan Bækgaard Pedersen, University of Nevada Las Vegas, 4505 Maryland Parkway,
Las Vegas, NV, 89154, United States of America. Tel.: +1 702 895 2557; Fax: +1 702 895 2639; E-mail:
matt.pedersen@unlv.edu.

1: MOBILE PROC reindelf (CHAN AGENT.INITIALIZE initialize?,
2: SHARED CHAN AGENT.MESSAGE report!,

3: SHARED CHAN INT santa.a!, santa.b!)

4: IMPLEMENTS AGENT

5: ... local state declarations

6: SEQ

7: ... in station compound (initialise local state)

8: WHILE TRUE

9: SEQ

10: ... in station compound

11: SUSPEND -- move to gathering place

12: ... in the gathering place

13: SUSPEND -- move to santa’s grotto

14: ... in santa’s grotto

15: SUSPEND -- move to compound

16: :

Figure 1. occam-π example.

For ProcessJ [13], a process oriented language being developed at the University of
Nevada, Las Vegas, we propose a different approach to mobile process resumption. When
a process explicitly suspends, it defines with which interface it should be resumed. This
of course means that parameters from the previous resumption are no longer valid. Static
scoping analysis as we know it no longer suffices to perform name resolution. In this paper we
present a new approach to name resolution for mobile processes with polymorphic interfaces.

In ProcessJ, a suspend point is represented by the three keywords suspend resume with
followed by a parameter list in parentheses (like a formal parameter list for a procedure as
found in most languages). A suspended mobile process is resumed by a simple invocation
using the name of the variable holding the reference to it, followed by a list of actual param-
eters (like a regular procedure call). For example, if a suspended mobile is held in a variable
f , and the interface defines one integer parameter, then f(42) is a valid resumption. Let us
start with a small example without any channels or local variables:

1: mobile void foo(int x, int y) {
2: B1

3: while (B2) {
4: B3

5: suspend resume with (int z);
6: B4

7: }
8: B5

9: }
Figure 2. Simple ProcessJ example.

The first (and only) time B1 is executed, it has access to the parameters x and y from
the original interface (line 1). The first time B2 is executed will be immediately after the
execution of B1. That is, following the execution of B1, which had access to the parameters
x and y. B2 cannot access x or y, as we will see shortly. If B2 evaluates to true the first time
it is reached, the process will execute B3 and suspend itself. B4 will be executed when the
process is resumed though the interface that declares the parameter z (line 5). The previous
parameters x and y are now no longer valid. To realize why these parameters should no
longer be valid, imagine they held channels to the previous local environment (the caller’s

environment) in which the process was executed, but in which it no longer resides; these
channels can no longer be used, so it is imperative that the parameters holding references to
them not be used again. Therefore, B4 can only reference the z parameter, and not x and y.
But what happens now when B2 is reached a second time? x and y are no longer valid, but
what about z? Naturally z cannot be referenced by B2 either as the first time B2 was reached,
the process was started through the original interface and there was no z in that interface.

Furthermore, if we look closely at the code, we also realize that the first time the code in
block B3 is reached, just like B2, the parameters from the latest process resumption (which
here is also the first) would be x and y. The second time the code block B3 is executed will
be during the second execution of the body of the while loop. This means, that foo has been
suspended and resumed once, and since the interface of the suspend statement has just one
parameter, namely z, and not x and y, neither can be referenced. So in general, we cannot
guarantee that x and y can be referenced anywhere except blockB1. The same argument holds
for z in block B4.

We can illustrate this by creating a table with a trace of the program and by listing with
which parameters the most recent resumption of the process happened. Table 1 shows a trace
of the process where B2 is evaluated three times, the first two times to true, and the last time
to false. By inspecting Table 1, we see that both B2 and B3 can be reached with disjoint sets
of parameters; therefore disallowing referenced to both x and y as well as z. B5 could have
appeared with the parameters x and y hadB2 evaluated to false the first time it was evaluated,
thus we can draw the same conclusion for B5 as we did for B2 and B3.

Table 1. Trace of sample execution.

Started/resumed Parameters from
interface Block latest resumption Remarks
foo(x, y) — — foo(int x, int y)

B1 {x, y}
B2 {x, y} B2 = true

B3 {x, y}
foo(z) — — suspend resume with (int z);

B4 {z}
B2 {z} B2 = true

B3 {z}
foo(z) — — suspend resume with (int z);

B4 {z}
B2 {z} B2 = false

B5 {z}

Table 2 shows in which blocks (Bi) the three interface parameters can be referenced.
Later on we shall add local variables to the code and redo the analysis.

Table 2. Parameters that can be referenced in various blocks.

Parameter Blocks that may reference it
x B1

y B1

z B4

If we had changed z to x (and retained their shared type int), all of a sudden, x would
now also be a valid reference in the blocks B2, B3, and B5; that is, everywhere in the body
of the procedure.

We start by examining the parameters of the interfaces, and later return to incorporate
the local variables (for which regular static scoping rules apply) into a single name resolution
pass containing both parameters and local variables.

In the next section we look at related work, and then proceed in section 2 to present a
method for constructing a control flow graph (CFG) based on the ProcessJ source code. In
section 3 we define sets of declarations to be used in the computation of valid reference, and
in section 4 we illustrate how to compute these sets, and finally in section 5 we present the
new name resolution algorithm for mobile processes with polymorphic interfaces. Finally we
wrap up with a result section and some thoughts about future work.

1. Related Work

The idea of code mobility has been around for a long time. In 1969 Jeff Rulifson introduced a
language called the Decode-Encode-Language (DEL) [15]. One could download a DEL pro-
gram from a remote machine, and the program would control communication and efficiently
use limited bandwidth between the local and remote hosts [4]. Though not exactly similar to
how a ProcessJ process can be sent to different computational environments, DEL could be
considered the beginning of mobile agents.

Resumable processes are similar to mobile agents. In [5], Chess et al. provides a classifi-
cation of Mobile Code Languages. In a Mobile Code Language, a process can move from one
computational environment to another. A computational environment is container of compo-
nents, not necessarily a host. For example, two Java Virtual Machines running on the same
host would be considered two different computational environments.

The term Strong Mobility [5] is used when the process code, state, and control state are
saved before passing them to another process to resume at the same control state and with
the same variable state in a potentially different computational environment. The term Weak
Mobility in contrast does not preserve control state. Providing mobility transparently means
the programmer will not need to save the state before sending the process. All that is needed
is to define the positions where the process can return control using a suspend statement or a
suspend resume statement. The process scheduling is also transparent to the end programmer
because mobile processes are scheduled the same as normal processes.

1.1. The Join Calculus and Chords

The Join Calculus [9] is a process algebra that extends Milner’s π-calculus [12] and that
models distributed and mobile programming. Mobility is treated slightly different in the Join
Calculus. The Join Calculus has the concept of Locality, or the computational environment [5]
where the process is executed. Locality is inherent to the system and a process can define its
locality rather than the suspend-send-resume approach used in occam-π.

Cω [3] is a language implementation of the Join Calculus and an extension of the C#
programming language. Cω uses chords, a method with multiple interfaces that can be in-
voked in any order. The body of the method will not execute until every interface has been
invoked at least once. ProcessJ does not treat multiple interfaces this way; only one interface
is correct at a time, and the process can only be resumed with that exact interface. Therefore,
we are forced to either implement run-time errors, or allow querying the suspended mobile
about which interface it is ready to accept.

1.2. The Actor Model

ProcessJ also differs from Hewitts’ actor model [2,10,11] in the same way; In the actor model,
any valid interface can be invoked, and the associated code will execute; again, for ProcessJ,
only the interface that the suspended process is ready to accept can be invoked.

A modern example of the Actor Model is Erlang actors. Erlang uses pattern matching
and receive to respond to messages sent. Figure 3 is a basic actor that takes several differing
message types and acts according to each message sent. It is possible to specify a wild card ’ ’
message that will match all other messages so there is a defined default behavior. Erlang also
has the ability to dynamically load code on all nodes in a cluster using the nl command [1],
or send a message to a process running on another node. A combination of these features
could be used to implement a type of weak mobility in Erlang; this is illustrated in Figure 3.

1: loop ()→
2: receive
3: % If I receive a string ”a” print ”a” to standard out
4: "a"→
5: io:format("a"),
6: loop();
7: % If I receive a process id and a string ”b”
8: % write ”echo” to the given process id
9: {Pid, "b"} →
10: Pid ! "echo",
11: loop();
12: % handle any other message I might receive
13: →
14: io:format("do not know what to do."),
15: loop();
16: end.

Figure 3. Erlang Actors can respond to multiple message interfaces.

1.3. Delimited Continuations and Swarm

In 2009, Ian Clarke created a project called Swarm [6]. Swarm is a framework for trans-
parent scaling of distributed applications utilizing delimited continuations in Scala through
the use of a Scala compiler plug-in. A delimited continuation, also known as a functional
continuation [8], is a functional representation of the control state of a process.

The goal of Swarm is to deploy an application to an environment with distributed data
and move the computations to where the data resides instead of moving the data to the where
the process resides. This approach is similar to that used in MapReduce [7] though it is more
broadly applicable because not every application can map to the MapReduce paradigm.

1.4. occam-π Versus ProcessJ Mobiles

The occam-π language has built in support for mobile processes [16]. The method adopted
by occam-π allows processes to suspend rather than always needing to complete. A sus-
pended process can then be communicated on a channel and resumed from the same state it
was suspended, providing strong mobility.

In occam-π, a mobile process must implement a mobile process type [16]; this is to
assure that the process receiving the (suspended) mobile will have the correct set of resources
to re-animate the mobile. Mobile processes in ProcessJ with polymorphic interfaces cannot
make use of such a technique, as there is no way of guaranteeing that the receiving process
will resume the mobile with the correct interface. Naturally, this can be rather detrimental
to the further execution of the code; a runtime error would be generated if the mobile is not
in a state to accept the interface with which is is resumed. The runtime check added by the

compiler is inexpensive and is similar in use to an ArrayOutOfBoundsException in Java. In
ProcessJ we approach this problem (though not the scope of this paper, but worth mentioning)
in the following way: It is possible to query a mobile process about its next interface (the
one waiting to be invoked); this can be done as illustrated in Figure 4. If a process is not in a

1: MobileProc p = c.read(); // Receive a mobile on channel c
2: if (p.accepts(chan<int>.read)) { // is p’s interface (chan<int>.read) ?
3: chan<int> intChan;
4: par {
5: p(intChan.read); // Resume p with a reading channel end
6: c.write(42);
7: }
8: }

Figure 4. Runtime check to determine if a process accepts a specific interface.

state, in which it is capable of accepting a resumption with a certain interface, the check will
evaluate to false, and no such resumption is performed. This kind of check is necessarily a
runtime check.

2. Control Flow Graphs and Rewriting Rules

The key idea to determine which parameters can be referred in a block, is to consider all
paths from interfaces leading into that block. If all paths to a block include a definition from
an interface of a parameter with the same name and type, then this parameter can be refer-
enced in that block. This can be achieved by computing the intersection of all the parameters
declared in interfaces that can flow into a block (directly or indirectly through other nodes.)

We will develop this technique through the example code in Figure 2. The first step
is to generate a source code-based control flow graph (CFG), which can be achieved using
a number of simple graph construction rules for control diverting statements (these are if-,
while-, do-, for-, switch-, and alt-statements as well as break and continue). Theses rules are
illustrated in Figure 5.

For the sake of completeness, it should be noted, that the depiction of the switch state-
ment in Figure 5 is based on each statement case having a break statement at its end; that is,
there are no fall though cases. If for example B1 could fall through to B2 the graph would
have an arc from e to B1, from e to B2, and to represent the fall through case, an arc from B1

to B2. continue statements in loops add an extra arc to the boolean expression controlling the
loop, and a break in an if statement would skip the rest of the nodes from it to the end of the
statement by adding an arc directly to the next node in the graph.

If we apply the CFG construction rules from Figure 5 in which we treat procedure calls
and suspend/resume statements as non-control-diverting statements (The original process in-
terface can be thought of as resume point and will thus be the first ’statement’ in the first
block in the CFG.), we get the control flow graph shown in Figure 6.

Note, the I0 before B1 represents the original procedure interface, and the I1 between
B3 and B4 represents the suspend/resume interface.

Having the initial interface and the suspend/resume statements mixed with the regular
block commands will not work for the analysis to come, so we need to separate those out.
This can be done using a simple graph rewriting rule; each interface gets its own node. This
rewriting rule is illustrated in Figure 7.

...
if (b)
S1

else
S2

...
S 1 S 2

b

...
if (b)
S

...
S

b

if-then-else statement if-then statement

...
while (b)
S

...
S

b

...
do
S

while (b)
...

S

b

while statement do statement

...
for (i; e; u)
S

...

u

S

b

i

...
alt {
g1:
S1

...
gn:
Sn

}
...

g
 1

g
 n

. . .

. . .

S 1 S n

for statement alt statement

...
switch (e) {

case c1: B1
...
case cn: Bn

}
...

. . .
1 nB B

e

switch statement

Figure 5. CFG construction rules.

B2

B5

B1I 0

B3 B4
I1

Figure 6. CFG for the example code in Figure 2.

We will refer to the nodes representing interfaces as interface nodes and all others (with
code) as code nodes. With an interface node we associate a set of name/type/interface triples
(ni ti Ii), namely the name (ni) of the parameter, its type (ti) and the interface (Ii) in which
it was declared. In addition, we introduce a comparison operator =̂ between triples defined
in the following way: (ni ti Ii) =̂ (nj tj Ij) ⇔ (ni = nj ∧ ti = tj). The corresponding set
intersection operator is denoted ∩̂. We introduce interface nodes for suspend/resume points
into the graph in the following manner: if a code block Bi has m suspend/resume statements,
then split Bi into m + 1 new code blocks Bi1 , . . . , Bim+1

interspersed with interface nodes
Ii1 , . . . , Iim . Bi1 and/or Bim+1

might be empty code nodes (Technically, so might all the

...i

Bi
1

I i
1

Bi
m+1

I i
m

...

...

......
B

Figure 7. CFG rewriting rule.

other code nodes, but that would be a little strange, as that would signify 2 or more suspend
statements following each other without any code in between). Also, since the parameters of
the procedure interface technically also make up an interface, we need to add an interface
node for these as well. This is also covered by the rewriting rule in Figure 7, and in this case
Bi1 will be empty and Ii2 will be I0. Rewriting the CFG from Figure 6 results in the graph
depicted in Figure 8. We now have a CFG with code and interface nodes. Each interface node
has information about the parameters it declares, as well as their types. This CFG is a directed
graph (VCFG, ECFG), where the vertices in V are either interface nodes (Ii) or code nodes
(Bi). An edge in ECFG is a pair of nodes (N,M) representing a directed edge in the CFG
from N to M ; that is, if (N,M) ∈ ECFG, then the control flows from the code represented
by vertex N to the code represented by the vertex M in the program.

3. In and Out Sets

For the nodes representing an interface, Ii, we are not interested in the incoming arcs. Since
a suspend/resume point represented by an interface node re-defines which parameters can be
accessed, they will overwrite any existing parameters. We can now define, for each node in
the CFG, sets representing incoming and outgoing parameters.

We define two sets for each node N (N is either a code node (Bi) or an interface node
(Ii)) in the CFG, namely the in set (Ik(N)) and the out set (Ok(N))). Each of these sets

I0

B1

0{(x int I),(y int I)}0

B5B2

B3I1

B4

{(z int I)}1

Figure 8. The altered CFG of the example in Figure 6.

are subscripted with a k denoting a generation. Generations of in and out set are dependent
on the previous generations. The in set of a code block ultimately represent the parameters
that can be referenced in that block. The out set for a code block is a copy of the in set;
while technically not necessary, they make the algorithm that we will present later look nicer.
For interface nodes, in sets are ignored (there is no code in an interface node). We can now
define the following generation 0 sets for an interface node Ii (representing an interface
(ti,1 ni,1, . . . , ti,ki

ni,ki
)) and a code node Bi:

I0(Ii) := { }
O0(Ii) := {(ni,1 ti,1 Ii), . . . , (ni,ki

ti,ki
Ii)}

I0(Bi) := { }
O0(Bi) := { }

Since an interface node introduces a new set of parameters, we only define its out set. The
(k + 1)th generation of in and out sets can easily be computed based on the kth generation.
Recall that a parameter (of a certain name and type) can only be referenced in a code block
Bi if all interfaces Ij that have a path to Bi define it (both name and type must be the same!);
this leads us to the following definition of the k + 1th generation for in and out sets:

Ik+1(Ii) := { }
Ok+1(Ii) := Ok(Ii)

Ik+1(Bi) :=
⋂̂

(N,Bi)∈ECFG
Ok(N)

Ok+1(Bi) := Ik+1(Bi)

That is, the k + 1th generation of the in set of block Bi is the intersection of the out sets of
all its immediate predecessors at generation k in the CFG. To determine the set of references
that are valid within a code block we repeatedly apply the four rules (only the two rules for
the code blocks will change any sets after the first iteration) until no sets change. Table 3
shows the results after two generations; the third does not change anything, so the result can
be observed in the column labeled I1.
To see that x and y or z cannot be referenced in block B2, consider the set I1(B2):

I1(B2) := O0(B1)∩̂O0(B4) = {(x int I0), (y int I0)}∩̂{(z int I1)} = { }

Table 3. Result of in and out sets after 2 generations.

I0 O0 I1 O1

I0 { } {(x int I0), (y int I0)} { } {(x int I0), (y int I0)}
B1 { } { } {(x int I0), (y int}I0)} {(x int I0), (y int I0)}
B2 { } { } { } { }
B3 { } { } { } { }
I1 { } {(z int I1)} { } {(z int I1)}
B4 { } { } {(z int I1)} {(z int I1)}
B5 { } { } { } { }

If two triples have have the same name and type both triples will be represented in the result
set (with different interface numbers of course.) We can now formulate the algorithm for
computing in and out sets.

4. Algorithm for In and Out Set Computation

Input: ProcessJ mobile procedure.
Method:

1. Using the CFG construction rules from Figure 5, construct the control flow graph G.
2. For each interface node Ii, and code node Bj in G = (V,E) initialize

Ik+1(Ii) := { }
Ok+1(Ii) := Ok(Ii)

Ik+1(Bj) :=
⋂̂

(N,Bj)∈EOk(N)

Ok+1(Bj) := Ik+1(Bj)
3. Execute this code:

done = false;
while (!done) {

done = true;
for (B ∈ V) do { // only for code nodes

B′ =
⋂̂

(N,B)∈EO(N)
if (B′ 6= B)

done = false;
O(B) = I(B) = B′

}
}

Result: Input sets for all code block with valid parameter references.

It is worth pointing out that in the algorithm generations of in and out sets are not used.
This does not impact the correctness of the computation (because the operator used is the
intersection operator.) If anything, it shortens the runtime by allowing sets from generation
k + 1 to be used in the computation of other generation k + 1 sets.

With this in hand, we can now turn to performing the actual scope resolution. This can
be achieved using a regular static scope resolution algorithm with a small twist, as we shall
see in the following section.

5. Static Name Resolution for Mobile Processes

Let us re-introduce the code from Figure 2, but this time with local variables added (lines 2,
5, and 8); this code can be found in Figure 9. Also note, the local variable z in line 8 has the
same name as the parameter in the interface in line 7. Naturally, this means that the interface
parameter is hidden by the local variable.

1: mobile void foo(int x, int y) {
2: int a;
3: B1

4: while (B2) {
5: int q;
6: B3

7: suspend resume with (int z);
8: int w,z;
9: B4

10: }
11: B5

12: }
Figure 9. Simple ProcessJ example with local variables.

As briefly mentioned in the previous section, the regular static name resolution algorithm
works almost as-is. The only differences are that we have to incorporate the in sets computed
by the algorithm in the previous section in the resolution pass, and the way scopes are closed
will differ slightly.

Different languages have different scoping rules, so let us briefly state the static scoping
rules for parameters and locals in a procedure in ProcessJ.

• Local variables cannot be re-declared in the same scope.
• An interface/procedure declaration opens a scope in which only the parameters are

held. The scoping rules of interface parameters are what we defined in this paper.
• The body of a procedure opens a scope for local variables. (this means, that we can

have parameters and locals named the same, but the parameters will be hidden by the
local variables.)

• A block (a set of { }) opens a new scope (Local variable names can now be reused,
though re-declared local variables hide other local variables or parameters in enclos-
ing scopes. The scope of a local variable declared in a block is from the point of
declaration to the end of the block.

• A for-statement opens a scope (it is legal to declare variables in the initialization part
of a for-statement. The scope of such variables is the rest of the for-statement.

• A suspend/resume point open a new scope for the new parameters. Since we treat
a suspend/resume point’s interface like the original procedure interface, an implicit
block ensues immediately after, so a new scope is opened for that as well (If we did
not do this, we would break the rule that parameters and local can have shared names,
as the in this situation would reside in the same scope.)

A symbol table, in this context, is a two dimensional table mapping names to attributes.
In addition, a symbol table has a parent (table), and an access list of block numbers that
represent which blocks may perform look-ups in them. This access list contains the result of
the algorithm that computed which blocks can access an interface’s parameters. If the use of a
name in block Bi requires a look-up in a table that does not list i in its access list, the look-up
query is passed to the parent recursively, until either the name is successfully resolved, or the
end of the chain of tables is reached, resulting in an unsuccessful lookup of that name.

Using the example from Figure 2, a total of 5 scopes are opened, two by interfaces (The
original procedure’s interface declaring parameters x and y, accessible only by code in block
B1, and the suspend/resume point’s interface declaring parameter w and z, accessible only by
code in block B4), one by the main body of the procedure (declaring local variable a), one by
a block (declaring local variable q), and one following the suspend/resume point (declaring
the local variable z, which hides the parameter from the interface of the suspend/resume
statement).

In Figure 10, the code has been decorated with +Ti to mark where the ith scope is
opened, and −Ti to mark where it is closed. Furthermore the implicit scopes opened by the
parameter list of an interface, and the body following a suspend/resume statement have been
added; these are the underlined brackets in lines 2, 12, 14, 17, 18, and 22.
Note the closure of three scopes,−T4,−T3,−T2, at the end of the block making up the body

1: mobile void foo
2: {+T0

3: (int x, int y)
4: {+T1

5: int a;
6: B1

7: while (B2)
8: {+T2

9: int q;
10: B3

11: suspend resume with
12: {+T3

13: (int z);
14: {+T4

15: int w,z;
16: B4

17: }−T4

18: }−T3

19: }−T2

20: B5

21: }−T1

22: }+T0

Figure 10. Simple ProcessJ example annotated with scope information.

of the while-loop. Since there are no explicit markers in the code that close down scopes for
suspend/resume points (T3), and the following scope (T4), these get closed automatically
when an enclosing scope (T2) is closed. This is easily controlled when traversing the code
(and not the CFG), as a typical name resolution pass would.

Figure 11 illustrates the 5 symbol tables, the symbols they declare, their access lists,
and the nodes in the CFG with which they are associated. We summarize in Table 4 which
variables (locals and parameters) can be referenced in which blocks. Note, although block 4
appears in the access list in symbol table T3 in Figure 11 (and the parameter z is in O1(B4)),
the local variable z in table T4 hides the parameter.

I 0

B2

I 1

B4

B3

B1

B5

N V

T1

{1,2,3,4}

int a

N V

T2

int q

{1,2,3,4}

N V

T3

int z

{4}

N V

T4

int z
int w		

{1,2,3,4}

N V

T0

int x
int y

int a;

int q;

int w,z;

{1}

Figure 11. CFG with symbol tables.

Table 4. Final list of which variables/parameters can be access in which blocks.

Block Locals Parameters
B1 a ∈ T1 x ∈ T0, y ∈ T0

B2 a ∈ T1 −
B3 q ∈ T2, a ∈ T1 −
B4 w ∈ T4, z ∈ T4, q ∈ T2, a ∈ T1 z ∈ T4

B5 a ∈ T1 −

6. Results and Conclusion

We have presented an algorithm that can be applied to create a control flow graph (CFG)
at a source code level, and an algorithm to determine which procedure parameters and sus-
pend/resume parameters can be referenced in the code of a mobile procedure.

Additionally, we presented a method for performing static scope resolution on a mobile
procedure (mobile process) in a process oriented language like ProcessJ. This analysis obeys
the standard static scoping rules for local variables and also takes into account the new rules
introduced by making a procedure mobile with polymorphic interfaces (and thus resumable
in the ’middle of the code’, immediately after the point of exit (suspend point)).

7. Future Work

The ProcessJ compiler generates Java code using JCSP to implement CSP primitives like
channels, processes and alternations. Additional implementation work is required to integrate

the algorithm as well as the JCSP code generation into the ProcessJ compiler. A possible
implementation of mobiles using Java/JCSP can follow the approach taken in [14], which
unfortunately requires the generated (and compiled) bytecode to be rewritten; this involved
reloading the bytecode and inserting new bytecode instructions, something that can be rather
cumbersome. However, we do have a new approach, which does not require any bytecode
rewriting at all. We expect to be able to report on this in a different paper in the very near
future.

References

[1] Ericsson AB. Erlang STDLIB, 2010. http://www.erlang.org/doc/apps/stdlib/stdlib.
pdf.

[2] Gul Agha. Actors: a model of concurrent computation in distributed systems. MIT Press, Cambridge,
1986.

[3] Nick Benton, Luca Cardelli, and Cedric Fournet. Modern Concurrency Abstractions for C#. In ACM
TRANS. PROGRAM. LANG. SYST, pages 415–440. Springer, 2002.

[4] Peter Braun and Wilhelm Rossak. Mobile Agents: Basic Concepts, Mobility Models, and the Tracy Toolkit.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[5] David Chess, Colin Harrison, and Aaron Kershenbaum. Mobile agents: Are they a good idea?Mobile
Agents: Are they a good idea? In Jan Vitek and Christian Tschudin, editors, Mobile Object Systems
Towards the Programmable Internet, volume 1222 of Lecture Notes in Computer Science, pages 25–45.
Springer Verlag, Berlin, 1997.

[6] Ian Clarke. swarm-dpl - A transparent scalable distributed programming language, 2008. http://
code.google.com/p/swarm-dpl/.

[7] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large clusters. Commun.
ACM, 51:107–113, January 2008.

[8] Matthias Felleisen. Beyond continuations. Computer Science Dept. Indiana University Bloomington,
Bloomington IN, 1987.

[9] Cédric Fournet and Georges Gonthier. The Join Calculus: A Language for Distributed Mobile Program-
ming. In Gilles Barthe, Peter Dybjer, Luı́s Pinto, and João Saraiva, editors, Applied Semantics, volume
2395 of Lecture Notes in Computer Science, pages 268–332. Springer Verlag Berlin / Heidelberg, 2000.

[10] Carl Hewitt. Viewing control structures as patterns of passing messages. Artificial Intelligence,
8(3):323364, June 1977.

[11] Carl Hewitt, Peter Bishop, Irene Greif, Brian Smith, Todd Matson, and Richard Steiger. Actor induction
and meta-evaluation. In In ACM Symposium on Principles of Programming Languages, pages 153–168,
1973.

[12] Robin Milner. Communicating and mobile systems: the pi-calculus. Cambridge University Press, Cam-
bridge[England] ;;New York, 1999.

[13] Jan B. Pedersen et al. The ProcessJ homepage, 2011. http://processj.cs.unlv.edu.
[14] Jan B. Pedersen and Brian Kauke. Resumable Java Bytecode - Process Mobility for the JVM. In The

thirty-second Communicating Process Architectures Conference, CPA 2009, organised under the auspices
of WoTUG, Eindhoven, The Netherlands, 1-6 November 2009, pages 159–172, 2009.

[15] Jeff Rulifson. DEL, 1969. http://www.ietf.org/rfc/rfc0005.txt.
[16] Peter H. Welch and Frederick R.M. Barnes. Communicating Mobile Processes: introducing occam-π. In

Ali E. Abdallah, Cliff B. Jones, and Jeff W. Sanders, editors, 25 Years of CSP, volume 3525 of Lecture
Notes in Computer Science, pages 175–210. Springer Verlag, April 2005.

[17] Peter H. Welch and Jan B. Pedersen. Santa Claus - with Mobile Reindeer and Elves. In Fringe Presentation
at Communicating Process Architectures conference, September 2008.

A. Appendix

To illustrate the construction of the CFG in more depth, Figure 13 shows the control flow
graph for a for loop with conditional break and continue. The code from which the CFG
in Figure 13 was generated is shows in Figure 12. In Figure 13 the body of the for loop is
represented by the largest shaded box, the if statement containing the break statement is the
box shaded with vertical lines, and the if statement containing the continue statement is the
box shaded with horizontal lines.

1: for (i ; b1 ; u) {
2: B1

3: if (b2) {
4: B2

5: break;
6: }
7: B3

8: if (b3) {
9: B4

10: continue;
11: }
12: B5

13: }

Figure 12. Example code with conditional break and continue statements.

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������

b
1

i

b
2

B2

b
3

B4

B1

B3

B5u

Figure 13. CFG for the example code shown in Figure 12.

